ntu me h.k. ma department of mechanical engineering national taiwan university, taipei, taiwan...

24
NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台台台台台台台台台台台台台台台台

Upload: beatrice-rodgers

Post on 21-Jan-2016

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

NTU ME

H.K. MaDepartment of Mechanical Engineering National Taiwan University, Taipei, Taiwan

November, 2009

台灣大學機械工程系能源環境實驗室

Page 2: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

Maximum electric work (Wel) at constant temp. and pressure is given by Gibbs free energy:

• n is no. of electrons • F is Farady’s constant• E is ideal potential of the cell

Page 3: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

Besides, Gibbs’ free energy can be written as:

• ∆H is enthaply change

• ∆S is entropy change

• T∆S represents the unavailable energy resulting from the entropy change

Page 4: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

At constant pressure, the specific entropy at temperature T is given by

It than follows that,

Page 5: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

The Gibbs’ free energy can be expressed by the equation

• For the generation reaction,

• Substituting the equation

into then,

This is general form of the Nernest Equation

Page 6: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

NTU ME

Page 7: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室
Page 8: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

NTU ME

Page 9: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

NTU ME

Page 10: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

The ideal efficiency of a fuel cell, operating reversibly, is then,

• At standard condition (298K, 1atm), thermal energy (∆H ) in the hydrogen/oxygen reaction is 285.8KJ/mole, and the free energy for useful work is 237KJ/mole, therefore,

Page 11: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

The thermal efficiency of a hydrogen/oxygen can be written in term of the actual cell voltage

Page 12: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室
Page 13: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

Activation losses are caused by sluggish electrode kinetics. It is possible to approximate the voltage drop by a semi-empirical equation, called the Tafel equation.

• α is the electron transfer coefficient of the reaction at the electron being addressed

• i0 is the exchange current density

Page 14: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室
Page 15: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

Ohmic losses occur because of resistance to the flow in the electrolyte and resistance to the flow electrons through the electrode.

Because the electrolyte and fuel cell electrodes obey Ohm’s law, the ohmic losses can be expressed by the equation,

Page 16: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

The total resistance, R, which includes electronic, ionic, and contact resistance

Page 17: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

The combined effect of the losses for a given cell and given operating conditions can be expressed as polarizations. The total polarization at the electrode is the sum of anode and cathode.

Page 18: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

The cell voltage includes the contribution of the anode and cathode potentials and ohmic polarization

• When and

are substituted in then,

Page 19: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

19

AFC PEMFC DMFC PAFC MCFC SOFC

Ion OH- H+ H+ H+ CO-23

O-2

Temperature 50~200℃ 30~120℃ 20~90℃ ~220℃ ~650℃ 500~1000℃

Fuel H2 H2 CH3OH H2 NG, H2… NG, H2…

Oxides O2 O2 O2 O2 O2 O2

Output (W) 1KW~10K 1~100K 1~100 10K~1M 1M~10M 1K~10M

112/04/21

Page 20: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

20

Water product T (K) E (V)

Liquid 298 1.23

Liquid 353 1.18

Gas 373 1.17

Gas 473 1.14

Gas 673 1.09

Gas 873 1.04

Gas 1273 0.92

nFEGWele .

OHOH 222 21

222)()()( OHOH GGGG

sThG

EmolVJ

molKJnFEG

/964722

/2.237

VE 23.1112/04/21

Page 21: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

21

Volume flow rate

H2 6.964 cc/min.

O2 3.483 cc/min.

Air 16.586 cc/min.

.min1/.sec60/2/144.96472//1.sec1/12

electronmolemolegCelectronmoleCVH

eHH 222

molgLmolegmoleg 1/4.22min/10109.3.]min/[10109.3 44

.min/..964.6.]min/[10964.6 4 ccL

.min/10268.61/1016.2.]min/[10109.3 44

2gmoleggmolgmH

.min/10555.1

2/1.min/10109.34

4

2222

moleg

molegmolegmolegn HOHO

.]min/..[483.3

.min/10483.3)1/(4.22.min/10555.1 34

2

cc

LmolegLmolegVO

]/[10567.3min]/[021.01/9.28

21.0/1.min/10555.14

4

22

sggmolegg

molegmolegmolegm

airair

OairOair

112/04/21

Page 22: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

22

Water product T (K) Efficiency limit (%)

Liquid 298 83

Liquid 353 80

Gas 373 79

Gas 1273 62

1

21T

TT

Efficiency of fuel cell = electric energy produced per mole of fuel / enthalpy of formation

Limit of fuel cell efficiency =)(HHVf

f

hg

Carnot Limit=

Thermodynamic efficiency112/04/21

Page 23: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

Reactant

Product

Reactant Product

Energy Barrier

Reaction Rate

112/04/21 23

Page 24: NTU ME H.K. Ma Department of Mechanical Engineering National Taiwan University, Taipei, Taiwan November, 2009 台灣大學機械工程系能源環境實驗室

Activation losses:

0log i

iAVact

Ohmic losses:

iRVohmicConcentration losses:

11ln2 i

iF

RTVtrans

112/04/21 24