nuclear energy for australia mark 8 · on the table, to begin the process of integrating...

19
Nuclear Energy for Australia ‐‐ it’s time to take a hard look Barry Murphy May 2015

Upload: others

Post on 21-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Nuclear Energy for Australia‐‐ it’s time to take a hard look

Barry MurphyMay 2015

Page 2: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Why am I doing this ?

“  For democracy to function, we need to be intelligently informed about issues we are asked to decide on. “ Dr. Robert Gale MD , Scientist and Physician, USA and Imperial College, London. 

1.    We are forcing the climate 

2.    There is a clean energy revolution going on

3.    The issue for clean nuclear energy is social acceptance, not technical .   

Page 3: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

What could explain Australia’s apparent reluctance to use nuclear energy ?

Unacceptable risks?

Too costly?

Don’t need it anyway?

Page 4: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Are the risks really unacceptable ? History, perceptions, emotional reservations, come first  ‐‐ but unwarranted fear 

can result in poor decisions.  Facts have to come into play. 

Is radiation the main concern ?  Radiation occurs naturally in our environment, and can also be man‐made. We live in a ‘sea’ of radiation, passing around us and through us, continuously. 

Radiation is energy on the move. It is easy to detect, measure, and guard against if necessary. Type, exposure, and dose are all important variables. 

α particles

β particles

γ rays, x rays

neutrons

Page 5: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Are the risks really unacceptable ?  For example, in the United States, with 104 nuclear power reactors in place (US 

Nuclear Regulatory Commission , 2009)  :  ‐‐

* Allison, Wade, 2009, Radiation and Reason, York Publishing, Oxford ,UK.* Gale, Peter, 2013, Radiation – what it is and what you need to know, Random House , NY, USA.

ave. dose of radiation  (all sources) 6.20  mSv /yr

of which, ‘background’  radiation  3.10  “

‘man‐made’    radiation  3.10  “

of which,  from medical procedures  2.97  “

from all other sources (incl. nuclear power)  0.13 “

Denver USA , Cornwall  UK, ‘background’ radiation 7.00  mSv /yr

UK (ave.) 2.70  “

Japan (ave.) 2.40  “

Recognised safe single dose *  100.0  mSv

Page 6: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Are the risks really unacceptable ? Nuclear reactors are industrial installations, designed to cause the controlled 

release of energy from the nucleus as heat, or to produce other beneficial products for use in medicine and industry.  

Radiation from an operating nuclear power plant is very small :  ‐‐ (millisieverts) **

** a millisievert is a measure of the biological effects  of ionising radiation

Is waste the main problem ? Current light water reactor (LWR) high‐level ‘waste’ = 27 t/GWyr (20 cu m), consisting mainly of long‐lived radioactive actinides *. 

By integral processing and recycling, advanced nuclear reactors can totally consume these actinides, reducing volume 100 times ( = 0.2 cu m/GWyr), leaving only short‐lived waste to be safely stored for about 300 years.  

1 x year background dose (Aust. average, ANSTO)

1.5 radiotherapy treatment of tumour -per month

40,000

flight New York to Los Angeles 0.03 nuclear plant worker per year – all sources

1.8 – 2.4

chest x-ray 0.10 at boundary of nuclear plant per year ≤ 0.15

Page 7: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Acknowledged, but not excused Three Mile Island (1979)

faulty indicator light  /  operator error loss of heat sink  /  partial fuel meltdown fully contained  /  small leak of radioactive gases   no harm to any person  

Chernobyl  (1986) unauthorised operator test  /  cooling water reduced no passive self‐correcting design / steam explosion fire in graphite moderator  /  no containment building 237 workers irradiated, 30 early firefighter deaths, 19 later (by 2004) widespread post‐event trauma  / 6000 child thyroid cancers / 15 deaths (by 2002)

Fukushima (2011) 9.0 earthquake and tsunami → 15 m of water @ 100 km/hr, seven times instant automatic reactor(s) shutdown cooling water pumps damaged  /  build‐up of decay heat  partial fuel meltdown  /  steam & metal reac on → H2  explosion some release of radioactive material  /  no fatalities due radiation  18,600 people killed by the tsunami.

Page 8: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Is nuclear energy really too costly ? Australian Energy Technology Assessment (2012) of 40 technologies to 2030 

showed nuclear electricity generation  amongst  lowest LCOE *  ( no system costs ).  *  ( levelised cost of electricity )

US Energy Administration (Apr. 2014) ;  est. LCOE (US c/kWhr) **, on‐line 2019  ‐‐

** ( includes all system costs, plus CCS where applicable, wind onshore and offshore )

Australian RET Report (Aug. 2014) showed taxpayer subsidies for 2001 – 2020 equal to $ 31 billion, stimulating private investment (NPV) of $ 15 billion,  and delivering to date  only  “….. a modest level of emissions reduction.” 

Small Modular Reactor (SMR) cost reductions are expected due standardised designs, modularity, simpler componentry, partial factory construction, inherent safety features, improved ‘burn’ effectiveness, higher overall efficiency, much smaller waste.    

natural gas 6.6 – 9.1 wind 8.0 – 20.4

advanced nuclear 9.6 solar (thermal) 24.3

coal 9.6 – 14.7 solar pV 13.0

Page 9: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Why not 100% variable, intermittent, renewables –is it feasible ?    (AEMO 100% Renewables Study, 2013)

Many studies, many assumptions, theoretically possible, but would mean a substantial reconstruction of the grid over vast areas of land  (up to 5000 sq kms, = 500,000 ha)   ‐‐ WA / NT not included.

Would likely require a doubling of nameplate generating capacity. More than 2 x maximum customer demand could be required at any time.

Estimated cost  “……at least”  $ 219 billion  ‐‐ $ 332 billion  ( $ 2012)  ‐‐ without land acquisition costs or distribution augmentation. Assumes ready availability of supplementary biomass fuel, peak hydro and fast OCGT biogas ramp‐up, plus active demand management for grid stability. 

Experience shows that some intermittent, non‐dispatchable renewable energy sources, coupled with demand management and control systems, can provide electricity to the existing grid up to a practical limit.  Integration requires a balance between reliability, full cost, and emissions reduction. 

Page 10: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Are we really sure we don’t need it ? 

Fossil fuels are the basis of modern prosperity  ‐‐ but their cumulative overloading of the atmosphere with GHGs is an existential threat to living conditions on earth.  Uncertainties abound.

Nevertheless, the world is on a trajectory to reduce these emissions.  In time, this will reduce our fossil fuel exports due lack of demand or negative trade impacts. Can we afford to ignore this trend ?  

The NEM is already accepting multiple sources of net generation into a grid and market system not designed for it. Beyond a practical limit, this will see grid integration and operational costs increase markedly.

By integrating readily with the grid and renewables, dispatchable nuclear power would provide base generation capacity at scale to enable the gradual phase‐out of domestic coal‐fired generation. 

Page 11: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Are we really sure we don’t need it ? 

There are 437 nuclear power reactors in 30 countries, ; 14 countries have 68 reactors  under construction ; 10 ‘new’ countries* are planning 24 reactors. 

By 2050, China will have 400,000 MW of nuclear power capacity** in place ; now constructing  32 ;  60 more planned ;  long‐term objective 228 reactors. ** ( equal to 7 x times Australia’s current total electricity generating capacity )

Modern SMR designs are smaller, simpler to operate, inherently safe, have little waste.  Solid or liquid fuel, uranium or thorium, or a combination.  Some can breed as much fuel as they use, or more, and recycle long‐lived radioactive actinides to extinction. 

Multi‐country collaboration on these designs at high priority in the Generation IV International Forum on Nuclear Energy Systems. 

Page 12: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

• Around 100 reactor concepts studied,  6 chosen as the  most likely to shape the future of nuclear energy,  due to  “….. advances in sustainability, economics, safety, reliability, and proliferation‐resistance.” 

Page 13: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Thorium Molten Salt Reactor (TMSR, IMSR, LFTR)ORNL (1960’s)  China (2000’s )

F‐salt coolant/fuel• Can not “melt down” • Proliferation resistant• Deep burn down• Simple, low cost design• SMR downscale

Page 14: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

nuclear reactor(s)

turbine generator

uranium or thorium fuel

desalination plant

community use, crop irrigation, electric vehicles, fast trains

community use, crop irrigation, stock use

saline or brakish water

heat energy

fresh water

underground compact SMR design

electricity

processheat

A COMMUNITY APPLICATIONreduced CO2 emissions

EXAMPLE

Barry Murphy 2015

Page 15: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

nuclear reactor(s)

turbine generator

electricity for intensive agriculture, safe food manufacture

heat energy

AN INDUSTRIAL APPLICATIONreduced CO2 emissionseconomics will rule

EXAMPLE

high-temperature electrolysis

crushing/oil extraction

fractionation & hydrotreating

NH3 ammonia plant

N2

biomass oil

drop-in bio or synthetic liquid fuels

fertiliser for agriculture

non-food crops, algae, woody biomass Barry Murphy 2015

H2 H2

processheat

water

and electrolyte

Page 16: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Unique Opportunities for Safety, Security, ValueWhy the global transformation to nuclear power sources should matter to Australia.

‐ Abundance of U, Th, yet exports low‐value yellow cake=> global finished fuel supplier

‐ Massive quantities of geologically stable and uninhabited land (safety, security).=> global fuel reprocessing and waste repository

‐ Stable democracy with globally recognized legal              and governmental infrastructure.

‐ Temporarily strong economy in need of long term  sustainable high value products.

‐ Solid technology educational foundation. International influence and national wealth creation

Page 17: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

The current state of play SA Royal Commission  ‐‐ looking at six aspects in particular for radioactive 

minerals in SA , viz. –▫ (1)  potential  for expansion of exploration, extraction, milling▫ (2)  feasibility of conversion, enrichment, fabrication or re‐processing▫ (3)  feasibility of generating electricity ▫ (4)  feasibility of management, storage, disposal of radioactive waste▫ (5)  environmental issues of past nuclear activity in SA▫ (6)  likely flow‐on effects to other industries in SA. 

We export uranium to others for nuclear power generation, but will not use it at home   ‐‐ in fact,  it is prohibited absolutely by law.*   This must be changed. 

*Australian Radiation Protection and Nuclear Safety Act 1998, Section 10 *Environment Protection and Biodiversity Conservation Act 1999, Section 140A 

2015 (April) Energy White Paper

(1)  climate change not seen as a factor in forward energy policy(2)  no analysis or critical insight linked to GHG emissions reduction(3)  less than I x page on nuclear energy (out of 86) (4)  will  “…….consider the outcome” of the SA Royal Commission. 

Page 18: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Conclusions ?  Adverse climate forcing and ocean acidification from the continued unconstrained 

combustion of fossil fuels is a risk the world cannot ignore.

Storage of electrical energy still requires that the primary energy is first captured and converted. Current developments for domestic storage and smart grids are very promising. 

Advanced nuclear technology is safe, environmentally friendly, generates very little waste, and will not add to weapons proliferation. It provides a reliable, emissions‐free, way to capture one of the primary energies of the universe.

A sensible ‘no regrets’ policy for Australia would see advanced nuclear technology on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower levels of GHG emission.  

Public trust and firm bipartisan political commitment will be essential. We need to take a long‐term view, educate our political leaders, and build informed community acceptance. 

The stakes are high.  It is 2015.  It’s time to take a hard look.  

Page 19: Nuclear Energy for Australia MARK 8 · on the table, to begin the process of integrating renewables, nuclear energy, and gas into the national electricity grid, or grids, at lower

Disclaimer

Unless otherwise indicated, the information in this presentation is current as at May 2015.  The material is provided for general information purposes only.  To the maximum extent permitted by law, the author will not be liable for any loss, damage, cost or expense (whether direct or indirect) arising in connection with the contents of, or any errors or omissions in, this presentation.

© Barry Murphy 2015