nstda-ewaste-vo2

76
อธิบายสัญลักษณ์และวิธีอ่าน หนังสืออิเล็กทรอนิกส์ (e-Book) 1. คำ�อธิบ�ยสัญลักษณ์ต่�งๆ - เมื่อคลิกปุ่ม จะกลับไปยังหน้�แรกของหนังสือ - เมื่อคลิกปุ่ม จะกลับไปยังหน้�สุดท้�ยของหนังสือ - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ก่อนหน้�นี- เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ถัดไป - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ส�รบัญ - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ของบทที่1 - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ของบทที่2 - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ของบทที่3 - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ของบทที่4 - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ของบทที่5 - เมื่อคลิกปุ่ม จะเลื่อนไปยังหน้�ของบทที่6 2. วิธีก�รเปิดอ่�นทีละหน้� - ห�กต้องก�รไปยังหน้�ถัดไปของหน้�ที่กำ�ลังอ่�นอยู่ ให้คลิกที่มุมล่�งด้�นขว�ของหนังสือ หน้�ขว� หรือ คลิกจ�กปุ่มด้�นบน - ห�กต้องก�รไปยังหน้�ก่อนหน้�ที่กำ�ลังอ่�นอยู่ ให้คลิกที่มุมล่�งด้�นซ้�ยของหนังสือ หน้�ซ้�ย หรือคลิกจ�กปุ่มด้�นบน - ห�กต้องก�รเห็นภ�พรวมเต็มหน้� ส�ม�รถ กดแป้นพิมพ์ Ctrl 0 - ห�กต้องก�ร zoom ตรงส่วนไหน กดแป้นพิมพ์ Ctrl + เพื่อ ขย�ยขน�ด หรือ Ctrl - เพื่อให้ลดขน�ด และเมื่อต้องก�รออกจ�ก zoom ก็ส�ม�รถกดแป้นพิมพ์ Ctrl 0 3. เมื่อต้องก�ร จบก�รอ่�น หนังสืออิเล็กทรอนิกส์ (e-Book) กดแป้นพิมพ์ Esc แล้วคลิกทีFile เลือก Exit หรือคลิกปิดทีà·¤â¹âÅÂÕ¡ÒèѴ¡ÒëҡἋ¹Ç§¨ÃÍÔàÅç¡·ÃÍ¹Ô¡Ê à·¤â¹âÅÂÕ¡ÒèѴ¡ÒëҡἋ¹Ç§¨ÃÍÔàÅç¡·ÃÍ¹Ô¡Ê C 1 2 3 4 5 6 C 1 2 3 4 5 6

Upload: paiboonsree

Post on 10-Nov-2015

30 views

Category:

Documents


11 download

DESCRIPTION

E-waste program

TRANSCRIPT

  • (e-Book)

    1.

    -

    -

    -

    -

    -

    - 1

    - 2

    - 3

    - 4

    - 5

    - 6

    2.

    -

    -

    - Ctrl0

    - zoomCtrl+Ctrl- zoomCtrl0

    3.(e-Book)Esc

    FileExit

    "e-waste "

    e-waste

    e-waste

    e-waste

    "e-waste ""e-waste ""e-waste ""e-waste ""e-waste ""e-waste ""e-waste ""e-waste ""e-waste "

    e-waste

    e-waste

    e-waste

    C

    1

    2

    3

    4

    5

    6

    C 1 2 3 4 5 6

  • .

    . . . .

    .

    ..2554 ... ..2537

    114 . . . . 12120 0 2564 6500 4752, 4755 0 2564 6400 Email: [email protected]

    . 111 . . . . 12120 0 2564 7000 0 2564 7015 Email: [email protected]://www.nstda.or.th/cyberbookstore

    0 2895 3180-1

    e-waste

    e-waste / . -- : , 2554. 148 : 1. 2. -- 3. -- I. II. III.

    TD 799.85 363.728

    C 1 2 3 4 5 6

  • e-waste

    .

    (MTEC) (.)

    "e-waste "

    /

    e-waste

    "e-waste "

    C 1 2 3 4 5 6

  • 1 ...........................................................................7

    1.1 .......................................... 9

    1.2 ................................16

    1.3 ...............................18

    1.4 .............................................. 25

    2 .................................................................................................. 31

    2.1 ...................................................................................... 32

    2.2 ................................. 39

    2.2.1 ................. 42

    2.3 ............................................................................... 49

    3 ....................................................................................................... 53

    3.1 ...................................................................................................................... 55

    3.1.1 ................. 56

    3.1.2 ....................................................... 62

    3.2 ...................................................................................................................... 65

    4 ................................................................................................................. 67

    4.1 ......................................................................................................................... 69

    4.2 ................................................................................................................... 70

    4.2.1 .................................................................................................................. 70

    4.2.2 .......................................................................................................................71

    4.2.3 ................................................................................................................. 73

    4.2.4 ............................................................................................................. 75

    4.3 ......................................................................................................... 76

    4.3.1 ............................................................... 76

    C 1 2 3 4 5 6

  • 4.3.2 ......................................... 78

    4.3.3 ................................................ 79

    4.3.4 ..............................................81

    4.4 .............................81

    5 ..................................................................................................... 91

    5.1 ............................................................................................................................ 93

    5.1.1 ........................................................................ 93

    5.1.1.1 : ......................................................... 94

    5.1.1.2 : ............................................................. 94

    5.1.2 .......................................................................... 95

    5.1.3 ........................................................................ 98

    5.2 .......................................................................................................................102

    5.2.1 ..........................................................................................102

    5.2.2 ................................................................................106

    6 ................................................................................................109

    6.1 ............................................................................................... 114

    6.2 ....................................................................................................... 114

    6.3 ................................................................................ 116

    6.4 ............................................................................................... 117

    6.5 ....................................................................................................................................... 118

    ............................................................................................................121.....................................................................................................................125........................................................................................................... 145

    1C 1 2 3 4 5 6

  • 8 9E-waste C 1 2 3 4 5 6

    1.1

    (virgin materials)

    /

    1.1

    ( 1.2)

    (e-waste)

    .. 2551 2.72

    20%

    .. 2543

    11 1

  • 10 11E-waste C 1 2 3 4 5 6

    1.1

    (reuse)

    (remanufacturing) (recycling) (incineration)

    (landfilling)

    (production-batch)

    /

    (catalyst) (dioxin)

    (flame-retardant) (brominated

    flame-retardant - BFRs)

    36 16

    (urban mining)

    1.2

    1.2

    ( (GJ/ton)

    0 50 100 150 200 250 300 350 400 450

    , , 2010

  • 12 13E-waste C 1 2 3 4 5 6

    .. 2543

    .. 2552 2.6

    1% .. 2546 500

    ( 150 ,

    5 )

    195

    10,000-20,000

    18 24

    (ingot)

    Electronic Recyclers International Inc.

    170

    Advanced E-waste Shredding System

    Advanced CRT Crushing

    System (cathode ray tube monitor: CRT)

    3-5

    cradle to cradle

    1.1

    (non-ferrous)

    (clock frequency)

    (contact layer)

    (gold wafer) 80 1-2.5

    300-600

  • 14 15E-waste C 1 2 3 4 5 6

    (%) (ppm)

    Fe

    Cu

    Al

    Pb

    Ni

    Ag

    Au

    Pd

    28 10 10 1.0 0.3 280 20 10

    PC 7 20 5 1.5 1 1000 250 110 5 13 1 0.3 0.1 1380 350 210 23 21 1 0.14 0.03 150 10 4 62 5 2 0.3 0.05 115 15 4

    4 3 5 0.1 0.5 260 50 5

    PC 4.5 14.3 2.8 2.2 1.1 639 566 124

    12 10 7 1.2 0.85 280 110 -

    PC 20 7 14 6 0.85 189 16 3

    5.3 26.8 1.9 - 0.47 3300 80 -

    ( .. 2515)

    26.2 18.6 - - - 1800 220 30

    36 4.1 4.9 0.29 1.0 - - -

    (./

    )

    /(./)

    1.

    0.26 ABS,PC 0.12 0.01 0.03 0.01 NA 0.05 NA 0.05

  • 16 17E-waste C 1 2 3 4 5 6

    (printed circuit

    board: PCB)

    1.2 7

    .. 2551

    ( CPU) 3.3

    20,000 3,700

    480 ( 100

    13-15 ) 100

    ( 214 )

    1.2

    ()

    (2551)

    RECUPEL

    95

    50 100

    80

    70

    Environmental Protection Agency (EPA)

    (Waste Electrical and Electronic Equipment : WEEE)

    (recovery)

    WEEE

    (Restriction

    of Hazardous Substances: RoHS) Act Governing

    the Sale, Return and Environmentally Sound Disposal of Electrical and

    Electronic Equipment The ElektroG

    23

    .. 2548

    WEEE RoHS

    RoHS

    6 .. 2547 1

    .. 2549 WEEE

    (WEEE Act)

    20 .. 2548 Ministry of Environmental Protection

    (MEP)

  • 18 19E-waste C 1 2 3 4 5 6

    1

    .. 2550

    3R .. 2536

    Material and Workmanship Improvement System

    .. 2546 Extended Producer Responsibility (EPR) System

    17

    .. 2549

    2 .. 2550 1 .. 2551

    3Rs Extended Producer

    Responsibility (EPR)

    Fundamental Law for Establishing a Sound Material-Cycle Society

    1.3

    .. 2535

    .. 2535 .. 2522

    ( 3) .. 2551 ( 6) .. 2548

    (2551)

    . .

    (2553)

  • 1.4

    1.3

    20 21E-waste C 1 2 3 4 5 6

    /

    EEE

    EEE / W

    EEE

    ./

    W

    EEE

    /

    (3R

    )

    EEE

    EEE

    WEEE

    /

    /

    /

    (/

    )

    /

    , 2550

    EEE : E

    lectrical and Electronic equipm

    ent

    WEEE : W

    aste Electrical and E

    lectronic equipment

    , 2551

    Mobile phone

    Washing

    machine

    Copy

    machine

    Air

    Conditioner

    Com

    puter

    Television

    Rice cooker

    Dism

    antling

    Dism

    antling

    Dism

    antling

    Dism

    antling

    Dism

    antling

    Dism

    antling

    Dism

    antling

    Batteries

    Shredding

    Ink waste

    Incineration

    Bulk reducing

    pressC

    rusher

    Separation

    Crusher

    Crusher

    Heat-exchanger crusher

    Cold com

    pressor crusher

    Separation

    Shredding

    Sm

    ashing

    CR

    T D

    issembling m

    achine

    Crusher

    Separation

    Iron

    Plastics

    Magnetic S

    eparator

    PC

    B

    Grain-S

    ize sorter

    Plastics C

    u, Al P

    lastics Cu, A

    l

    Plastics

    Cu, A

    l

    Plastics

    Cu, A

    l

    Iron

    Front (panel) glass D

    ry Cleaning

    Front (panel) glass G

    rain-size sorter

    Rear (funnel) glass G

    rain-size sorterR

    ear (funnel) glass Dry cleaning

    Funnel glaass

    Panel glass

    Crusher

    Magnetic S

    eparatorG

    rain-size sorterIron

    Iron

    Iron

    Magnetic S

    eparator

    Magnetic S

    eparator

    Magnetic S

    eparator

    Eddy current separator

    Magnetic

    separatorC

    u

    Grain-size sorter

    Grain-size sorter

    Grain-size sorter

    Plastics

    Cu, A

    l

    Iron

    Magnetic

    Separator Magnetic

    Separator

    Water

    separator

    Melting

    Electrolysis

    Au recovery

    Pd recovery

    Ag recovery

  • 22 23E-waste C 1 2 3 4 5 6

    WEEE & HHW

    Total Generation

    //

    //

    / 105/106

    (Storage)

    2

    Waste discard

    1.5

    / 2

    105/101

    /

    1

    2

    , 2550

  • //

    .

    , 2553

    1.6

    24 25E-waste C 1 2 3 4 5 6

    1.3

    (integrated circuit: IC)

    1.4

    1.5

    1)

    2) 1

    3) 2 1

    1.4

    (2553)

    1.6

    1.6

    (.)

  • 26 27E-waste C 1 2 3 4 5 6

    /

    /

    ///

    (/ )

    1.7 1 1.8 2

    Reuse

    (2551)

    3 1.7-1.9

    , 2551

    1 ( 1.7)

    , 2551

    /

    (

    )

    Reuse

  • 28 29E-waste C 1 2 3 4 5 6

    /

    (

    )

    Reuse

    2 ( 1.8)

    3 ( 1.9)

    4

    4

    1.

    2.

    3.

    , 2551

    1.9 3

  • 30 E-waste

    24.

    5.

    6.

    7.

    8.

    C 1 2 3 4 5 6

  • 32 33E-waste C 1 2 3 4 5 6

    2.1

    (printed circuit board: PCB)

    2.1

    2 1)

    (substrate)

    2)

    metal clad laminate

    221

    11 2 ( ) (multi-layer)

    2.1

  • 34 35E-waste C 1 2 3 4 5 6

    221-222

    1. single-sided boards

    2. double-sided boards

    plat

    through hole (PTH)

    3. multi-layer boards

    (

    ) ( 3-50

    )

    4. flexible circuit (

    2.2) laminating copper foil flexible

    substrate Kevlar Kapton

    printed circuit board assembly

    ( 2.3)

    2.2 flexible circuit 2.3 (printed circuit board assembly)

    2.1

    70%

    16%

    0.10%

    3 H

    () M () L ()

    (platinum group metals: PGMs)

  • 36 37E-waste C 1 2 3 4 5 6

    (power supply units)

    (ferrite transformer) (heat sink)

    (reliability) pin edge

    connector

    (optoelectronics) (gold pin board, palladium pin board)

    2.1

    2.2

    %

    70

    16

    4

    , () 3

    2

    0.05

    0.03

    0.01

    ( )

  • 38 39E-waste C 1 2 3 4 5 6

    2.2 2.2

    (, )

    ( 2.4) ( 2.5)

    (pyrometallurgical)

    (hydrometallurgical)

    (%)

    Fe Cu Al Pb Ni Ag* Au* Pd*

    a (/) 300 7,736 2,475 3,580 31,150 430,000 24,490,000 11,660,000

    4 39 13 2 5 6 25 6 37

    PC 0 16 1 1 3 4 62 13 79 0 8 0 0 0 5 67 19 91

    3 78 1 0 0 3 12 2 17 17 35 4 1 1 4 33 4 42 1 12 6 0 8 6 64 3 73 PC 0 6 0 0 2 2 81 8 91

    1 19 4 1 6 3 66 - 69

    0 37 1 - 3 25 35 0 60

    a (London Metal Exchange - LME)

    24 .. 2550

    *

    J. Cui, L. Zhang / Journal of Hazardous Materials 158 (2008) 228256

    2.4

    Manual disassembly

    PCB

    Ni

    Plastic, Chip

  • 40 41E-waste C 1 2 3 4 5 6

    2.6

    OEM (original equipment manufacturers)

    ()

    (disposal contractor)

    2.5

    Hand Picking

    OEM

    -

    /

    Shredding

    Au

    Cu Smelter

    Refining

    Metal liberation

    Air Separation

    Precious metal recovery

    Precious metal Cu

    PCBs

    PCBs

    PCBs

    PCBs

    Au, Ag, Pd, Pt

    Cyanidation

    Size reduction

    Mechanical Separation

    Metal conentratesCu, Solder, Fe-Ni, Al

    Precious metals

    Martin Goosey and Rod Kellner, A scoping Study End-of-Life Printed circuit Boardds, Aug 2002

    2.6

  • 42 43E-waste C 1 2 3 4 5 6

    2.2.1

    4

    1.

  • 44 45E-waste C 1 2 3 4 5 6

    2.

    (Waste

    Electrical and Electronic Equipment: WEEE)

    (Restriction of Hazardous Substances: RoHS)

    WEEE RoHS

    2.1

    2.2

    2.3

    the Registration, Evaluation, Authorization, and Restriction of

    Chemicals (REACH)

    2.4

    2.5

  • 46 47E-waste C 1 2 3 4 5 6

    3.

    4.

  • 48 49E-waste C 1 2 3 4 5 6

    (FTA)

    2.3

    1.

    ()

    2.

    3.

    3

    2.7

  • 50 51E-waste C 1 2 3 4 5 6

    , , 2010

    2.7

    (liberation)

    (comminution)

    (mixing)

    (calcination)

    (sintering)

    (briqueting)

    (agglomeration)

    (screening&classification)

    1.

    (shredder) (hammer

    mill) (ball mill)

    (magnetic

    separator) (centrifuge) (shaking table)

    2.

    (electrochemistry)

    (ion exchange) (reverse osmosis) (electrodialysis)

    (bioleaching) (supercritical fluid extraction)

    3.

    3-6

  • 52 E-waste

    (thermalprocess)

    3C 1 2 3 4 5 6

  • 54 55E-waste C 1 2 3 4 5 6

    (

    )

    (pyrometallurgy) (pyrolysis)

    11 3(thermalprocess) 3.1(pyrometallurgy) () (heater furnace) (induction furnace) 700-1,200

    (decomposition) (NaCO4) (borax)

    (KNO3) (NaOH)

    (slag)

    3 (slag) (matte)

    (metal)

    ()

    (high fluidity)

  • 56 57E-waste C 1 2 3 4 5 6

    (plasma arc furnace)

    (blast furnace) (drossing) (sintering)

    (gas phase)

    3.1.1

    3.1

    Veldbuizen Sippel Noranda 3.1

    100,000 14%

    ()

    (125 ) (supercharged air)

    39%

    (silica-based slag)

    (copper matte) (I)

    (converter)

    (liquid blister copper)

    (anode furnace) 99.1% 0.9%

    (electrorefining)

    Rnnskr Boliden Ltd. 3.2

    (converting) (Kaldo

    furnace) 100,000

    (skip

    hoist) (oxygen lance) -

    1,200 post-combustion

    ( )

    ( )

    H. Veldbuizen, B. Sippel, Ind. Environ., 1994

    24%Cu

    35%Cu

    5%Cu

    73%Cu

    98%Cu

    334kg

    99.1%Cu

    98%Cu 10%

    Cu

    3.1 Noranda

  • 58 59E-waste C 1 2 3 4 5 6

    Umicore

    IsaSmelt

    (lead slag)

    base metals operations (BMO)

    (copper-leaching)

    (electrowinning)

    BMO (lead blast

    furnace) (lead refinery)

    (special metal plant)

    IsaSmelt

    ( speiss

    )

    ( Harris) (

    )

    IsaSmelt Umicore (

    3.3) hygienic gases

    (bag house filters)

    (electrofilters) (scrubbers)

    (SO2)

    (NOx)

    SO2

    H2SO

    4

    (silver slime)

    NiSO4

    Zinc Fuming

    Kaldo

    3.2 Rnnskr

    Umicore

    (dross), , speiss (

    ), (anode slimes), ,

    2,500,000

    10%

    APME, Association of Plastics Manufacturers in Europe Report, 2000

  • 60 61E-waste C 1 2 3 4 5 6

    300-700 -

    / ()

    / ()

    99.9%

    80%

    1,300 -

    40 0.61

    (I) (Cu2O)

    3.4

    3.3 (offgas) IsaSmelt

    Isa

    Smelt

    Hygienicgasses

    Radiationchamber

    SO

    2, NO

    x

    , ,

    H2SO

    4, NO

    x, CO,

    HF, HCl

    :

    , ,

    SO2, NO

    x ,

    CO,

    (quenching)

    C. Hageluken, TERI Press, New Delhi, 2007

    Zinc Fuming

    (Hg)

    (hammer mill)

    30 50:50

    (silo)

    (copper collector)

  • Cu2O

    Cu

    62 63E-waste C 1 2 3 4 5 6

    2Cu + H2O = Cu

    2O + 2H

    3.4

    (stream reaction)

    Cu2O + 2H = 2Cu + H

    2O

    2. (halogenated flame retardants - HFR)

    3.

    4.

    5.

    /

    6. ( )

    3.1.2

    1.

    XCEP, , 2010

    3.4 (NaOH)

  • 12

    3 4 5

    6

    7

    8

    9

    10

    1112

    13

    64 65E-waste C 1 2 3 4 5 6

    3.2(pyrolysis)

    ()

    500-800

    3 (

    ) ( (tar)) ()

    3.5

    1521% 1520% 60%

    H. Kui, G. Jie, X. Zhenming, Journal of Hazardous Materials, 2009

    3.5 (1) (2) (3) (4) (5) (6) (7) (8) (9)

    (10) (11) (12) (13)

    N

    oran

    da

    26

    4

    (14%

    )

    R

    nns

    kr

    B

    olid

    en

    265

    ,266

    K

    aldo

    (

    1

    00,0

    00

    /

    )

    R

    nns

    kr

    267

    PC

    Zin

    c Fum

    ing

    (

    1:1

    )

    Zin

    c Fum

    ing

    U

    mic

    ore

    268-

    270

    ,

    (

    PM

    O)

    IsaS

    mel

    t

    10%

    (

    2

    50,0

    00

    /

    )

    Isa

    Sm

    elt

    base

    met

    als

    oper

    atio

    ns (

    BM

    O)

    PM

    O

    (lea

    d bl

    ast fu

    rnac

    e)

    (lea

    d re

    finer

    y)

    I

    saSm

    elt

    U

    mic

    ore

    271

    WEEE

    Is

    aSm

    elt

    W

    EEE 6

    %

    1%

    4.

    5%

    D

    unn

    272

    3

    00-7

    00

    80%

    99.9

    %

    D

    ay

    273

    1400

    co

    llec

    tor

    met

    al

    c

    olle

    ctor

    met

    al

    80

    .3%

    94.

    2%

    A

    leks

    an-

    drov

    ich

    PG

    M

    274

    PG

    M

    (c

    halc

    ogen

    ides

    )

    ba

    sem

    etal

    PG

    M

    C. J

    iran

    g, Z

    . Lifen

    g, J

    ourn

    al o

    f H

    azar

    dous

    Mat

    eria

    ls, 2

    008

    3.1

  • 66 E-waste

    3.6

    Gongming Zhou, Zhihua Luo and Xulu Zhai, Proceedings of the international conference on sustainable solid waste management, 2007

    3.6

    slag

    air

    Was

    te P

    CB

    Pyrolysis gasslag

    slag

    slagcopper

    discharge

    Deoxidization of Cu2OEnrichment of noble metalSeparation of metal

    liquid of metaladmixture

    noble metalenriched admixture

    smokesmoke

    slag containing large quantity of Cu2Oslag

    (chemicalprocess)

    4C 1 2 3 4 5 6

  • 68 69E-waste C 1 2 3 4 5 6

    11 4(chemicalprocess) 4.1(hydrometallurgy) (discrete component) 200

    pin edge connector

    (air knives)

    (copper substrate)

    (electrowinning)

    (non selective leachants)

    (dilute mineral acid)

    2

    (selective dissolution-electrolytic recovery)

    (discrete metal) (

    ) (fluoroboric acid)

    (precious metal group: PMG)

    ( )

  • 70 71E-waste C 1 2 3 4 5 6

    4

    (electrolytic membrane cells)

    (

    )

    (electrorefining process)

    4.2(leaching)

    (leaching)

    4.2.1

    .. 2326

    Carl Wilhelm Scheele

    235

    4Au + 8CN 4Au(CN)2 + 4e

    O2 + 2H

    2O + 4e 4OH

    Dorin Woods (pH) (

    )

    10-10.5 (activity) >>>

    ( 4.1)

    4.2.2

    ( )

    () /

    Au(I)

    Au(II) /

    (chlorination)

    (aqua regia)

    3 1

    236

    2HNO3 + 6HCl 2NO + 4H

    2O + 3Cl

    2

    2Au + 11HCl + 3HNO3 2HAuCl

    4 + 3NOCl + 6H

    2O

    2

    (stainless steel)

  • 72 73E-waste C 1 2 3 4 5 6

    pH

    8-10 +100oC

    / 9-11 Cu/Au

    8.5-9.5

    Slurry CN-electrolysis 9-11

    8-10

    7-8

    8-9

    ~9

    ~9

    8-9

    / 6-6.5

    6-7

    3-10

    /

    4-5

    7-10

    ,

    5-6

    DMSO, DMF

    7

    4.1

    4.2.3(thiourea)

    (thiourea)

    CS(NH2)2

    (cationic complex) 99%

    212

    Au + 2CS(NH2)2 Au(CS(NH

    2)2)2

    + + e

    (ferric iron)

    -

    pH

    / 1-3

    1-2

    1-3

    (aqua regia) 1

    1 electrolytic Cu slimes

    1-2

    Haber

    1

    Bio-D

    1

    6-7

    G. Hilson, A.J. Monhemius, J. Cleaner Prod, 2006

  • 74 75E-waste C 1 2 3 4 5 6

    4.2

    75%

    3 (1)

    (2)

    (3)

    CILd

    (roasting) - 550oC (kg/ton ) - 50

    S/L (g/ml) 1/1.5 1/1.5 S/L (g/ml) 1 /2 1 /2

    NaCN (kg/ton ) 6.2 4.6 TUa (kg/ton ) 15.2 15.2

    Ca(OH)2 (kg/ton ) 8.2 2.9 FSb (kg/ton ) 140.9 140.9

    pH 10.5 10.5 SAc (kg/ton ) 46.2 46.2

    pH 1.5 1.5

    (h) 48 48 (h) 5 5

    (%) 66.7 79.8 (%) 66.8 74.9

    a , b , c , d carbon in leach

    N. Gonen, E. Korpe, M.E. Yildirim, et al., Miner. Eng., 2007

    4.2

    4.2.4

    (S2O

    3

    2-)

    (ammoniacal thiosulfate) (cupric ion)

    Cu(NH3)

    4

    2+

    Cu(NH3)

    2

    + Au+

    Au(NH3)2

    + Au(S2O

    3)2

    3- Cu(NH3)2

    +

    Cu(S2O

    3)

    2

    5- Au(NH3)

    2

    + S2O

    3

    2-

    Cu(S2O

    3)2

    5- Cu(NH3)2

    + Cu(NH3)4

    2+

    (II)

    (Au+) 237

    Au + 5S2O

    3

    2- + Cu(NH3)4

    2+ Au(S2O

    3)2

    3- + 4NH3 + Cu(S

    2O

    3)3

    5-

    2Cu(S2O

    3)3

    5- + 8NH3 + O

    2 + H

    2O 2Cu(NH

    3)4

    2+ + 2OH- + 6S2O

    3

    2-

    4.3 (stability constant)

    (alkaline)

    (9.25 25 )

    (II)-

    25 9-10

    (II)-

    50%

  • 76 77E-waste C 1 2 3 4 5 6

    4.3

    (cementation) (solvent extraction) (adsorption

    on activated carbon) (ion exchange)

    4.3.1(cementation)

    1890

    Merill-Crowe

    (cathodic deposition)

    (anodic corrosion)

    238

    log Ka

    Au(CN)2

    - 38.3 224

    Au(SCN)2

    - 16.98 224

    Au(SCN)4

    - 10 224

    AuCl4

    - 25.6 225

    Au(NH3)2

    + 26, 13b 225, 226

    Au(S2O

    3)2

    3- 26.5, 28 227, 228

    a K = [AuLn]/[Auz+][L]n Auz++nL=AuL

    n 25oC

    b (ionic strength) = 1.0

    J. Cui, L. Zhang, Journal of Hazardous Materials, 2008

    4.3 2Au(CN)

    2

    - + 2e 2Au + 4CN-

    Zn + 4CN- Zn(CN)4

    2- + 2e

    (passivating layer)

    8-11

    -

    (reduction-precipitation)

    (NaBH4) 12% (NaOH) 40%

    4.3.2

    (guanidine) -

    4.4 (extractant)

    (aurocyanide) LIX-79

    -

    (NaCN)

    Cyanex 921

    (Li+)

  • 78 79E-waste C 1 2 3 4 5 6

    239

    iNa+ + 2Au+ + jS2O

    3

    2- + OH- + mTBP(0)

    = NaiAu2(S2O32-)

    j(OH-)

    mTBP

    (0)

    iNa+ + 2Au+ + jS2O

    3

    2- + OH- + 2NH3 + mTBP

    (0) = NaiAu

    2(S

    2O

    3

    2-)j(OH-)(NH

    3)2

    mTBP

    (0)

    i (i = 3-5) j (j = 2-3) TBP , m 1.5-2.5

    6-9

    (extractant)

    (diluent)

    [Au] (mmol/L)

    [pH50]

    Primene JMT primary amine 10% (v/v) 0.25 7.65 240

    Primene 81R primary amine 10% (v/v) 0.25 7.85 240

    Adogen 283 secondary amine 2.2% (v/v) 5 7.05 241

    TBP phosphoric ester - 5

  • 80 81E-waste C 1 2 3 4 5 6

    bio Ci

    kio

    Qi =Di+

    k

    b

    ijC

    j

    kijj=l

    KCn Qi=

    Freundlich 247, 248

    K n (0

  • 82 83E-waste C 1 2 3 4 5 6

    2

    (-0.3 mm)

    L=Liquid

    S=Solid

    Ag (NaCl)

    Cu

    AgCl, CuS

    S

    (Al)

    L

    L

    L

    S

    Au, Ag,Pd, Cu

    Pd, Ag, Au, Cu

    S

    L

    S

    L

    L

    S

    P. Quinet, J. Proost, A. Van Lierde, Miner. Metall.Process, 2005

    4.1

    27.37% 0.52% 0.06% 0.04%

    4

    +1.168 , -1.168+0.6 , -0.6+0.3 -0.3

    4.1

    93% 95% 99%

    1 4.5

    4.2

    (a) (carbonization) (roasting)

    (b) (nitric acid)

    (c) (d)

    (diethyl malonate) (e)

    (hexanol), (methyl-iso-butyl ketone),

    (di-n-butylketone), , (dibutyl ether),

    (ethylene glycol), (n-amylether), (iso-amyl ether),

    2,2- (2,2-dichloroethyl ether), (tributylphosphate:

    TBP) (natural oil)

    (selectivity)

    140

  • H2SO

    4

    H2SO

    4 Fe2(SO

    4)3

    84 85E-waste C 1 2 3 4 5 6

    (H2SO

    4) (kg) 470

    Fe2(SO

    4)3 (kg) 12

    (O2) (L) 36x104

    (H2O

    2) (kg) 74

    (NaCN) (kg) 19

    (HCl) (kg) 165

    (Al) (kg) 0.3

    (NaCl) (kg) 1.7

    (kg) 94

    (NaOH) (kg) 53

    4.5 1

    P. Quinet, J. Proost, A.Van Lierde, Miner. Metall.Process, 2005

    (Ag) 40oC

    (Au) 40oC

    (Au)

    Au

    HNO3(l+l)

    AgNO3

    Diethyl malonate

    HNO3 0.01 M

    H2SO

    4 + H

    2O

    2 + (COOH)

    2

    A.G. Chmielewski,T.S. Urbanski,W. Migdal, Hydrometallurgy, 1997

    4.2

    ( )

    400-500

    8-12

    (H2SO

    4) 90

    (HNO3) 1:2

    60 (NaClO3)

    92%

  • NO3

    HNO3

    86 87E-waste C 1 2 3 4 5 6

    180 (MgCl2) 250 3 80-95

    98% 94% 96%

    94%

    50 200 2.5

    80 (redox-potential) 550

    50%

    96% 98%

    (acidic sodium bromide) 30

    180 (pulp)

    (triisobutylphosphinesulfoxide) 10%

    850 60

    3 98% 84% 96%

    92%

    4.3

    (stripping solution)

    (HNO3) 0.5

    (current efficient: CE) 43% (current density) 20

    5% HNO3 5

    (re-dissolution)

    (simulated leaching solution)

    (rotating cylinder electrode reactor) (undivided) (batch mode)

    (electrodeposition) (II)

    (Cu(NO3)2) 0.1 (II) (Pb(NO

    3)2) 0.025 0.5

    (lead dioxide)

    2

    (NO3

    -)

    (multilayer ceramic capacitor: MLCC)

    (nitric etching solution)

    MLCC

    97% 1 90

    90 5

    4.6

    /

    4.7

    4

  • 88 89E-waste C 1 2 3 4 5 6

    HNO3 1-6 M

    NaOH HCl 1.5 M H

    2SnO

    3+6HCl H

    2SnCl

    6+3H

    2O

    (Sn) Sn(IV)+4e- Sn

    HCl H

    2SnO

    3 HNO

    3

    A. Mecucci, K. Scott, J. Chem. Technol. Biotechnol., 2002

    4.3 Mecucci Scott

    H2SnO

    3

    (Sn) (metastanic acid)

    Sn + 4HNO3

    H2SnO

    3 + 4NO

    2+H

    2O

    : Cu Cu(II)+2e- Cu

    : PbO2

    Pb(II)+2H2O PbO

    2+4H++2e-

    ..

    (Au)

    2550 251

    (Au) (Ag)

    -0.5 (KI) (I

    2)

    Au Ag 2550 252

    (Ni) 1 90oC 90

    5

    Ni 2550 253

    (Au) (98%), (Pd) (96%), (Pt) (92%), (Ag) (84%)

    Au PGMs 2549 254

    (Cu) (98%)

    Cu 2549 255

    (Cu), (Ag) (93%), (Pd) (99%), (Au) (93%)

    AgCl, Cu, Pd, Au 2548 256

    (Au) (Ag) (Pd) 92%

    (FeCl2)

    gold sponge 2548 257

    (Au) , (III) (CuCO

    3)

    2547 258

    (Sn) (Pb)

    Ti(IV)

    Sn Pb 2546 259

    4.6

  • 90 E-waste

    ..

    (Cu), (Pb) (Sn)

    Cu, Pb Sn 2545 260

    (Au)

    2540 261

    (Au) 80-90oC

    2536 262

    (Au) (Ni)

    ()

    Ni Au

    2535 263

    J. Cui, L. Zhang, Journal of Hazardous Materials, 2008

    *

    ++++ ++ -- 0 ++++ ----- -

    +++++ +++ ---- ----- - -- ---

    +++ ++++ ----- -- 0 - -

    ++ + ----- 0 -- - ---

    4.7

    0, - + (base) (negative) (positive)

    (*)

    J. Cui, L. Zhang, Journal of Hazardous Materials, 2008

    5

    (biometallurgy)

    C 1 2 3 4 5 6

  • 92 93E-waste C 1 2 3 4 5 6

    20

    (Cu), (Ni), (Co),

    (Zn), (Au) (Ag)

    (structural

    function) / (catalytic function)

    (prokaryote)

    (eukaryote)

    (intercellular function) /

    (selective)

    (non-selective)

    11 5(biometallurgy) - (algae) (fungi) / (biological sludge) (effluent) 2

    (bioleaching) (biosorption)

    (Co), (Mo), (Ni), (Pb) (Zn)

    5.1(bioleaching)

    5.1.1

    2

    173

    MS + H2SO

    4 + 0.5O

    2 MSO

    4 + So + H

    2O

    So + 1.5O2 + H

    2O H

    2SO

    4

    So = elemental sulfur, oxidation number = 0

  • 94 95E-waste C 1 2 3 4 5 6

    (Fe2+) (Fe3+)

    173

    MS + 2Fe3+ M2+ + 2Fe2+ + So

    2Fe2+ +0.5O2 +2H+ 2Fe3+ +H

    2O

    2 (thiosulfate) (polysulfide)

    ( )

    5.1.1.1:(S2O

    32-)

    (III)

    (pyrite: FeS2), (molybdenum disulfide: MoS

    2) (tungsten

    disulphide: WS2)

    176

    FeS2 + 6Fe3+ + 3H

    2O S

    2O

    3

    2- + 7Fe2+ + 6H+

    S2O

    3

    2- + 8Fe3+ + 5H2O 2SO

    4

    2- + 8Fe2+ + 10H+

    5.1.1.2 :(H2S

    n)

    (III) /

    () 2

    176

    MS + Fe3+ + H+ M2+ + 0.5H2S

    n + Fe2+ (n 2)

    0.5H2S

    n + Fe3+ 0.125S

    8 + Fe2+ + H+

    0.125S8 + 1.5O

    2 + H

    2O SO

    4

    2- + 2H+

    /

    (III)

    (III)

    (II) (meso-

    philic) (thermophilic)

    5.1.2

    heap leaching dump leaching stirred-tank leaching

    heap leaching

    dump leaching (secondary

    minerals) (covellite : CuS) (chalcocite : Cu2S) 40

    (heap of ores)

    stirred-tank 20

    stirred-tank (arsenopyrite:

    FeAsS)

    (biooxidation)

    heap leaching

    .. 2523 13

    ( 5.1)

    So = elemental sulfur, oxidation number = 0

  • 96 97E-waste C 1 2 3 4 5 6

    5.1

    178

    2Cu2S + 2H

    2SO

    4 + O

    2 2CuS + 2CuSO

    4 + 2H

    2O

    Cu2S + Fe

    2(SO

    4)3 2CuSO

    4 + 2FeSO

    4 + S

    CuS + Fe2(SO

    4)3 CuSO

    4 + 2FeSO

    4 + S

    (refractory gold ores)

    (arsenopyrite) (pyrite) (pyrrhotite)

    tank leaching

    (mineral sulfide matrix)

    50% (pretreatment)

    95%

    stirred-tank leaching .. 2529

    (slurry) 15-20%

    (primary reactor)

    2-2.5

    (short-circuiting) 4-6

    : / (..)

    Lo Aguirree, Chile 16,000 2523-2539

    Gunpowders 2534-

    Mammoth Mine, (In situ)a

    Australia

    Mt. Leyshon, Australia 1,370 2535-2540

    Cerro Colorado, Chile 16,000 2536-

    Girilambone, Australia 2,000 2536-

    Ivan-Zar, Chile 1,500 2537-

    Quebrada Blanca, Chile 17,300 2537-

    Andacollo, Chile 10,000 2539-

    Dos Amigos, Chile 3,000 2539-

    Cerro Verde, Peru 32,000 2539-

    Zaldivar, Chile ~20,000 2541-

    S&K Copper, Myanmar 18,000 2541-

    Equatorial Tonopah, USA 24,500 2543-2544

    5.1

    G.J. Olson, J.A. Brierley, Appl. Microbiol. Biotechnol., 2003

    a ~1.2

  • 98 99E-waste C 1 2 3 4 5 6

    Newmont Mining Corporation biooxidation heap

    .. 2542 30-39%

    49-61%

    5.1.3

    ( 5 10 )

    10

    (Chromobacterium violaceum)

    (dicyanoaurate : [Au(CN)2

    -]) 14.9%

    ( Thiobacillus ferrooxidants) (Thiobacillus

    thiooxidants)

    2 (biomass)

    5.1 5 10

    90%

    60% 95%

    (PbSO4) (tin oxide: SnO)

    (Sulfobacillus thermosul-

    fidooxidants) 5.2

    H. Brandl, R. Bosshard, M. Wegmann, Hydrometallurgy, 2001

    100

    80

    60

    40

    20

    05 10 50 100

    AlCuNiZn

    (g/L)

    (%)

    5.1 30 T.ferrooxidantsT.thiooxidants 7

    10

    (%)

    (Al) 0.7 0.05

    (Cu) 2.0 0.08

    (Fe) 2.0 0.07

    (Pb) 20.0 0.08

    (Ni) 0.25 0.005

    (Sn) 6.9 0.05

    (Zn) 0.09 0.006

    5.2

    S. Ilyas, M.A. Anwar, Hydrometallurgy, 2007

  • 100 101E-waste C 1 2 3 4 5 6

    (Acidithiobacillus ferrooxidants)

    (Fe2(SO

    4)3) A. ferrooxidants

    Fe2(SO

    4)3 + Cu Cu2+ + 2Fe2+ + 3SO

    4

    2-

    (Aspergillus niger)

    (Penicillium simplicissimum)

    10

    100

    5.3

    (commercial gluconic acid: NaglusolTM 2.5 M) A. niger

    5.2

    (II) A. ferrooxidants

    7

    24%

    (citric acid)

    37%

    80%

    (g/L)

    1 10 50 100 1 10 50 100 (%) (g/L)

    (Al) 62 57 42 43 0.15 1.28 4.98 10.2

    (Cu) 85 86 70 8 0.07 0.69 2.8 0.6

    (Pb) 100 92 99 97 0.02 0.18 0.99 1.9

    (Ni) 100 100 100 100 0.02 0.15 0.75 1.5

    (Sn) 100 100 100 100 0.02 0.23 1.15 2.3

    (Zn) 100 100 100 100 0.02 0.26 1.3 2.6

    5.3 NaglusolTM(4)

    H. Brandl, R. Bosshard, M. Wegmann, Hydrometallurgy, 2001

    00 3 5 7 9

    2

    4

    6

    8

    10

    12

    Fe2+(gL-1)

    Cu

    Cu

    Cu

    C

    u (g

    L-1

    )

    M.-S. Choi, K.-S. Cho, D.-S. Kim, et al., J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ.Eng, 2004

    5.2

  • 102 103E-waste C 1 2 3 4 5 6

    5.2(biosorption)

    5.2.1

    (biosorbent)

    5.4

    (1)

    (chitosan)

    (2) 0.003 40

    (3) cross-link

    (4)

    (Au3+), (Pt4+)

    (Pd2+)

    (chitin) (deacetylated)

    (protonated)

    (grafting)

    (backbone) (functionality)

    (packed-bed reactor) (fluidized-bed)

    (encapsu-

    lation) cross-linking (agar), (cellulose), (alginates),

    cross-linked ethyl acrylate ethylene glycol dimethylacrylate, polyacrylamide, (silica gel)

    cross-linking reagents toluene diisocyanate and glutaraldehyde

    (PVA)

    scanning electron microscopy (SEM)

    1-13

    pHQ

    max

    a

    (mmol/g)

    Streptomyces erythraeus Au3+ 4.0 0.03 166

    Spirulina platensis Au3+ 4.0 0.026 166

    Desulfovibrio desulfuricans Pd2+ 2.0 1.2 158

    Desulfovibrio fructosivorans Pd2+ 2.0 1.2 158

    Desulfovibrio vulgaris Pd2+ 2.0 1.0 158

    Desulfovibrio desulfuricans Pt4+ 2.0 0.32 158

    Desulfovibrio fructosivorans Pt4+ 2.0 0.17 158

    Desulfovibrio vulgaris Pt4+ 2.0 0.17 158

    Penicilium chrysogenum Au(CN)2

    - 2.0 0.0072 163

    Bacillus subtilis Au(CN)2

    - 2.0 0.008 153

    5.4

  • 104 105E-waste C 1 2 3 4 5 6

    pHQ

    max

    a

    (mmol/g)

    Saccharomyces cerevisiae Au3+ 5.0 0.026 229

    Cladosporium cladosporioides Au3+ 4.0 0.5 166

    Cladosporium cladosporioides Au, 4.0 0.18 166

    Cladosporium cladosporioides Strain 1 Au3+ 4.0 0.4 230

    Cladosporium cladosporioides Strain 2 Au3+ 4.0 0.5 230

    Cladosporium cladosporioides Strain 1 Ag+ 4.0 0.4 230

    Cladosporium cladosporioides Strain 2 Ag+ 4.0 0.12 230

    Aspergillus niger Au3+ 2.5 1.0 231

    Rhizopus arrhizus Au3+ 2.5 0.8 231

    PVA-immobilized biomass (Fomitopsis carnea) Au3+ 1-13 0.48 187

    Aspergillus niger Ag+ 5-7 0.9 232

    Neurospora crassa Ag+ 5-7 0.6 232

    Fusarium oxysporium Ag+ 5-7 0.5 232

    Chlorella vulgaris Ag+ 6.7 0.5 233

    Chlorella vulgaris Au3+ 2 0.5 155

    Sargassum natans Au3+ 2.5 2.1 231

    Ascophyllum nodosum Au3+ 2.5 0.15 231

    Sargassum fluitans Au(CN)2

    - 2.0 0.0032 163

    Alginate cross-linked with CaCl2

    Au3+ 2.0 1.47 186

    Alginate cross-linked with Ca(OH)2

    Au3+ 2.0 0.34 186

    Dealginated Seaweed Waste Au3+ 3 0.4 194

    pHQ

    max

    a

    (mmol/g)

    Hen eggshell membrane (ESM) Au(CN)2

    - 3 0.67 195

    Hen eggshell membrane (ESM) AuCl4

    - 3 3.1c 195

    Lysozyme Au3+, Pd2+, Pt4+ - - 193

    Bovine serum albumin (BSA) Au3+, Pd2+, Pt4+ - - 193

    Ovalbumin Au3+, Pd2+, Pt4+ - - 193

    (Alfafa) Au3+ 5.0 0.18d 234

    condensed-tannin gel Pd2+ 2.0 1.0e 217

    condensed-tannin gel Au3+ 2.0 40e 202

    Bayberry tannin immobilized collagen fiber (BTICF)

    membranePt4+ 3.0 0.23 188

    Bayberry tannin immobilized collagen fiber (BTICF)

    membranePd2+ 4.0 0.32 188

    Acid-washed Ucides cordatus (waste crab shells) Au(CN)2

    - 3.4 0.17 197

    Glutaraldehyde crosslinked chitosan (GCC) Au3+ 1.6 2.9 198

    Sulfur derivative of chitosan (RADC) Au3+ 3.2 3.2 198

    Glutaraldehyde crosslinked chitosan (GCC) Pd2+ 2.0 2.44 199

    Thiourea derivative of chitosan (TGC) Pd2+ 2.0 2.54 199

    Rubeanic acid derivative of chitosan (RADC) Pd2+ 2.0 3.24 199

    Thiourea derivative of chitosan (TGC) Pt4+ 2.0 2.0 200

    Glutaraldehyde crosslinked chitosan (GC) Pt4+ 2.0 1.6 200

    Chitosan derivatives Pd2+ 2.0 3.5 201

    Chitosan derivatives Pt4+ 2.0 3.2 201

    a (b) -

    c 65

    d Au(III), Cd(II), Cu(II), Cr(III), Pb(II), Ni(II) Zn(II) 0.3 mM

    e pH 2.0, pCl 2.0 60

    J. Cui, L. Zhang, Journal of Hazardous Materials, 2008

  • (a)

    5 m 3 m 2 m 3 m 2 m

    (b) (c) (d) (e)

    106 107E-waste C 1 2 3 4 5 6

    5.3 (a) (b) (c) (d) (e)

    5.2.2

    -

    (coordination) (chelation) (ligands)

    (siderophores) (transport) (internal compartmentalization)

    (microprecipitation)

    Cladosporium cladosporioides x-ray photoelectron (XPS) Fourier transform

    infra-red spectroscopy (FT-IR)

    (AuCl4

    -)

    extended x-ray absorption fine structure (EXAFS)

    x-ray absorption near edge structure (XANES) .. 2523 -

    (III) (tetrachloroaurate) Chlorella vulgaris

    (III) (I) (0)

    (I) /

    (III)

    (III) (0) environmental scanning electron microscope

    (ESEM) 4 5.3 EXAFS

    (III) (I) (0) EXAFS

    75%

    (I)

    -

    (condensed-tannin gel)

    x-ray diffraction (XRD) 5.4

    (0) (II)

    (0)

    M.E. Romero-Gonzalez, C.J. Williams, P.H.E. Gardiner, et al., Environ. Sci. Technol., 2003

  • 100

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    20 30 40 50 60 70 80 90 100

    20 (drg)

    Cou

    nts

    108 E-waste

    5.4 XRD (condensed - tanin gel)

    /

    Y.H. Kim, Y. Nakano, Water Res., 2005

    6C 1 2 3 4 5 6

  • 110 111E-waste C 1 2 3 4 5 6

    .. 2538

    11 6 6.1

    6.1

    (mg/kg)a

    ()b

    polybrominated diphenyl ethers (PBDEs)

    polybrominated biphenyls (PBBs)

    tetrabromobisphenol-A (TBBPA)

    polychlorinated biphenyls (PCBs) , 14 280

    chlorofluorocarbon (CFC),

    polycyclic aromatic hydrocarbons (PAHs)

    polyhalogenated aromatic hydrocarbons

    (PHAHs)

    polychlorinated dibenzo-p-dioxins

    (PCDDs)

    PVC

    polychlorinated dibenzofurans (PCDFs)

    (Am)

    (Sb) , 1,700 34,000

  • 112 113E-waste C 1 2 3 4 5 6

    (mg/kg)a

    ()b

    (As) (doping material)

    (Ba) cathode ray tube

    (CRT)

    (Be)

    (Cd) , , 180 3,600

    (Cr) 9,900 198,000

    (Cu) 41,000 820,000

    (Ga)

    (In) LCD

    (Pb) , CRT, 2,900 58,000

    (Li)

    (Hg),

    , 0.68 13.6

    (Ni) 10,300 206,000

    (Se) (rectifiers)

    (Ag) ,

    a (Morf et al., 2007)

    b 20 Brett H. Robinson, Science of the Total Environment, 2009

    64

    79,520 39,161

    (mg/kg)a

    ()b

    (Sn) , LCD 2,400 48,000

    (Zn) 5,100 102,000

    (rare earth elements) CRT

  • 114 115E-waste C 1 2 3 4 5 6

    6.1

    (polybrominated diphenyl ethers:

    PBDEs) 766

    16,000

    (polychlorinated biphenyls:

    PCBs) 16,512 1091

    1,2-

    (2,4,6-) (1,2-bis(2,4,6-tribromophenoxy) ethane), -

    (decabromodiphenyl ethane)

    (2,3-) (tetrabromobisphenol A bis (2,3-dibromopropyl)

    ether)

    0.4

    8 (0.05

    )

    6.2

    -p-

    (polychlorodibenzo-p-dioxins) 65-2,765

    15-16

    (WHO)

    16,575 300

    2%

    1.5, 1.3, 91, 13, 89 1.0

    (particulate matter: PM)

    46.7-51.6%

    (organophosphates) -

    (triphenyl phosphate: TPP)

    (methyl esters of hexadecanoic) (octadecanoic acids)

    (levoglucosan) (bisphenol A)

    1-5

    5%

  • 116 117E-waste C 1 2 3 4 5 6

    6.3

    4,250 -

    191- 9,156

    () -p- (polychlronated dibenzo-

    p-dioxins and dibenzofurans: PCDD/Fs)

    100, 330 20,000

    25,479

    (Pteridium aquilinum L.) (Pteris multifida Poir.)

    (Sorghum bicolour L.) Japanese dock (Rumex japonicus Houtt.)

    (Erigeron annuus L.) 144, 116, 162, 278 326 (

    ) (bioaccumulation coefficients)

    (

  • 118 119E-waste C 1 2 3 4 5 6

    ( 0.094 )

    (chromosomal aberration) 20

    (cytogenetic damage)

    6.5

    /

    6.1

    E-waste

    E-waste

    Brett H. Robinson, Science of the Total Environment, 2009

    6.1

  • 121C 1 2 3 4 5 6

    120 E-waste

    C 1 2 3 4 5 6

  • 122 123E-waste C 1 2 3 4 5 6

    cradle to cradle:

    clock frequency:

    printed circuit board (PCB):

    extended producer responsibility (EPR):

    platinum group metals (PGMs):

    reverse osmosis:

    electrodialysis:

    magnetic susceptibility: (magnetization)

    eddy current:

    corona electrostatic separator:

    triboelectric:

    methanolysis: (transesterification)

    drossing:

    matte: (slag)

    electrowinning: (electrolysis)

    electrorefining:

    passivation:

    heap leaching: (heap of ores)

    refractory gold ores:

    viscoelasticity:

    hydrogenolytic degradation:

    heat deflection temperature (HDT):

    supercritical fluids:

    solvation:

    toxicity characteristic leaching procedure (TCLP): US EPA

    synthetic precipitation leaching procedure (SPLP): (the mobility of contaminants) US EPA

  • 125C 1 2 3 4 5 6

    C 1 2 3 4 5 6

  • 126 127E-waste C 1 2 3 4 5 6

    1. P. Manomaivibool, T. Lindhqvist, N. Tojo,

    , Report commissioned by Greenpeace International, 2009.

    2. Electrical and Electronics Institute, Thailand (EEI), , http://www.thaieei.com/

    eei2009/th/import_home.aspx

    3. , , 2010

    4. E-waste recycling centers, http://electronicrecyclers.com/about_eri.aspx

    5. Articles at Urban Mining, http://urbanmining.org/articles/

    6. C. Hageluken, Improving metal returns and eco-efficiency in electronics recycling A holistic

    approach for interface optimisation between pre-processing and integrated metals smelting and

    refining, IEEE International Symposium on Electronics and the Environment, pp. 218223.

    7. J.B. Legarth, L. Alting, G.L. Baldo, Sustainability issues in circuit board recycling, IEEE

    International Symposium on Electronics & the Environment, pp. 126131.

    8. S. Zhang, E. Forssberg, Electronic scrap characterization for materials recycling, J. Waste Manage.

    Resour. Recov. 3 (4) (1997) 157167.

    9. CPCB, Draft Guidelines for Environmentally Sound Management of Electronic Waste, 2007,

    pp. 1025, http://www.cpcb.nic.in/Electronic%20Waste/chapter4.html.

    10. J.E. Hoffmann, Recovering precious metals from electronic scrap, Jom-J.Miner. Met. Mater. Soc.

    44 (7) (1992) 4348.

    11. L.S. Morf, J. Tremp, R. Gloor, et al., Metals, non-metals and PCB in electrical and electronic

    waste Actual levels in Switzerland,Waste Manage.27 (10) (2007) 13061316.

    12. C. Jirang, Z. Lifeng, Metallurgical recovery of metals from electronic waste: A review, Journal of

    Hazardous Materials 158 (2008) 228256.

    13. , , 2550.

    14. (JETRO) ,

    , 2547.

    15. ,

    , 2551.

    16. Martin Goosey and Rod Kellner, A scoping Study End-of-Life Printed circuit Boardds, Aug 2002.

    17. H. Kui, G. Jie, X. Zhenming, Recycling of waste printed circuit boards: A review of current

    technologies and treatment status in China, Journal of Hazardous Materials 164 (2009) 399408.

    18. J. Li, H. Lu, J. Guo, Z. Xu, Y. Zhou, Recycle technology for recovering resources and products from

    waste printed circuit boards, Environ. Sci. Technol. 41 (2007) 19952000.

    19. G. Schubert, Aufbereitung der NE-metallschrotte und NE-metallhaltigen abfaelleteil 1 (processing

    of scrap and refuse containing non-ferrous metalspart 2), Aufbereitungs-Technik 32 (1991) 78.

    20. Jirang Cui, Eric Forssberg, Mechanical recycling of waste electric and electronic equipment: a review,

    Journal of Hazardous Materials B99 (2003) 243263.

    21. T.P.R. de Jong, W.L. Dalmijn, Improving jigging results of non-ferrous car scrap by application of

    an intermediate layer, Int. J. Miner. Process. 49 (1997) 5972.

    22. The recyclers manual for business, government, and the environmental community unit operations in

    resource recovery engineering.

    23. P.C. Rem, S. Zhang, E. Forssberg, T.P.R. de Jong, Investigation of separability of particles smaller

    than 5 mm by Eddy-current separation technologypart II. Novel design concepts, Magnet. Elect.

    Sep. 10 (2000) 85105.

    24. W.L. Dalmijn, J.A. van Houwelingen, New developments in the processing of the non-ferrous metal

    fraction of car scrap, in: P.B. Queneau, R.D. Peterson (Eds.), in: Proceedings of the Third Interna-

    tional Symposium on Recycling of Metals and Engineered Materials, Point Clear, TMS,Warrendale,

    USA, 1995, pp. 739750.

    25. M. Rousseau, A. Melin, Processing of non-magnetic fractions from shredded automobile scrap:

    a review, Resour. Conserv. Recycle 2 (1989) 139159.

    26. P.C. Rem, Eddy Current Separation, Eburon, Delft, The Netherlands, 1999.

    27. S. Zhang, P.C. Rem, E. Forssberg, Investigation of separability of particles smaller than 5mmby Eddy

    current separation technology. Part I. Rotating type Eddy current separators, Magnet. Elect. Sep.

    9 (1999) 233251.

    28. P.C. Rem, S. Zhang, Eddy current separation of fine metal particles, in: G. Schubert, C. Schne (Eds.),

    Sortierung der abflle und mineralischen rohstoffe, Freiberg, Germany, Technische Universitt

    Bergakademie Freiberg, Freiberg, Germany, 1999, pp. 203209.

    29. P.C. Rem, P.A. Leest, A.J. van den Akker, Model for Eddy current separation, Int. J. Miner. Process.

    49 (1997) 193200.

    30. P.C. Rem, E.M. Beunder,W. Kuilman, Grade and recovery prediction for Eddy current separation

    processes, Magnet. Elect. Sep. 9 (1998) 8394.

    31. D.A. Norrgran, J.A. Wernham, Recycling and secondary recovery applications using an Eddy-current

    separator, Miner. Metal. Proc. 8 (1991) 184187.

    32. R. Meier-Staude, R. Koehnlechner, Elektrostatische trennung von leiter/nichtleitergemischen in der-

    betrieblichen praxis (electrostatic separation of conductor/non-conductor mixtures in operational

    practice), Aufbereitungs-Technik 41 (2000) 118123.

  • 128 129E-waste C 1 2 3 4 5 6

    33. H.G. Schubert, G. Warlitz, Sorting metal/non-metal mixtures using a corona electrostatic separator,

    Aufbereitungs-Technik 35 (1994) 449456.

    34. Y. Higashiyama, K. Asano, Recent progress in electrostatic separation technology, Particul. Sci.

    Technol. 16 (1998) 7790.

    35. I. Stahl, P.-M. Beier, Sorting of plastics using the electrostatic separation process, in: H. Hoberg, H.

    von Blottnitz (Eds.), in: Proceedings of the XX International Mineral Processing Congress, vol. 5,

    Aachen, GDMB, Clausthal-Zellerfeld, Germany, 1997, pp. 395401.

    36. M. Botsh, R.Kohnlechner, Electrostatic separation and its industrial application for the processing of

    different mixtures of recycling materials, in: H. Hoberg, H. von Blottnitz (Eds.), Proceedings of the

    XX International Mineral Processing Congress, vol. 5, Aachen, GDMB, Clausthal-Zellerfeld,

    Germany, 1997, pp. 297306.

    37. E.Y.L. Sum, The Recovery of Metals from Electronic Scrap, Jom-J. Miner.Met. Mater. Soc. 43 (4)

    (1991) 5361.

    38. J.E. Hoffmann, Recovering precious metals from electronic scrap, Jom-J.Miner. Met. Mater. Soc.

    44 (7) (1992) 4348.

    39. J.-c. Lee, H.T. Song, J.-M. Yoo, Present status of the recycling of waste electrical and electronic equip-

    ment in Korea, Resour. Conserv. Recycl. 50 (4) (2007) 380397.

    40. H. Veldbuizen, B. Sippel, Mining discarded electronics, Ind. Environ. 17 (3) (1994) 7.

    41. L. Theo, Integrated recycling of non-ferrous metals at Boliden Ltd. Ronnskar smelter, IEEE

    International Symposium on Electronics & the Environment, pp. 4247.

    42. T. Lehner, E and HS aspects on metal recovery from electronic scrap profit from safe and clean

    recycling of electronics, IEEE International Symposium on Electronics and the Environment,

    pp. 318322.

    43. APME, Plastics recovery from waste electrical & electronic equipment in non-ferrous metal

    processes, 8036/GB/07/00, APME (Association of Plastics Manufacturers in Europe) Report, 2000.

    44. C. Hageluken, Recycling of e-scrap in a global environment: opportunities and challenges, in: K.V.

    Rajeshwari, S. Basu, R. Johri (Eds.), Tackling e-Waste Towards Efficient Management Techniques,

    TERI Press, New Delhi, 2007, pp. 87104.

    45. C. Hageluken, Recycling of electronic scrap at umicores integrated metals smelter and refinery, World

    of Metallurgy ERZMETALL 59 (3) (2006) 152161.

    46. C. Hageluken, Improving metal returns and eco-efficiency in electronics recycling A holistic

    approach for interface optimisation between pre-processing and integrated metals smelting and

    refining, IEEE International Symposium on Electronics and the Environment, pp. 218223.

    47. J. Brusselaers, C. Hageluken, F. Mark, et al., An Eco-efficient Solution for Plastics-Metals-Mixtures

    from Electronic Waste: the Integrated Metals Smelter, in: 5TH IDENTIPLAST 2005, the Biennial

    Conference on the Recycling and Recovery of Plastics Identifying the Opportunities for Plastics

    Recovery, Brussels, Belgium, 2005.

    48. J. Dunn, E.Wendell, D.D. Carda et al., Chlorination process for recovering gold values from gold

    alloys, US Patent, US5004500 (1991).

    49. F.G. Day, Recovery of platinum group metals, gold and silver from scrap, US Patent, US4427442 (1984).

    50. S. Aleksandrovich, E. Nicolaevich, E. Ivanovich, Method of processing of products based on ahalcogenides

    of base metals containing metals of platinum group and gold, Russian Patent, RU2112064, C22B

    11/02 (1998).

    51. I.K. Wernick, N.J. Themelis, Recycling metals for the environment, in: Annual Review of Energy and

    the Environment, Annual Reviews Inc., Palo Alto, CA, USA, 1998, pp. 465497.

    52. J. Leirnes, M. Lundstrom, Method forworking-up metal-containingwaste products, US Patent, US4415360

    (C22B 1/00) (1983).

    53. A. Heukelem, M. Reuter, J. Huisman, et al., Eco efficient optimization of pre-processing and metal

    smelting in Electronics goes green 2004: driving forces for future, Electronics (2004) 657661.

    54. J. Dunn, E.Wendell, D.D. Carda et al., Chlorination process for recovering gold values from gold

    alloys, US Patent, US5004500 (1991).

    55. E.Y.L. Sum, The Recovery of Metals from Electronic Scrap, Jom-J. Miner. Met. Mater. Soc. 43 (4)

    (1991) 5361.

    56. I. Dalrymple, N. Wright, R. Kellner, et al., An integrated approach to electronic waste (WEEE) recy-

    cling, Circuit World 33 (2) (2007) 5258.

    57. H. Antrekowitsch, M. Potesser,W. Spruzina et al., Metallurgical recycling of electronic scrap, TMS

    Annual Meeting, 899908.

    58. S.A. Shuey, P. Taylor,Reviewof pyrometallurgical treatment of electronic scrap, Mining Eng. 57 (4)

    (2005) 6770.

    59. H.-L. Chiang, K.-H. Lin, M.-H. Lai, et al., Pyrolysis characteristics of integrated circuit boards at

    various particle sizes and temperatures, J.Hazard. Mater. 149 (1) (2007) 151159.

    60. L. Sun, J. Lu, S. Wang, L. Zeng, J. Zhang, Experimental research on pyrolysis of printed circuit board

    wastes and analysis of characteristics of products, J. Fuel Chem. Technol. 30 (2002) 285288

    (in Chinese).

    61. L. Sun, J. Lu, S. Wang, J. Zhang, H. Zhou, Experimental research on pyrolysis characteristics of

    printed circuit board wastes, J. Chem. Ind. Eng. (China) 54 (2003) 408412, (In Chinese).

  • 130 131E-waste C 1 2 3 4 5 6

    62. L. Sun, J. Lu, L. Zeng, L. Yu, Kinetic study on thermal degradation of printed circuit boards,

    J. Huazhong Univ. Sci. Technol. 29 (2001) 4042 (in Chinese).

    63. Gongming Zhou, Zhihua Luo and Xulu Zhai, Experimental study on metal recycling from waste PCB,

    Proceedings of the international conference on sustainable solid waste management, 5-7 Sep 2007,

    Chennai, India. pp. 155-162.

    64. W. He, G. Li, et al., WEEE recovery strategies and the WEEE treatment status in China, J. Hazard.

    Mater. B136 (2006) 502512.

    65. J. Li, H. Lu, J. Guo, Z. Xu, Y. Zhou, Recycle technology for recovering resources and products from-

    waste printed circuit boards, Environ. Sci. Technol. 41 (2007)19952000.

    66. W.J. Hall, P.T. Williams, Separation and recovery of materials from scrap printed circuit boards,

    Resour. Conserv. Recycl. (2006), doi:10.1016/j.resconrec.2006.11.010.

    67. M.W. Jawitz, Printed Circuit Board Materials Handbook, McGrawHill,New York, USA, 1997.

    68. C. Lassen, S. Lokke, Brominated Flame Retardants Substance Flow Analysis and Assessment of Alterna-

    tives, Danish Environmental Protection Agency, Copenhagen, Denmark, 1999.

    69. S. Yokoyama, M. Iji, Recycling of printed wiring boards with mounted electronic parts, in: Proceed-

    ings of the 1997 IEEE International Symposium, 1997, pp. 109114.

    70. J. Guo, B. Cao, J. Guo, Z. Xu, A plate produced by nonmetallic materials of pulverized waste print-

    ed circuit boards, Environ. Sci. Technol. 42 (14) (2008) 52675271.

    71. Y. Zheng, Z. Shen, C. Cai, S. Ma, Y. Xing, The reuse of nonmetals recycled from waste printed cir-

    cuit boards as reinforcing fillers in the polypropylene composites, J. Hazard. Mater. (2007),

    doi:10.1016/j.jhazmat.2008.07.008.

    72. C. Arya, et al., TR 55: design guidance for strengthening concrete structures using fibre composite

    materials: a review, Eng. Struct. 24 (2002) 889900.

    73. J. Guo, J. Li, Q. Rao, Z. Xu, Phenolic molding compound filled with nonmetals of waste PCBs, En-

    viron. Sci. Technol. 42 (2008) 624628.

    74. J. Guo, Q. Rao, Z. Xu, Application of glassnonmetals of waste printed circuit boards to produce pheno-

    lic moulding compound, J. Hazard. Mater. 153 (2008) 728734.

    75. K. Rota, et al., Interfacial effects in glass fibre composites as a function of unsaturated polyester

    resin composition, Compos. Pt. A: Appl. Sci. Manuf. 32 (2001) 511516.

    76. J. Guo, et al., Manufacturing process of reproduction plate by nonmetallic materials reclaimed from

    pulverized printed circuit boards, J. Hazard. Mater. (2008), doi:10.1016/j.jhazmat.2008.07.099.

    77. J. Guo, B. Cao, J. Guo, Z. Xu, A plate produced by nonmetallic materials of pulverized waste printed

    circuit boards, Environ. Sci. Technol. 42 (14) (2008) 52675271.

    78. N. Hameed, et al., Morphology, dynamic mechanical and thermal studies on poly(styrenecoacrylonitrile)

    modified epoxy resin/glass fibre composites, Compos. Pt. A: Appl. Sci. Manuf. 38 (2007) 24222432.

    79. W. Goertzen, M. Kessler, Dynamic mechanical analysis of carbon/epoxy composites for structural

    pipeline repair, Compos. Pt. B: Eng. 38 (1) (2007) 19.

    80. S. Sirivedin, D. Fenner, R. Nath, C. Galiotis, Effects of interfibre spacing and matrix cracks on stress

    amplification factors in carbonfibre/epoxy matrix composites, Part II: Hexagonal array of fibres,

    Compos. Pt. A: Appl. Sci. Manuf. 37 (11) (2006) 19361943.

    81. W. Goertzen, M. Kessler, Creep behavior of carbon fiber/epoxy atrix composites, Mater. Sci. Eng.

    A: Struct. Mater. Prop. Microstruct. Process. 421 (12) (2006) 217225.

    82. S. Yokoyama, M. Iji, Recycling of thermosetting plastic waste from electronic component production

    processes, in: Proceedings of the 1995 IEEE International Symposium, 1995, pp. 132137.

    83. P.Mou, D. Xiang, G. Duan, Products made from nonmetallic materials reclaimed from waste printed

    circuit boards, Tsinghua Science and Technology 12 (2007) 276283.

    84. J.Z. Liang, Toughening and reinforcing in rigid inorganic particle filled polypropylene: a review, J.

    Appl. Polym. Sci. 83 (2002) 15471555.

    85. S.M. Zebarjad, et al., Fracture behaviour of isotactic polypropylene under static loading condition,

    Mater. Des. 24 (2003) 105109.

    86. B. Alcock, et al., The mechanical properties of unidirectional allpolypropylene composites, Compos.

    Pt. A: Appl. Sci. Manuf. 37 (2006) 716726.

    87. K. Yang, Q. Yang, G. Li, Y. Zhang, P. Zhang, Mechanical properties and morphologies of polypro-

    pylene/singlefiller or hybridfiller calcium carbonate composites, Polym. Eng. Sci. 47 (2007) 95102.

    88. J. Cho, M.S. Joshi, C.T. Sun, Effect of inclusion size on mechanical properties of polymeric compos-

    ites with micro and nano particles, Compos. Sci. Technol. 66 (2006) 19411952.

    89. Y.W. Leong, M.B. Abu Bakar, Z.A. Mohd Ishak, A. Ariffin, B. Pukanszky, Comparison of the

    mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled

    polypropylene composites, J. Appl. Polym. Sci. 91 (2004) 33153326.

    90. Y. Zheng, Z. Shen, C. Cai, S. Ma, Y. Xing, The reuse of nonmetals recycled from waste printed

    circuit boards as reinforcing fillers in the polypropylene composites, J. Hazard. Mater. (2007),

    doi:10.1016/j.jhazmat.2008.07.008.

    91. R. Siddique, et al., Use of recycled plastic in concrete: a review, Waste Manage. (2007), doi:10.1016/

    j.wasman.2007.09.011.

    92. X. Niu, Y. Li, Treatment ofwaste printed wire boards in electronicwaste for safe disposal, J. Hazard.

    Mater. 145 (2007) 410416.

  • 132 133E-waste C 1 2 3 4 5 6

    93. P. Panyakapo, M. Panyakapo, Reuse of thermosetting plastic waste for lightweight concrete, Waste

    Manage. 28 (2008) 15811588.

    94. P.Mou, et al., A physical process for recycling and reusing waste printed circuit boards, in: 2004 IEEE

    International Symposium, 2004, pp. 237242.

    95. B. Sengoz, G. Isikyakar, Evaluation of the properties and microstructure of SBS and EVA polymer

    modified bitumen, Constr. Build. Mater. 22 (2008) 18971905.

    96. W.J. Hall, P.T.Williams, Separation and recovery ofmaterials fromscrap printed circuit boards, Resour.

    Conserv. Recycl. 51 (2007) 691709.

    97. G. Grause, et al., Pyrolysis of tetrabromobisphenolA containing paper laminated printed circuit boards,

    Chemosphere 71 (2008) 872878.

    98. M.P. Luda, et al., Thermal decomposition of fire retardant brominated epoxy resins cured with different

    nitrogen containing hardeners, Polym. Degrad. Stabil. 92 (2007) 10881100.

    99. Y.C. Lai, et al., Inhibition of polybrominated dibenzopdioxin and dibenzofuran formation fromthe

    pyrolysis of printed circuit boards, Environ. Sci. Technol. 41 (3) (2007) 957962.

    100. F. Sasse, G. Emig, Chemical recycling of polymer materials, Chem. Eng. Technol. 21 (1998) 777789.

    101. T. Yamawaki, The gasification recycling technology of plasticsWEEE containing brominated flame

    retardants, Fire Mater. 27 (2003) 315319.

    102. Y. Chien, et al., Oxidation of printed circuit board wastes in supercritical water, Water Res. 34 (2000)

    42794283.

    103. Y. Chien, et al., Decomposition reactions of epoxy resin and polyetheretherketone resin in suband

    supercritical water, Journal of Material Cycles andWaste Management 6 (2004) 15.

    104. J. Ozaki, et al., Chemical recycling of phenol resin by supercritical methanol, Ind. Eng. Chem. Res.

    39 (2000) 245249.

    105. D. Braun, et al., Hydrogenolytic degradation of thermosets, Polym. Degrad. Stabil. 74 (2001) 2532.

    106. J. Ebert, M. Bahadir, Formation of PBDD/F from flameretarded plastic materials under thermal stress,

    Environ. Int. 29 (2003) 711716.

    107. Y.C. Chien, et al., Fate of bromine in pyrolysis of printed circuit board wastes, Chemosphere 40 (2000)

    383387.

    108. A.m. Altwaiq, et al., Extraction of brominated flame retardants from polymeric waste material using

    different solvents and supercritical carbon dioxide, Anal.

    109. Chim. Acta 491 (2003) 111123.

    110. H. Wang, et al., Extraction of flame retardants from electronic printed circuit board by supercritical

    carbon dioxide, J. Supercrit. Fluids 29 (2004) 251256.

    111. C. Vasile, et al., Feedstock recycling fromplastic and thermoset fractions of used computers (I): pyrolysis,

    J. Mat. CyclesWaste Manage. 8 (2006) 99108.

    112. C. Vasile, et al., Feedstock recycling from plastics and thermosets fractions of used computers. II.

    Pyrolysis oil upgrading, Fuel 86 (2007) 477485.

    113. Wong CSC, Duzgoren-Aydin NS, Aydin A, Wong MH. Evidence of excessive releases of metals from

    primitive e-waste processing in Guiyu, China. Environ Pollut 2007;148:6272.

    114. Leung AOW, Duzgoren-Aydin NS, Cheung KC, Wong MH. Heavy metals concentrations of surface

    dust from e-waste recycling and its human health implications in southeast China. Environ Sci

    Technol 2008;42:267480.

    115. Leung AOW, Luksemburg WJ, Wong AS, Wong MH. Spatial distribution of polybrominated diphenyl

    ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at

    Guiyu, an electronic waste recycling site in southeast China. Environ Sci Technol 2007;41:27307.

    116. Li Y, Xu XJ, Liu JX, Wu KS, Gu CW, Shao G, et al. The hazard of chromium exposure to neonates

    in Guiyu of China. Sci Total Environ 2008a;403:99-104.

    117. Li Y, Xu XJ, Wu KS, Chen GJ, Liu JX, Chen SJ, et al. Monitoring of lead load and its effect on neonatal

    behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China.

    J Environ Monitor 2008b;10:12338.

    118. e-waste. Hazardous Substances in e-Waste. A Knowledge Base for the Sustainable Recycling of

    E-Waste. E-Waste: A Swiss E-Waste Guide; 2009.

    119. Morf LS, Tremp J, Gloor R, Schuppisser F, Stengele M, Taverna R. Metals, non-metals and PCB in

    electrical and electronic waste actual levels in Switzerland. Waste Manag 2007;27:130616.

    120. Kang HY, Schoenung JM. Electronic waste recycling: a review of US infrastructure and technology

    options. Res Conserv Recycl 2005;45:368400.

    121. Ernst T, Popp R, Wolf M, van Eldik R. Analysis of eco-relevant elements and noble metals in

    printed wiring boards using AAS, ICP-AES and EDXRF. Anal Bioanal Chem 2003;375:80514.

    122. Luo Q, Wong MH, Cai ZW. Determination of polybrominated diphenyl ethers in freshwater fishes

    from a river polluted by e-wastes. Talanta 2007b;72:16449.

    123. Wu JP, Luo XJ, Zhang Y, Luo Y, Chen SJ, Mai BX, et al. Bioaccumulation of polybrominated

    diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an

    electronic waste (e-waste) recycling site in South China. Environ Int 2008;34:110913.

    124. Shi T, Chen SJ, Luo XJ, Zhang XL, Tang CM, Luo Y, et al. Occurrence of brominated flame retardants

    other than polybrominated diphenyl ethers in environmental and biota samples from southern

    China. Chemosphere 2009;74:9106.

  • 134 135E-waste C 1 2 3 4 5 6

    125. Mielke HW, Reagan PL. Soil is an important pathway of human lead exposure. Environ Health

    Perspect 1998;106:21729.

    126. Deng WJ, Zheng JS, Bi XH, Fu JM, Wong MH. Distribution of PBDEs in air particles from an

    electronic waste recycling site compared with Guangzhou and Hong Kong, South China. Environ

    Int 2007;33:10639.

    127. Ha NN, Agusa T, Ramu K, Tu NPC, Murata S, Bulbule KA, et al. Contamination by trace elements

    at e-waste recycling sites in Bangalore, India. Chemosphere 2009;76: 9-15.

    128. Cai ZW, Jiang GB. Determination of polybrominated diphenyl ethers in soil from e-waste recycling

    site. Talanta 2006;70:8890.

    129. Shen CF, Chen YX, Huang SB, Wang ZJ, Yu CN, Qiao M, et al. Dioxin-like compounds in

    agricultural soils near e-waste recycling sites from Taizhou area, China: chemical and bioanalytical

    characterization. Environ Int 2009b;35:505.

    130. Yang ZZ, Zhao XR, Zhao Q, Qin ZF, Qin XF, Xu XB, et al. Polybrominated diphenyl ethers in leaves

    and soil from typical electronic waste polluted area in South China. Bull Environ Contam Toxicol

    2008;80:3404.

    131. Fu JJ, Zhou QF, Liu JM, Liu W, Wang T, Zhang QH, et al. High levels of heavy metals in rice

    (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to

    human health. Chemosphere 2008;71:126975.

    132. Zhang J, Min H. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area.

    J Hazard Mater 2009;165:74450.

    133. Chatterjee R. E-waste recycling spews dioxins into the air. Environ Sci Technol 2007;41: 5577-5577.

    134. Chan JKY, Xing GH, Xu Y, Liang Y, Chen LX, Wu SC, et al. Body loadings and health risk assess-

    ment of polychlorinated dibenzo-p-dioxins and dibenzofurans at an intensive electronic waste

    recycling site in China. Environ Sci Technol 2007;41:766874.

    135. Zhao GF, Xu Y, Han GG, Ling B. Biotransfer of persistent organic pollutants from a large site in

    China used for the disassembly of electronic and electrical waste. Environ Geochem Health 2006;28:34151.

    136. Zhao GF, Wang ZJ, Dong MH, Rao KF, Luo JP, Wang DH, et al. PBBs, PBDEs, and PCBs levels in

    hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential

    sources. Sci Total Environ 2008;397:4657.

    137. Huo X, Peng L, Xu XJ, Zheng LK, Qiu B, Qi ZL, et al. Elevated blood lead levels of children in

    Guiyu, an electronic waste recycling town in China. Environ Health Perspect 2007;115:11137.

    138. Zheng LK, Wu KS, Li Y, Qi ZL, Han D, Zhang B, et al. Blood lead and cadmium levels and relevant

    factors among children from an e-waste recycling town in China. Environ Res 2008;108:1520.

    139. Xing GH, Chan JKY, Leung AOW, Wu SC, Wong MH. Environmental impact and human exposure

    to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int 2009;35:7682.

    140. S. Ilyas, M.A. Anwar, S.B. Niazi, et al., Bioleaching of metals from electronic scrap by moderately

    thermophilic acidophilic bacteria, Hydrometallurgy 88 (14) (2007) 180188.

    141. L.E. Macaskie, N.J. Creamer, A.M.M. Essa, et al., A new approach for the recovery of precious metals

    from solution and from leachates derived from electronic scrap, Biotechnol. Bioeng. 96 (4) (2007)

    631639, Mar 1.

    142. A.N. Mabbett, D. Sanyahumbi, P. Yong, et al., Biorecovered precious metals from industrial wastes:

    Single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental

    application, Environ. Sci. Technol. 40 (3) (2006) 10151021, Feb 1.

    143. P. Yong, N.A. Rowson, J.P.G. Farr, et al., Bioreduction and biocrystallization of palladium by

    Desulfovibrio desulfuricans NCIMB 8307, Biotechnol. Bioeng. 80 (4) (2002) 369379.

    144. C. Kavakli, S. Malci, S.A. Tuncel, et al., Selective adsorption and recovery of precious metal ions

    from geological samples by 1,5,9,13-tetrathiacyclohexadecane-3,11-diol anchored poly (p-CMSDVB)

    microbeads, React. Funct. Polym. 66 (2) (2006) 275285.

    145. M.A. Faramarzi, M. Stagars, E. Pensini, et al., Metal solubilization from metal-containing solid materials

    by cyanogenic Chromobacterium violaceum, J. Biotechnol. 113 (13) (2004) 321326.

    146. H. Brandl, R. Bosshard, M. Wegmann, Computer-munching microbes: metal leaching from

    electronic scrap by bacteria and fungi, Hydrometallurgy 59 (23) (2001) 319326.

    147. P. Somasundaran, Y.Z. Ren, M.Y. Rao, Applications of biological processes in mineral processing,

    Colloids Surfaces APhysicochem. Eng. Asp. 133 (12) (1998) 1323.

    148. H.L. Ehrlich, Microbes and metals, Appl. Microbiol. Biotechnol. 48 (6) (1997) 687692.

    149. T.R. Muraleedharan, L. Iyengar, C. Venkobachar, Biosorption an attractive alternative for metal

    removal and recovery, Curr. Sci. 61 (6) (1991) 379385, Sep 25.

    150. D. Morin, A. Lips, T. Pinches, et al., BioMinE Integrated project for the development of biotechnology

    for metal-bearing materials in Europe, Hydrometallurgy 83 (14) (2006) 6976.

    151. T. Rohwerder, T. Gehrke, K. Kinzler, et al., Progress in bioleaching: fundamentals and mechanisms

    of bacterial metal sulfide oxidation, Appl. Microbiol. Biotechnol. 63 (3) (2003) 239248.

    152. B. Greene, M. Hosea, R. McPherson, et al., Interaction of gold(I) and gold(III) complexes with algal

    biomass, Environ. Sci. Technol. 20 (6) (1986) 627632.

    153. F. Veglio, F. Beolchini, Removal of metals by biosorption: a review, Hydrometallurgy 44 (3) (1997)

    301316.

    154. E. Romera, F. Gonzalez, A. Ballester, et al., Biosorption with algae: a statistical review, Crit. Rev.

    Biotechnol. 26 (4) (2006) 223235.

  • 136 137E-waste C 1 2 3 4 5 6

    155. D.W. Darnall, B. Greene, M.T. Henzl, et al., Selective recovery of gold and other metal ions from an

    algal biomass, Environ. Sci. Technol. 20 (2) (1986) 206208.

    156. V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Methylene blue adsorption by algal biomass based

    materials: Biosorbents characterization and process behaviour, J. Hazard. Mater. 147 (12) (2007)

    120132.

    157. J.W. Watkins II, R.C. Elder, B. Greene, et al., Determination of gold binding in an algal biomass

    using EXAFS and XANES spectroscopies, Inorg. Chem. 26 (7) (1987) 11471151.

    158. I.de Vargas, L.E. Macaskie, E. Guibal, Biosorption of palladium and platinum by sulfate-reducing

    bacteria, J. Chem. Technol. Biotechnol. 79 (1) (2004) 4956.

    159. I.Bakkaloglu, T.J. Butter, L.M. Evison, et al., Screening of various types biomass for removal and recovery

    of heavy metals (ZN, CU, NI) by biosorption, sedimentation and desorption, Water Sci. Technol.

    38 (6 pt 5) (1998) 269277.

    160. Y. Madrid, C. Camara, Biological substrates for metal preconcentration and speciation, Trac-Trends

    Anal Chem 16 (1) (1997) 3644.

    161. J. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol.

    Adv. 24 (5) (2006) 427451.

    162. Y. Sag, Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review,

    Sep. Purif. Methods 30 (1) (2001) 148.

    163. H. Niu, B. Volesky, Characteristics of gold biosorption from cyanide solution, J. Chem. Technol.

    Biotechnol. 74 (1999) 778784.

    164. J.L. Gardea-Torresdey, G. de la Rosa, J.R. Peralta-Videa, Use of phytofiltration technologies in the

    removal of heavy metals: a review, Pure Appl. Chem. 76 (4) (2004) 801813.

    165. D. Kratochvil, B. Volesky, Advances in the biosorption of heavy metals, Trends Biotechnol. 16 (7)

    (1998) 291300.

    166. A.V. Pethkar, K.M. Paknikar, Recovery of gold from solutions using Cladosporium cladosporioides

    biomass beads, J. Biotechnol. 63 (2) (1998) 121136.

    167. M.M. Figueira, B. Volesky, V.S.T. Ciminelli, et al., Biosorption of metals in brown seaweed biomass,

    Water Res. 34 (1) (2000) 196204.

    168. C. Mack, B.Wilhelmi, J.R. Duncan, et al., Biosorption of precious metals, Biotechnol. Adv. 25 (3)

    (2007) 264271.

    169. G. Fossi, Biohydrometallurgy, McGraw-Hall, New York, 1990.

    170. H. Tributsch, Direct versus indirect bioleaching, Hydrometallurgy 59 (2001) 177185.

    171. A. Schippers, P.-G. Jozsa, W. Sand, Sulfur chemistry in bacterial leaching of pyrite, Appl. Environ.

    Microbiol. 62 (9) (1996) 34243431.

    172. W. Sand, K. Rohde, B. Sobotke, et al., Evaluation of Leptospirillum ferrooxidans for leaching,

    Appl. Environ. Microbiol. 58 (1992) 8592.

    173. I.Suzuki, Microbial leaching of metals from sulfide minerals, Biotechnol. Adv. 19 (2) (2001) 119132.

    174. W. Sand, T. Gehrke, P.-G. Jozsa, et al., (Bio)chemistry of bacterial leaching direct vs. indirect

    bioleaching, Hydrometallurgy 59 (23) (2001) 159175.

    175. A. Schippers, T. Rohwerder, W. Sand, Intermediary sulfur compounds in pyrite oxidation: implications

    for bioleaching and biodepyritization of coal, Appl. Microbiol. Biotechnol. 52 (1) (1999) 104110.

    176. A. Schippers, W. Sand, Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via

    thiosulfate or via polysulfides and sulfur, Appl. Environ. Microbiol. 65 (1) (1999) 319321.

    177. W. Sand, T. Gehrke, R. Hallmann, et al., Sulfur chemistry, biofilm, and the (in) direct attack mecha-

    nism a critical evaluation of bacterial leaching, Appl. Microbiol. Biotechnol. 43 (1995) 961966.

    178. G.J. Olson, J.A. Brierley, C.L. Brierley, Progress in bioleaching: applications of microbial processes

    by the minerals industries, Appl. Microbiol. Biotechnol. 63 (3) (2003) 249257.

    179. K. Bosecker, Bioleaching: metal solubilization by microorganisms, FEMS Microbiol. Rev. 20 (1997)

    591604.

    180. K. Tempel, Commercial biooxidation challenges at Newmonts Nevada operations, in 2003 SME

    Annual Meeting, Littleton, Colo, 2003, Preprint 03-067.

    181. S. Ilyas, M.A. Anwar, S.B. Niazi, et al., Bioleaching of metals from electronic scrap by moderately

    thermophilic acidophilic bacteria, Hydrometallurgy 88 (14) (2007) 180188.

    182. M.-S. Choi, K.-S. Cho, D.-S. Kim, et al., Microbial recovery of copper from printed circuit boards

    of waste computer by Acidithiobacillus ferrooxidans, J. Environ. Sci. Health Part A Toxic/Hazard.

    Subst. Environ.Eng. 39 (1112) (2004) 29732982.

    183. C. Mack, B.Wilhelmi, J.R. Duncan, et al., Biosorption of precious metals, Biotechnol. Adv. 25 (3)

    (2007) 264271.

    184. G.M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization,

    Curr. Opin. Biotechnol. 11 (3) (2000) 271279.

    185. C. White, S.C. Wilkinson, G.M. Gadd, The role of microorganisms in biosorption of toxic metals and

    radionuclides, Int. Biodeterioration Biodegrad. 35 (13) (1995) 1740.

    186. E. Torres, Y.N. Mata, M.L. Blazquez, et al., Gold and silver uptake and nanoprecipitation on calcium

    alginate beads, Langmuir 21 (17) (2005) 79517958.

  • 138 139E-waste C 1 2 3 4 5 6

    187. K.M. Khoo, Y.P. Ting, Biosorption of gold by immobilized fungal biomass, Biochem. Eng. J. 8 (1)

    (2001) 5159.

    188. H.-w. Ma, X.-p. Liao, X. Liu, et al., Recovery of platinum(IV) and palladium(II) by bayberry tannin

    immobilized collagen fiber membrane from water solution, J. Membr. Sci. 278 (12) (2006) 373380.

    189. M.L. Arrascue, H.M. Garcia, O. Horna, et al., Gold sorption on chitosan derivatives, Hydrometal-

    lurgy 71 (12) (2003) 191200.

    190. E. Guibal, N.VonOffenberg Sweeney, T.Vincent, et al., Sulfur derivatives of chitosan for palladium

    sorption, React. Funct. Polym. 50 (2) (2002) 149163.

    191. E. Guibal, T. Vincent, R.N. Mendoza, Synthesis and characterization of a thiourea derivative of

    chitosan for platinum recovery, J. Appl. Polym. Sci. 75 (1) (1999) 119134.

    192. O. Ariga, H. Takagi, H. Nishizawa, et al., Immobilization of microorganisms with PVA hardened by

    iterative freezing and thawing, J. Ferment. Technol. 65 (6) (1987) 651658.

    193. T. Maruyama, H. Matsushita, Y. Shimada, et al., Proteins and protein-rich biomass as environmen-

    tally friendly adsorbents selective for precious metal ions, Environ. Sci. Technol. 41 (4) (2007)

    13591364, Feb 15.

    194. M.E. Romero-Gonzalez, C.J. Williams, P.H.E. Gardiner, et al., Spectroscopic studies of the biosorption

    of gold(III) by dealginated seaweed waste, Environ. Sci. Technol. 37 (18) (2003) 41634169.

    195. S. Ishikawa, K. Suyama, K. Arihara, et al., Uptake and recovery of gold ions from electroplating wastes

    using eggshell membrane, Bioresour. Technol. 81 (3) (2002) 201206.

    196. H.-w. Ma, X.-p. Liao, X. Liu, et al., Recovery of platinum(IV) and palladium(II) by bayberry tannin

    immobilized collagen fiber membrane from water solution, J. Membr. Sci. 278 (12) (2006) 373380.

    197. H. Niu, B. Volesky, Characteristics of anionic metal species biosorption with waste crab shells,

    Hydrometallurgy 71 (12) (2003) 209215.

    198. M.L. Arrascue, H.M. Garcia, O. Horna, et al., Gold sorption on chitosan derivatives, Hydrometal-

    lurgy 71 (12) (2003) 191200.

    199. E. Guibal, N.VonOffenberg Sweeney, T.Vincent, et al., Sulfur derivatives of chitosan for palladium

    sorption, React. Funct. Polym. 50 (2) (2002) 149163.

    200. E. Guibal, T. Vincent, R.N. Mendoza, Synthesis and characterization of a thiourea derivative of

    chitosan for platinum recovery, J. Appl. Polym. Sci. 75 (1) (1999) 119134.

    201. P. Chassary, T. Vincent, J. Sanchez Marcano, et al., Palladium and platinum recovery from bicompo-

    nent mixtures using chitosan derivatives, Hydrometallurgy 76 (12) (2005) 131147.

    202. T. Ogata, Y. Nakano, Mechanisms of gold recovery from aqueous solutions using a novel tannin

    gel adsorbent synthesized from natural condensed tannin, Water Res. 39 (18) (2005) 42814286.

    203. G.M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization,

    Curr. Opin. Biotechnol. 11 (3) (2000) 271279.

    204. T. Ogata, Y.H. Kim, Y. Nakano, Selective recovery process for gold utilizing a functional gel derived

    from natural condensed tannin, J. Chem.Eng. Jpn 40 (3) (2007) 270274.

    205. Y.-H. Kim, T. Ogata,Y. Nakano, Kinetic analysis of palladium(II) adsorption process on condensed-

    tannin gel based on redox reaction models, Water Res. 41 (14) (2007) 30433050.

    206. H. Antrekowitsch, M. Potesser,W. Spruzina et al., Metallurgical recycling of electronic scrap, TMS

    Annual Meeting, 899908.

    207. S.A. Shuey, P. Taylor,Reviewof pyrometallurgical treatment of electronic scrap, Mining Eng. 57 (4)

    (2005) 6770.

    208. Aarne P. Vesilind, Unit Operations in Resource Recovery Engineering, 1981.

    209. Jia Li, Hongzhou Lu, Shushu Liu, Zhenming Xu, Optimizing the operating parameters of corona

    electrostatic separation for recycling waste scraped printed circuit boards by computer simulation

    of electric field, Journal of Hazardous Materials 153 (2008) 269275.

    210. J. Wu, et al., Electrostatic separation for multisize granule of crushed printed circuit board waste

    using tworoll separator, J. Hazard. Mater. 159 (2008) 230234.

    211. J.Wu, J. Li, Z. Xu, Electrostatic separation for recovering metals and nonmetals from waste printed

    circuit board: problems and improvements, Environ. Sci.Technol. 42 (2008) 52725276.

    212. G. Hilson, A.J. Monhemius, Alternatives to cyanide in the gold mining industry: what prospects for

    the future, J. Cleaner Prod. 14 (1213) (2006) 11581167.

    213. N. Gonen, E. Korpe, M.E. Yildirim, et al., Leaching and CIL processes in gold recovery from refrac-

    tory ore with thiourea solutions, Miner. Eng.20 (6) (2007) 559565.

    214. P. Quinet, J. Proost, A. Van Lierde, Recovery of precious metals from electronic scrap by hydromet-

    allurgical processing routes, Miner. Metall.Process. 22 (1) (2005) 1722.

    215. A.G. Chmielewski,T.S. Urbanski,W. Migdal, Separation technologies for metals recovery from

    industrial wastes, Hydrometallurgy 45 (3) (1997) 333344.

    216. A. Mecucci, K. Scott, Leaching and electrochemical recovery of copper,lead and tin from scrap

    printed circuit boards, J. Chem. Technol. Biotechnol. 77 (4) (2002) 449457.

    217. Y.H. Kim, Y. Nakano, Adsorption mechanism of palladium by redox within condensed-tannin gel,

    Water Res. 39 (7) (2005) 13241330.

    218. J. Guo et al., Recycling of nonmetallic fractions from waste printed circuit boards: A review, Journal

    of Hazardous Materials 168 (2009) 567590.

  • 140 141E-waste C 1 2 3 4 5 6

    219. Kui Huang, Jie Guo, Zhenming Xu, Recycling of waste printed circuit boards: A review of current

    technologies and treatment status in China, Journal of Hazardous Materials 164 (2009) 399408.

    220. Brett H. Robinson, Review E-waste: An assessment of global production and environmental impacts,

    Science of the Total Environment 408 (2009) 183191.

    221. , , 2551, http://eco-

    town.dpim.go.th/webdatas/articles/ArticleFile1352.pdf

    222. Printed circuits handbook, 5th , Clyde F. Coombs, Jr., 2008.

    223. , , , 2551,

    http://www.sut.ac.th/engineering/metal/

    224. A.E. Martell, R.M. Smith (Eds.), Critical Stability Constants: First Supplement,vol. 5, Plenum Press,

    New York, 1982.

    225. X. Wang, Thermodynamic equilibrium calculations on Au/Ag lixiviant systems relevant to gold extrac-

    tion from complex ores, in: R.Woods, P.E.Richardson (Eds.), Proceedings of the 3rd International

    Symposium on Electrochemistry in Mineral and Metal Processing, pp. 452477.

    226. R.D. Hancock, N.P. Finkelstein, A. Evers, Linear free energy relationships in aqueous complex-for-

    mation reactions of the d10 metal ions, J. Inorg. Nucl. Chem. 36 (11) (1974) 25392543.

    227. IUPAC, Stability Constants Database, IUPAC and Academic software,1993.

    228. A.M. Sullivan, P.A. Kohl, Electrochemical study of the gold thiosulfate reduction, J. Electrochem.

    Soc. 144 (5) (1997) 16861690.

    229. I.Savvaidis, Recovery of gold from thiourea solutions using microorganisms, BioMetals 11 (1998) 145151.

    230. A.V. Pethkar, S.K. Kulkarni, K.M. Paknikar, Comparative studies on metal biosorption by two strains

    of Cladosporium cladosporioides, Bioresour. Technol. 80 (3) (2001) 211215.

    231. N. Kuyucak, B. Volesky, Biosorbents for recovery of metals from industrial solutions, J. Biotechnol.

    Lett. 10 (2) (1988) 137142.

    232. M.N. Akthar, K.S. Sastry, P.M. Mohan, Biosorption of silver ions by processed Aspergillus niger

    biomass, J. Biotechnol. Lett. 17 (5) (1995) 551556.

    233. J. Cordery, A.J. Wills, K. Atkinson, et al., Extraction and recovery of silver from low-grade liquors

    using microalgae, Miner. Eng. 7 (8) (1994) 10031015.

    234. G. Gamez, J.L. Gardea-Torresdey, K.J. Tiemann, et al., Recovery of gold(III) from multi-elemental

    solutions by alfalfa biomass,Adv.Environ. Res. 7 (2003) 563571.

    235. R. Dorin, R. Woods, Determination of leaching rates of precious metals by electrochemical techniques,

    J. Appl. Electrochem. 21 (5) (1991) 419.

    236. P.P. Sheng, T.H. Etsell, Recovery of gold from computer circuit board scrap using aqua regia, Waste

    Manage. Res. 25 (4) (2007) 380383.

    237. M.G. Aylmore, D.M. Muir, Thermodynamic analysis of gold leaching by ammoniacal thiosulfate

    using Eh/pH and speciation diagrams, Miner. Metall. Process. 18 (4) (2001) 221227.

    238. C.A. Fleming, Hydrometallurgy of precious metals recovery, Hydrometallurgy 30 (13) (1992) 127162.

    239. J. Zhao, Z. Wu, J. Chen, Extraction of gold from thiosulfate solutions with alkyl phosphorus esters,

    Hydrometallurgy 46 (3) (1997) 363372.

    240. C. Caravaca, F.J. Alguacil, A. Sastre, The use of primary amines in gold (I) extraction from cyanide

    solutions, Hydrometallurgy 40 (3) (1996) 263275.

    241. M.B. Mooiman, J.D. Miller, The chemistry of gold solvent extraction from cyanide solution using

    modified amines, Hydrometallurgy 16 (3) (1986) 245261.

    242. M.B. Mooiman, J.D. Miller, The chemistry of gold solvent extraction from alkaline cyanide

    solution by solvating extractants, Hydrometallurgy 27 (1) (1991) 2946.

    243. F.J. Alguacil, C. Caravaca, A. Cobo, et al., The extraction of gold(I) from cyanide solutions by the

    phosphine oxide Cyanex 921, Hydrometallurgy 35 (1) (1994) 4152.

    244. F.J. Alguacil, C. Caravaca, J. Mochon, et al., Solvent extraction of Au(CN)2-1 with mixtures of the

    amine Primene JMT and the phosphine oxide Cyanex 923, Hydrometallurgy 44 (3) (1997) 359369.

    245. A.M. Sastre, A. Madi, J.L. Cortina, et al., Solvent extraction of gold by LIX 79 Experimental