nrc ct-133 access ii data analysis:- gaseous, aerosol … · c 0.5to 2m) –typical core venting...

31
NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL AND CONTRAIL CHARACTERISTICS A P Brown, Matthew Bastian, Mike Pryor, Per Talgoy, Flight Research Laboratory, NRC IFAR NASA ACCESS II Data Workshop, Kissimmee, FL, 9 th January 2015

Upload: others

Post on 25-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

NRC CT-133 ACCESS II DATA ANALYSIS:-

GASEOUS, AEROSOL AND CONTRAIL

CHARACTERISTICS

A P Brown, Matthew Bastian, Mike Pryor, Per Talgoy,

Flight Research Laboratory, NRC

IFARNASA ACCESS II Data Workshop, Kissimmee, FL, 9th January 2015

Page 2: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

Acknowledgements:-

NASA ACCESS II was notable in technical

content and international collaboration. The

support of Transport Canada (TC) under the

TC Clean Transportation Initiative for

National Research Council Canada (NRC)

participation, is acknowledged and

appreciated.

Page 3: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

NRC CT-133 ACCESS II FLIGHT DATA

PRESENTATION:-DESCRIPTIONNRC CT-133 research aircraft

CT-133 research flights:-

- pre- & post-ACCESS contrail flights (April, June, Oct, Dec)

- ACCESS-II: against DC8, 3 x low sulphur JetA/HEFA, 1x med.S Jet

A; 2 x FA20 (DLR), HU-25 (NASA)

Flight profiles

RESULTS & DISCUSSIONWake vortex dynamics

Gaseous emissions

NOy

CO2

water vapour (discussed under contrail characteristics)

Particulate emissions, aerosols, >10nm

Contrail characteristics: ice particle number, mass; water vapour

EInICE & EIw; parameterisation of EI data-set

CONCLUSIONS

Page 4: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

NRC CT-133 RESEARCH AEROPLANE, for EMISSIONS

FLIGHT RESEARCH

Page 5: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

NRC CT-133 ACCESS II

FLIGHT PROFILES

(contrail conditions)

4-engine emissions, 1-15 nm length:-

DC8 at M0.8, 4 x thrust for level flight

1-engine (inboard)

emissions, 0.2-3 km

length:-

DC8 at M0.52, evel

flight

Page 6: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25

r m1/1

wC

Z m

/s

advance to vortex centre

recede from centre

poly fit

5-15m B-H, =64.3682 rC=0.5

Rankine, =76.2643 rC=0.52773

c.f. NRC Aviation Environmental

Emissions Measurement

(AEEM):-

B744

Upper jet wake

(UJW)

Trailing wake

vortex, TWV

Lower

viscous

wake LVW

DC8 on ACCESS M0.8 cruise contrail field:- ½ to 1 ½ nm UJW

contrail; 10-15 nm vortex contrail

Page 7: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

1.2197 1.2198 1.2199 1.22 1.2201 1.2202

x 104

-15

-10

-5

0

5

10

dsa-sum, based upon GS/TRK + mean winds

wc

w

a

w

Z

wc

wa

wZ

DC-8 trailing wake vortex characteristics, rC & VT:-– rC, small vortex cores, 0.5 to 2m radius

– VT, 15-70 m/s (circumferential vortex elements)

2.543 2.5435 2.544 2.5445 2.545 2.5455 2.546

x 104

-15

-10

-5

0

5

dsa-sum, based upon GS/TRK + mean winds

wc

w

a

w

Z

wc

wa

wZ

22.6 22.7 22.8 22.9 23 23.1

1807

1807.5

1808

1808.5

1809

1809.5

1810

m

PS

core

, kP

a

22.5 22.6 22.7 22.8 22.9 23 23.1

1987

1988

1989

1990

1991

1992

m

PS

core

, kP

a

22.5 22.6 22.7 22.8 22.9 23 23.1 23.22054

2056

2058

2060

2062

2064

2066

2068

2070

2072

2074

m

PS

core

, kP

a

Page 8: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

2.94 2.942 2.944 2.946 2.948 2.95 2.952 2.954 2.956 2.958 2.96

x 104

-12

-10

-8

-6

-4

-2

0

2

4

6

8

dsa-sum, based upon GS/TRK + mean winds

wc

w

a

w

Z

wc

wa

wZ

Trailing wake vortex charcatrtistics, rC & VT:-– LEFT, large rC & large separation (possibly local, long-

wave instability, excited by cross-track vorticity

– BELOW, small rC

– unusually strong axial

velocity characterisation

3.014 3.01413.01423.01433.01443.01453.01463.0147

x 104

-30

-20

-10

0

10

20

30

dsa-sum, based upon GS/TRK + mean winds

wc

w

a

w

Z

wc

wa

wZ

3.1267 3.1268 3.1269 3.1269 3.1269 3.127 3.1271

x 104

-40

-30

-20

-10

0

10

20

30

40

50

60

dsa-sum, based upon GS/TRK + mean winds

wc

w

a

w

Z

wc

wa

wZ

annular

core

State

(non-

steady)

Page 9: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

DC-8, trailing wake vortex,

strong influence on emissions:-– Characterising the NASA DC-8 wake vortices, M0.8 crz

– short wave, elliptical instability – funnels (core radius

changes, rC 0.5to 2m)

– Typical core venting – annular vorticity cores

– High velocity peaks (c.70 m/s);

– atypically strong axial flows (c.40 m/s)

– mild long-wave instab., linking at 15 nm on 10th May flight

– Large descent distance, 800-1000 ft

– no significant tertiary structures (e.g. helical vorticity)

– atypical close-spacing, bV 62-65% geometric span

– Greater entrainment => negligible Upper Jet Wake

(B763,A388 etc)

– climb, 1-5 nm length (15-40 sec, t*=0.2-1); cruise 1-16 nm

Page 10: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

GASEOUS EMISSIONS:-

1. NOy

2. CO2

3. Water Vapour (will be discussed under

contrail ice characteristics)

Page 11: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

y (m)

z (

m)

DC8 wake NO & HONO concentrations, ppb, 5.0.5-15 nm nm wake length

-40 -20 0 20 40-50

-40

-30

-20

-10

0

10

20

30

40

10

20

30

40

50

60

70

80

90

100

NOy PLUME CROSS-SECTIONAL PROFILES:-

LEFT – 4-engine, M0.8, TFLF (climb thrust at 35,000 ft)

BELOW, I/B engine plume

- Spatially integrate => NOy EI

y (m)

z (

m)

DC8 wake NO & HONO concentrations, ppb, 0.05-0.5 nm wake length

-15 -10 -5 0 5 10 15

-20

-15

-10

-5

0

5

10

15

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10-6

-100

-80

-60

-40

-20

0

20

40

60

80

100

NO, m3 at height z

heig

ht

ab

ove

/be

low

DC

8 pla

ne

, z D

C8 (

m)

Page 12: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

NOy (1 Hz streaming) EI SUMMARY:-NOy EI expressed, using a non-std MW of 30 (EI ranges3-20 g/kg),

LEFT, plotted against engine gas temperature, BELOW, plotted against

altitude

Foe ACCESS DC8/CFM56, and

earlier NRC Falcon/CF700

100

101

102

1

1.5

2

2.5

3

3.5

4x 10

4

NOY

EI g/kg

altit

ud

e (

ft)

JetA1,Flt #8,CLB

JetA1,Flt #6

60/40,flight #6

50/50,2014

JetA1,ARA

ReadiJet,ARA

Comparison,ARA

FA20,2014

B773,2014

JetA,ACCESS

HEFA,ACCESS

Preliminary

Page 13: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

Over-estimates EIm_CO_trav = 4.1902 kg/kg

-2 0 2 4 6 8 10 12 14 16

x 10-4

-100

-80

-60

-40

-20

0

20

40

60

80

100

CO2, m

3

heig

ht

ab

ove

/be

low

DC

8 pla

ne

, z D

C8 (

m)

CO ppm Grand total minus CO2,ppb Background

CO2 CHARACTERISTICS,

CRUISE, 11km, M0.8, Low-sulphur

CO2:-

y (m)

z (

m)

DC8 wake CO2 concentrations, ppb, 9-25 nm wake length

-30 -20 -10 0 10 20 30 40

-40

-30

-20

-10

0

10

20

30

0

5

10

15

20

25

30

35

40

45

50

y (m)

z (

m)

DC8 wake CO2 concentrations, ppb, 9-25 nm wake length

-15 -10 -5 0 5 10 15

-20

-15

-10

-5

0

5

10

15

-10

0

10

20

30

40

50

60

70

Page 14: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

0 1 2 3 4 5 6 7

x 10-4

-60

-40

-20

0

20

40

CO2, m

3

heig

ht

ab

ove

/be

low

DC

8 pla

ne

, z D

C8 (

m)

CO2 ppm Grand total minus CO

2,ppb Background

9th May, CRUISE, 11km, M0.8, 50%

HEFA:-– CO2 plume

– NOTE:- direct integration to give CO2 EI

– LEFT, ½-5nm, 4-engine plume

– BELOW, retention of peak CO2 concentrations in

vortices

¼-5 nm

EIm_CO2 = 2.9357

y (m)

z (

m)

DC8 wake CO2 concentrations, ppb, 9-25 nm wake length

-30 -20 -10 0 10 20 30 40

-60

-50

-40

-30

-20

-10

0

10

20

30

-10

0

10

20

30

40

50

60

Page 15: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

CO2 EI SUMMARY:-Stand-alone derivation of CO2 EI, by integration of

holistic emissions plume, whether 4-eng or 1-eng

ACCESS II, JetA and HEFA combined

mean CO2 EI 3.26 kg/kg

(within 5% of nom.3.1 kg/kg)

with data-set σ = 0.42 kg/kg

1 1.5 2 2.5 3 3.5 4 4.5 52.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8x 10

4

CO2 EIm kg/kg

altit

ud

e (

ft)

JetA1,FA20,pre-ACCESS

JetA1,B773,pre-ACCESS

JetA,ACCESS

HEFA,ACCESS

NRC,HEFA

B763,A343,A388

Preliminary

Page 16: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

AEROSOL EMISSIONS:-

1. Climb M0.5, UJW, TWV, LVW

2. Cruise, M0.8 – TWV regime dominates,

as for gaseous & contrail species

y (m)

z (

m)

DC8 wake FSSP concentrations, no./cm3, short wake length 5.5-17 nm nm)

-20 -10 0 10 20 30 40

-60

-40

-20

0

20

40

60

80

0

0.01

0.02

0.03

0.04

0.05

0.06

y (m)

z (

m)

DC8 wake FSSP Mean Diameter, short wake length 5.5-17 nm nm)

-20 -10 0 10 20

-40

-20

0

20

40

60

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-6

0 1 2 3 4 5 6 7

x 106

-250

-200

-150

-100

-50

0

50

100

150

Page 17: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

CRUISE, 11km height, M0.8, Low-sulphur

1-15nm length plume re-construction:-

– Height is trailing vortices-referenced

– Absence of an Upper Jet Wake (UJW)

– Thus, lack of contrail cirrus

– Implications of aircraft design

– BELOW, engine no.3 at 200 m

y (m)

z (

m)

DC8 wake CN concentrations, no./cm3, short wake length 5.5-17 nm nm)

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

50

60

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

EIn_CN_trav = 6.4265e+14

y (m)

z (

m)

DC8 wake CN concentrations, no./cm3, short wake length 5.0.5-15 nm nm)

-20 -10 0 10 20-20

-15

-10

-5

0

5

10

15

20

2000

4000

6000

8000

10000

12000

14000

Page 18: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

10-1

100

101

1014

1015

1016

1017

CN

app

rox.

em

issio

n i

nd

ex,

no./

kg

fu

el b

urn

t

wake age, tW

(min.)

CN EIn Grand total minus Backgd Conc, CNdydz-CNATMOS

dydz

B772,Backgd = 250cm-3

B744,Backgd = 250cm-3

B773,Backgd = 230cm-3

A388,Backgd = 61cm-3

B764,Backgd = 100cm-3

A343,Backgd = 150cm-3

B763,Backgd = 600cm-3

B788,Backgd = 408cm-3

FA20

DC8,ACCESS II

DC8,ACCESS.HEFA

CN EIn SUMMARY:-• Contains both 4-eng, M0.8 holistic plumes, & 1-eng

(I/B), M0.5 plumes. All low-sulphur JetA

• For ACCESS II data, ΔCN_Ein -57% with σ<13%

(i.e. includes physical effects,

altitude & thrust-setting

variations)

ACCESS DC8

NRC FALCON

HEAVY JETS

Preliminary

Page 19: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

CONTRAIL CHARACTERISTICS:-

Ice & water vapour

Cruise, M0.8

‘Holding’, M0.5

1. 4-eng

2. 1-eng

Page 20: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

CRUISE, 11km, M0.8, Low-sulphur

FSSP-100 (>0.5μm):-

y (m)

z (

m)

DC8 wake FSSP concentrations, no./cm3, short wake length 5.5-17 nm nm)

-20 -10 0 10 20 30

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

5

10

15

20

25

y (m)z (

m)

DC8 wake FSSP concentrations, no./cm3, short wake length 5.5-17 nm nm)

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5

x 107

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 2 4 6 8 10 12

x 108

-100

-80

-60

-40

-20

0

20

40

60

80

100

FSSP, cumulative no.

heig

ht

ab

ove

/be

low

DC

8 pla

ne

, z D

C8 (

m)

FSSP,n./m3 Grand total

FSSP,n./m3 Background

Page 21: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

y (m)

z (

m)

DC8 wake, PDP filtered activity, wake length 0.5-15 nm)

-40 -20 0 20 40

-40

-30

-20

-10

0

10

20

30

40

100

200

300

400

500

600

700

800

900

1000

1100

1200

CRUISE, 11km, M0.8, Low-sulphur:- NRC PDP output signal (excellent

for bulk ice particles (no sizing); negligible for solid particles) :-

y (m)

z (

m)

DC8 wake, PDP filtered activity, wake length 0.5-15 nm)

10 12 14 16 18 20 22

-6

-4

-2

0

2

4

6

100

200

300

400

500

600

700

800

900

1000

1100

1200

y (m)

z (

m)

DC8 wake, PDP filtered activity, wake length 0.5-15 nm)

-16 -14 -12 -10 -8

-6

-4

-2

0

2

4

6

8

100

200

300

400

500

600

700

800

900

1000

1100

1200

PORT ..... vortex core sizing ...... STBD

Page 22: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

DC-8, I/B engine contrail sampling:-– Distance, nom. 200 m to 3000 m

Page 23: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

y (m)

z (

m)

DC8 wake FSSP concentrations, no./cm3, short wake length 5.0.5-15 nm nm)

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

50

100

150

200

250

300

350

400

450

500

-200 0 200 400 600 800 1000 1200 1400 1600

1

1.5

2

2.5

3

3.5

4

4.5

x 10-6

length of wake (km)

ME

D (

m)

EIn_FSSP_trav = 1.1761e+13 #/kgy (m)

z (

m)

DC8 wake Water Vapour m,ment, g/m3, short wake 0.05-1 nm nm)

-10 -5 0 5 10 15

-10

-8

-6

-4

-2

0

2

4

6

8

10

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

EIm_H2O_trav = 7.7412e+08 μg/kg

0 1 2 3 4 5 6

x 10-5

-20

-15

-10

-5

0

5

10

15

20

WV, ppt

heig

ht

ab

ove

/be

low

DC

8 pla

ne

, z D

C8 (

m)

0 0.5 1 1.5 2 2.5 3

x 108

-20

-15

-10

-5

0

5

10

15

20

FSSP, no./m

heig

ht

ab

ove

/be

low

DC

8 pla

ne

, z D

C8 (

m)

I/B engine, 8th May:-– FSSP-100 & LICOR 840A – data complementation

– Also, validated cross-sectional plume re-construction (as

different probe positions)

Page 24: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

ANOTHER CASE:- I/B engine, 8th May, JetA:-– FSSP-100 ice particle count & close-downstream development,

spectrum (left) at 428 m (10 b), median size (left below), ratio of N conc

to CN conc (right)

-400 -200 0 200 400 600 800 1000 1200 14000.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

-6

length of wake (km)

ME

D (

m)

i.e., sublimating over the length range

Of 0.2-2 km, unlike a persistent pre-

ACCESS B773 contrail (N of Ottawa):-

0 1 2 3 4 5 6 7 8 9

x 10-6

0

50

100

150

ice particle bin size (m)

ice p

art

icle

co

un

t in

each

bin

CT-133 FSSP-100 near-field ice particle spectra

-400 -200 0 200 400 600 800 1000 1200 14000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

wake (plume) length (m)

ratio

on

ice n

o.

de

nsit

y /

CN

den

sit

y

ratio on ice no. concentration to CN concentration

Page 25: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

y (m)

z (

m)

B773 wake FSSP concentrations, no./cm3, short wake length 5.5-17 nm nm)

-20 0 20 40

-150

-100

-50

0

50

100

20

40

60

80

100

120

140

160

180

200

0 5 10 15

x 109

-250

-200

-150

-100

-50

0

50

100

150

B773 contrail, N of Ottawa:-11th April 2014, 6-17 nm

0 0.5 1 1.5 2 2.5

x 105

1

2

3

4

5

6

7

8x 10

-6

mea

n vo

lum

etric

dia

met

er (

m)

Page 26: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

Water vapour measured:-– the measured plumes from the FSSP-100 & the LICOR 840A comparatively highlight

maxima (ice>0.5 μm and WVap, respectively) in opposing parts of the emitted plumes

=> implies a limited uncertainty in WVap m’ment for DC-8 in Sierra Nevada UTLS

y (m)

z (

m)

DC8 wake FSSP concentrations, no./cm3, wake length 19-26 nm)

-10 -5 0 5 10 15

-20

-15

-10

-5

0

5

10

15

100

200

300

400

500

600

700

800

900

1000

1100

y (m)

z (m

)

DC8 wake RHw

, wake length 5.0.5-15 nm nm)

-10 -5 0 5 10 15

-20

-15

-10

-5

0

5

10

15

55

60

65

70

75

80

85

90

95

100

dWAKE

(m)

alt (

m)

DC8 wake NCONC

conc., wake length 0.05-0.5 nm)

200 300 400 500 600 700 800 900 1000 1100

-5

0

5

10

15

0

100

200

300

400

500

600

700

800

900

1000

dWAKE

(m)

alt (

m)

DC8 wake RHW

conc., wake length 0.05-0.5 nm)

200 300 400 500 600 700 800 900 1000 1100 1200

-20

-15

-10

-5

0

5

10

15

55

60

65

70

75

80

85

90

95

100

Page 27: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

FFSP-100 EIn, environmental parametric variation:-– With local background atmosphere, RHW, RHi, TS, ∂RHw/∂z, CN

40 50 60 70 80 90 10010

9

1010

1011

1012

1013

1014

background RH at survey vortex height (%)

FS

SP

-10

0 E

In n

o./

kg

FSSP-100 EIn ~ RHback

FA20,JetA1,7/4/14

JetA,B773,11/4/14

JetA,ACCESS DC8

HEFA,ACCESS DC8

JetA,B763,25/6/14

JetA,A388,4/12/14

JetA,ACCESS DC8,I/B

HEFA,ACCESS DC8,I/B

-0.05 0 0.05 0.1 0.15 0.210

9

1010

1011

1012

1013

1014

RH/zV

at survey vortex height (%)

FS

SP

-10

0 E

In n

o./

kg

FSSP-100 EIn ~ [RH/zV

]back

FA20,JetA1,7/4/14

JetA,B773,11/4/14

JetA,ACCESS

HEFA,ACCESS

JetA,B763,25/6/14

JetA,A388,4/12/14

ONE 4-eng M0.8contrail survey

1-5

&

10-16

nm

5-10 nm

DC8Preliminary

Preliminary

Page 28: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

FSSP-100 Ice EIn, Power-Law normalisation:-– With local background atmosphere, RHi, TS, ∂RHw/∂z

– for a relation EIn=ATsbRHi

cd (-∂RHw/∂z ) – use an error minimisation

parameter-model estimator (Matlab®) for A, b, c & d estimation

109

1010

1011

1012

1013

1014

109

1010

1011

1012

1013

1014

FSSP EIn (#/kg)

FS

SP

EI

= A

TSb

RH

ic d

(-R

Hg)

Power-Law normalisation of FSSP EIn

JetA,DC8,FA20,A343/388,B777/763

HEFA,4/1-eng

JetA,DC8,4/1-eng,

mean-JetA

mean-HEFA

mean-JetA-DC8

linear regression to all data pts

- Thus, corrects for

changes in these

background

environmental

conditions:-

– suggests a 47% reduction

in ice >0.5μm EIn, but

this is <σ, for HEFA

blend c.f. JetA for

DC-8/CFM-56, MaxEff,

For the wake vortex-

dominated DC8 contrail

Page 29: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

Water Vapour measured EI:-– Combining integrated WVap plumes, for 4-eng & I/B 1-eng

– Taylor series i/d for Ts, RHi, ∂RHw/∂z, CN_EI (similar par.I/D as ice part.)

– then normalised to 223 K, 100% RHi, avg RH gradient & actual CN-EI:-

Suggests 20% (1σ) increase in WVap for HEFA50% c.f. JetA low sulphur

0 0.5 1 1.5 2 2.5

x 109

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

WVap EI (g/kg)

WV

ap

EI=

a 0+

a1R

Hi1

/4-a

2(d

RH

/dz)1

/4+

a3E

I CN

, fo

r R

H i=

10

0%

Taylor Series normalisation of WVap EI, varying atmos. conditions

JetA,4-eng&I/B-eng

HEFA,4-eng&I/B-eng

– Higher WVap EI = lower IW EI

(however experimental σ

quite large)

- thus, this model is

consistent with the

FSSP ice EIn

Page 30: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

CONCLUSIONS & future work:-NRC T33 ACCESS II emissions data, measured holistically

across 4-eng emission plumes at M0.8 & 1-eng plumes at M0.52;

- aerosols, bulk CN >10 nm (7610 CNC)

- 57% reduction in EI from JetA to HEFA blend, which is 4σ, for a data-set

standard deviation , σ, of 13%

- NOy (Thermo 42I) measured NO EI values in the range 3-15 g/kg (MW, 46),

increasing with engine temp (thrust), with an overall data-set σ of 29%

- CO2 (Licor 840A), EI derived independently (using holistic plume integration)

- Successful estimation of CO2 EI, mean EI of 3.26 kg/kg, with σ of 11%

- Contrail microphysics (0.2-30 km), when normalised using power-law or Taylor

series functions for variations in background Ts, RH, RHi, RH lapse rate

- >0.5 μm ice particle EI reduction of 47%, but that is < ½ σ

- Water vapour EI increase of 20% from JetA to HEFA blend, but σ also 20%

- CONCLUDE:- Other than CN, the JetA to HEFA comparisons all are of the order,

or less, than experimental error, therefore they are not, as yet statistically relevant

- Thus further HEFA & other alternative fuels emissions flight data is

warranted.

Page 31: NRC CT-133 ACCESS II DATA ANALYSIS:- GASEOUS, AEROSOL … · C 0.5to 2m) –Typical core venting –annular vorticity cores –High velocity peaks (c.70 m/s); –atypically strong

QUESTIONS?