novel optoelectronics devices for broadband photonics network applications ‰®¹ç”

74
Novel Novel Optoelectronics Optoelectronics Devices for Devices for Broadband Broadband Photonics Photonics Network Applications Network Applications WOCC‘2004, March 9, Taipei, Taiwan Dr. Dr. Yung Yung S. Liu S. Liu Optoelectronics Optoelectronics & Systems Labs (OES) & Systems Labs (OES) Industry Technology Research Institute (ITRI) Industry Technology Research Institute (ITRI) Hsinchu Hsinchu , Taiwan , Taiwan Copy right of ITRI

Upload: others

Post on 11-Feb-2022

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Novel Novel Optoelectronics Optoelectronics Devices for Devices for Broadband Broadband PhotonicsPhotonics Network ApplicationsNetwork Applications

WOCC‘2004, March 9, Taipei, Taiwan

劉容生Dr. Dr. YungYung S. LiuS. Liu

OptoelectronicsOptoelectronics & Systems Labs (OES)& Systems Labs (OES)Industry Technology Research Institute (ITRI)Industry Technology Research Institute (ITRI)

HsinchuHsinchu, Taiwan, TaiwanCopy right of ITRI

Page 2: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Major Breakthroughs in Major Breakthroughs in Optoelectronic Optoelectronic Materials and Devices and Impacts on CommunicationMaterials and Devices and Impacts on Communication

1970’s: Low loss fibers & Heterojunction semiconductor lasers, e.g low threshold devicesImpacts: Foundation of modern fiber communication

1980’s: DWDM & EDFA Impacts: Deployment of Broadband DWDM systems

1990’s: VCSEL, Raman amplifers

2000’s: QD devices, Photonics crystalsImpacts: ?

Page 3: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Metro/Access and EthernetMetro/Access and Ethernet--based Technologybased TechnologyFTTX10Gbps Metro Ethernet

OADM

OADM

OADM

OXCMetroWDM System

LAN/Metro Access

4 ~ 40λ , 200-100-50GHz 10Gbps

FTTBCampus Enterprise

Metro Link

xDSL

COCO10GBase-L

1000Base-PX101000Base-PX10

10GBase-LX4

FTTHServer Farm10GBase-S

Page 4: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Device Technologies for Optical CommunicationDevice Technologies for Optical Communication

Current Devices technologies High speed Ethernet modulesLow cost WDM modules

Current development GaAs-based Long wavelength VCSELOptical MEMS, PLC

Future devices technologiesNano-photonics technology

• QD devices• Photonic Crystals• ...

Page 5: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Device Technologies for Optical CommunicationDevice Technologies for Optical Communication

Current Devices technologies High speed Ethernet modulesLow cost WDM modules

Current development long wavelength VCSELOptical MEMS, PLC

Future devices technologiesNano-photonics

• QD devices• Photonic Crystals

Page 6: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Technology RoadmapTechnology Roadmap光通訊元件技術發展趨勢光通訊元件技術發展趨勢

1.3/1.5um VCSEL

10G~100GHigh speed E/O Transform

PLC-based platform Tech.

Si-based /InP-basedMonolithic Integrated devices

Si-basedIntegrated devices

Micro Optic Module

Optical MEMS ComponentsTunable lasers & l arrays

Optical Interconnects

Low Temp. Thin Film CoatingMonolithic TR Packaging

Automation ofFiber based Devices Metro

Access

2006

Page 7: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

1x32 100GHz AWG 1x2/2x2 MEMS Switch

MEMS VOA

Wavelength locker

PLC type Interleaver

1 x N Planar Waveguide Splitter

1550 1550 nm DFB LD Chipnm DFB LD Chip

蝶式模組封裝技術蝶式模組封裝技術

1010G G 高速光通訊元件高速光通訊元件

光電元件微構裝光電元件微構裝

1010GbGb/s XFP Transceiver/s XFP Transceiver

12 12 Channels Channels Array TransmitterArray Transmitter

1010GbpsGbps 1310nm 1310nm DFB TOSADFB TOSA

1010GbpsGbps MiniMini--Flat TOSAFlat TOSA

1010Gbps Gbps LC XENPAK LC XENPAK TransponderTransponder

1010Gbps Gbps SC XENPAK SC XENPAK TransponderTransponder

高功率Pump雷射耦合器

Current Devices Technologies Current Devices Technologies

Page 8: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

CWDM MiniCWDM Mini--ROSA_Eye PatternROSA_Eye Pattern

RS=-20.45dBm RS=-19.38dBm RS=-18.23dBm RS=-16.94dBm

Page 9: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

1010GbpsGbps XENPAK TransponderXENPAK Transponder

PMD PMA PCS

XGXS

BIST

MDIOManagementInterface

10.3Gb/s

0303

XAUI4x3.125Gb/s

Applications:

Ethernet switches and routersCross-connectsWDM terminalsMetro system equipmentsOptical test equipments

Features•10.3 Gbps optical Tx/Rx with 4-channel XAUI 3.125Gbps I/O electrical interface•Compliant with IEEE 802.3ae•Compliant with XENPAK MSA•850nm VCSEL laser, and PIN Detector•Hot pluggable in the Z- direction•SC duplex fiber-optic connector

Shown at

OFC 20

Shown at

OFC 20

Page 10: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

OES Developed 10 OES Developed 10 GbaseGbase--SRSR XenpakXenpak TransponderTransponderReal Traffic Verification on OFC2003Real Traffic Verification on OFC2003

Blaze Molex OES Alvesta Ignis E2O

Clear & Open Eye Error Free Indicator on LED Display

Page 11: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

蝶式模組封裝技術蝶式模組封裝技術((Butterfly Packaging for 980 nm Pump Laser Module)Butterfly Packaging for 980 nm Pump Laser Module)

特 色特 色關鍵技術關鍵技術 技術應用技術應用

•元件設計製作•LD/PD 晶粒接合技術•透鏡光纖接合技術•模組封裝測試•主動對準•雷射焊接,精確度要求在0.5μm以下

•高功率幫浦雷射元件的封裝•高速(>2.5Gbps/s) 雷射元件的封裝•光纖放大器

•高功率模組•高穩定性•低成本封裝•散熱效率高•電磁干擾(EMI)低

Page 12: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Device Technologies for Optical CommunicationDevice Technologies for Optical Communication

Current Devices technologies High speed Ethernet modulesLow cost WDM modules

Current development GaAs-based Long wavelength VCSELOptical MEMS, PLC

Future devices technologiesNano-photonics technology

• QD devices• Photonic Crystals

Page 13: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

10850850nmnm SM VCSEL Operating up to 10GSM VCSEL Operating up to 10G

• N-tpye GaAs substrate

• Simple and manufacturable process

(as the general semiconductor process)

• Probe screening prior to package

Page 14: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

10 1010Gbps 850nm VCSELGbps 850nm VCSEL

10Gbps

MTTF : 100 Years

• Simple and manufacturable process

• Probe screening prior to package

• N-tpye GaAs substrate

• TO-46 package for high speed

Reliability Test for Oxide VCSELs

Epi-wafer & TO

Eye diagram

Page 15: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

1010Gbps 850nm VCSEL TOSAGbps 850nm VCSEL TOSAOptical Specifications Optical Specifications

FeaturesFeatures•• Low cost TOLow cost TO--Can PackageCan Package•• 850nm VCSEL TOSA850nm VCSEL TOSA•• 10Gb/s suitable for 10GE/10GFC10Gb/s suitable for 10GE/10GFC•• SC/LC receptacle packageSC/LC receptacle package•• Flexible board optionFlexible board option•• Operate in a temperature range fromOperate in a temperature range from

00℃℃ to 85to 85℃Eye DiagramEye Diagram

Page 16: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

1010GbpsGbps 850nm VCSEL850nm VCSEL--based XFPbased XFPOptical SpecificationOptical Specification

Features :1. IEEE 802.3ae compliant 2. XFP MSA compliant 3. 10 Gbps Tx/Rx with XFI high speed I/O electrical interface4. Transmission distance up to 60M 5. Ultra small form factor6. Hot pluggable in the Z direction7. Duplex LC fiber-optic connector

Eye DiagramEye Diagram

Page 17: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Applications of the New 1.3 µm Technologies

1. VCSELs and FPs• Low cost• Temperature stability

2. Optical Interconnect

• Low threshold QD VCSEL arrays

3. Integrated optical devices based on GaAs substrates

• III-V Waveguides • Monolithic CWDM array• Semiconductor Optical Amp. (SOA)• EA+DFBs• …..

4. Low power HBTs

Page 18: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”
Page 19: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6

Lattice Constant, A

EpitaxialEpitaxial materials for 1.3 um materials for 1.3 um VCSELsVCSELs

• Conventional long wavelength epitaxial materials, InGaAsP/InP, is not suitable for 1.31 um VCSELs!

• New approaches are needed!

• Approach 1. InAs/InGaAs QDs/GaAs

• Approach 2. InGaNAs/GaAs: Adding N to InGaAs to reduce the lattice strain and lower the bandgap

InAs QD

InGaAs matrix

Page 20: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

1310 1310 nm nm InGaAsNInGaAsN VCSEL VCSEL (MBE)(MBE)

Performance of 18 µm aperture

RT, CW, Ith=4 mA,

Max power=1 mW,

Slope efficiency=0.15 W/A,

Jth=1.6 KA/cm2,

Wavelength =1304 nm

0 2 4 6 8 10 12 14 16 180.0

0.2

0.4

0.6

0.8

1.0

1.2

20 0C 25 0C 30 0C 40 0C 50 0C 60 0C

RT, CWAperture 18 µm

Out

put p

ower

(mW

)

Current (mA)

0 10 20 30 40 50 600

2

4

6

8

10

12Pulse0.5 µs, 10 ms

95 0C

85 0C75 0C65 0C55 0C

40 0C

26 0C

Out

put p

ower

, mW

Current, mA

1300 1305 1310Wavelength (nm)

Intra-cavity design grown by MBE

Page 21: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

MBEMBEInGaInGaNNAsAsQWQW VCSELsVCSELs

0 2 4 6 8 10 12 14 16 180.0

0.2

0.4

0.6

0.8

1.0

1.2

20 0C 25 0C 30 0C 40 0C 50 0C 60 0C

SH277_B, CWAperture 18 µm

Out

put p

ower

(mW

)

Current (mA)

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

60 0C

50 0C

40 0C

30 0C

20 0CPulse

Out

put p

ower

, mW

Current, mA

1 .2 9 6 1 .3 0 0 1 .3 0 4 1 .3 0 8

W a v e le n g th ( µ m )

CW@RT, Ith=4 mA, Pmax=1 mA, Jth=1.6 kA/cm2

(Jth world lowest reported data)

Oxided aperature

+

DopingLevel

L H

Top DBR

Bottom DBR

Intracavity

Page 22: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

MOCVDMOCVDInGaInGaNNAsAsQWQW VCSELsVCSELs

0 2 4 6 8 10 12-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pow

er(m

W)

Current(mA)

1295 1300 1305

Wavelength(nm)

800 900 1000 1100 1200 1300 1400 1500 1600 1700

0.0

0.1

0.2

0.3

0.4

0.5

Stopband center=1301nm1270nm @ 26meV

PL in

tens

ity [a

rb. u

nit]

Wavelength [nm]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ref

lect

ance

Page 23: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

◆ The peak lasing wavelengthsare 1299 to 1303 nm at 12 mA.

0 2 4 6 8 10 120

1

2

3

4

Vol

tage

(V)

Current (mA)

0.00

0.05

0.10

0.15

0.20

Opt

ical

Pow

er (m

W)

InGaNAs/GaAs QWwafer 0428, CW, RT

-80

-75

-70

-65

-60

1294 1298 1302 1306Wavelength (nm)

Inte

nsity

(dB

, arb

. uni

t)

12 mA

◆ Ith = 2.5 to 3 mA @ 20°C,Jth = 3.2 to 3.8 kA/cm2. Po,max = 0.17 mW.

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14Current (mA)

Opt

ical

Pow

er (m

W)

InGaAs/GaAs QWRT, CW, 30 min. probingwavelength = 1250 nm

◆ Ith = 6 to 7 mA @ 20°C,Jth = 5 to 5.6 kA/cm2. Po,max = 0.3 mW.

With N

Without N

-75

-65

-55

-45

1242 1246 1250 1254 1258Wavelength (nm)

Inte

nsity

(dB

, arb

. uni

t)

InGaAs/GaAs QW, wafer 1111CW, RT12 mA

LL--II--V and Spectra of V and Spectra of InGa(N)AsInGa(N)As VCSELs(VCSELs(MOCVD)MOCVD)

◆ Lasing wavelengths:1299 to 1303 nm @ 10 mA.

◆ Lasing wavelength1245 to 1250 nm @ 12 mA.

Page 24: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

ITRI/OES Optical MEMSITRI/OES Optical MEMS

Design Fabrication Packaging

&T

esting

Packaging & Applications

Fabrication

Design & Core Technology2x2 Design for OS 2D Scanning Mirror SOI Scanning Mirror

Hermetic PackagingCollimator Array

1D Scanning Mirror 8x8 Optical Switch

VOA TO Package2x2 Switch Package

Page 25: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

11D/2D Optical MEMS SwitchD/2D Optical MEMS Switch

d.Plating Permalloy 30um

e.Repeat b.~d.

f.KOH Etching Si

g.Fill in Magnetic Powder

h.Sputter Cr/Au for mirror

<100>Si / 500A SiO2/1500A SixNy

a.Mask#F1&#B1 RIE : Define Etching area

b.Mask#F2 : Lift-off Cr/Au

c.Mask#F3 : Spin Coater AZ4620

Bulk Micromachining & UV-LIGA Process

Chip Design & Simulation

Magnetic Circuit Design

22x2 Optical MEMS Switchx2 Optical MEMS Switch

11x4/4x4 Optical MEMS Switchx4/4x4 Optical MEMS Switch

Surface Micromachining

Stress-Induced Self-Assembly Chip Design & Simulation

Page 26: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Packaging of Packaging of NxNNxN Optical SwitchOptical Switch-- ITRI/OESITRI/OES

Seam sealing

brazingHemertic-seal

Glass-sealMetal & Glass LidSubstrate & Metal Frame

Hemerticity (leak test) : achieved specs. 1×10-8 atm He.CC/secIsolation resistance : achieved specs. 1×1011 ohm

Page 27: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

High Speed Passively aligned OSAHigh Speed Passively aligned OSA

• 1.25G, 2.5G, 10G Transmitter / Receiver module

特色特色

關鍵技術關鍵技術規格規格

技術應用技術應用• Single channel 1310nm/1550nm LD• Single channel 850nm VCSEL• Multi-channel1310/1550nm LD• Multi-channel 850nm VCSEL

•被動對位構裝技術

•用於陣列式模組技術

•用於高速mini-DIL 或

Butterfly模組

• Si Bench製程技術

• AuSn soldering製程技術

• Flip Chip bonding技術

MPD LD

Thin Film Circuit AuSn Soldering & Flip Chip Bonding

Ball Lens

Page 28: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Device Technologies for Optical CommunicationDevice Technologies for Optical Communication

Current Devices technologies High speed Ethernet modulesLow cost WDM modules

Current development long wavelength VCSELOptical MEMS, PLC

Future devices technologiesNano-photonics technology

• QD devices• Photonic Crystals

Page 29: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Development of Development of HeteroHetero--structure Laser Diodesstructure Laser DiodesN. Ledentsov, IEEE J. Select. Topics Quantum Electron., 6, 439, 2000

After the success of the quantum well lasers, researchers began to investigate structures of lower dimensionality, e.g. quantum wires and dots. Several approaches has been investigated and soon found limitation due to the increased surface/interface area that lower the radiative recombination efficiency of the injected electron -holes. SK mode of growth has the unique ability to avoid the surface effects!

Page 30: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Advantages of Quantum Dot LasersAdvantages of Quantum Dot Lasers-- the Ultimate the Ultimate NanostructureNanostructure

• Tunability of emission wavelength by QD size and composition. GaAs-based light sources cover the entire range of wavelength, from 700-1310 nm that are important to communications.

Extension of the possible wavelength regime on GaAs substrates to

λ ≥ 1300 nm

Lower threshold current densities

High characteristic temperature T0 at 1300 nm

• Suppressed carrier diffusion - lower facet temperature, - no beam filamentation, - lower M2 and - radiation hardness- higher output power

• High modulation frequency, low alpha factor

• High-efficiency VCSELs at 1300 nm based on GaAs

Page 31: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

InAs/GaAsInAs/GaAs QDQD

Dislocation-free epi-growth:Lattice matched or slight lattice mismatchedLattice mismatch: InAs/GaAs = 7.1%

Page 32: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Epitaxy Epitaxy Growth of QW and Growth of QW and QDsQDs

InAs

GaAsThickness increases strain

accumulates in the interface, dislocations form and crystal quality

degrades

Thin InAs is strainedBut no dislocations

Two materials with different lattice parameters

QD formation by Stranski-Krawstanov Growth

If islands are formed the strain may relax elastically

Our approach:

InGaNAs QWs MBE

InAs/InGaAs QDs MOCVD

Page 33: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Quantum Dot TechnologiesQuantum Dot Technologies

InGaN/GaN QD

•Self assembled epitaxy•Long wavelength emitting•LD & VCSEL for fiber communication•Patterned substrate for QD array

Nano-technology!EB In As

In As

White LED

•Low threshold current•Thermal stability•High efficiency

QD InAs/GaAs QD

•Bandgap engineering•3D confinement

deposition

Page 34: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

SelfSelf--Assembled Quantum DotsAssembled Quantum Dots

GaAs substrate

deposition ofGaAs buffer AFM sample

deopsition ofInAs >2 ML

InAs Dots Formed

GaAs substrate

InAs 2D layer

deopsition ofInAs 1~2 ML

GaAs substrate

InGaAs or GaAscap over InAs

PL sample

Page 35: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

QD LaserQD Laser::AFMAFM

LM3544:1x1011 #/cm2 with base width below 30 nm

Page 36: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

QDsQDs::CharacterizationCharacterization

SEM

Dot density: 3x1010 cm-2

AFM

TEM

Page 37: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

InAsInAs QuantuQuantumm--Dot LasersDot LasersInAsInAs QuantuQuantumm--Dot LasersDot Lasers

Page 38: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

QDsQDs CharacterizationCharacterization::TEMTEM

Page 39: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

QD Laser StructureQD Laser StructureLayer Structure Laser fabrication

GaAs sub

GaAs buffer

In0.15Ga0.85As 50Å

GaAs 300Å

GaAs cap

AlGaAs SCH

AlGaAs SCH

GaAs 300Å

Multi-StackInAs QDs(MQDs)

In Al

d

AlGaAs cladding

AlGaAs cladding

Metal electrode

RidgeActive

HR coating

AR[110]

Page 40: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

1.3 um Quantum Dot LasersCross-section TEMand SEM image of

InAs/GaAs QD active layer

GaAs sub

n-GaAs buffer

In0.15Ga0.85As 5nm

GaAs 30nm

p+-GaAs cap layerp-Al0.3Ga0.7As cladding layer

GaAs waveguide layer

GaAs waveguide layer

n-Al0.3Ga0.7As cladding layer

1.3µm QD laser structure

5 pairs

InAs QD2.5 ML

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.29 1.30 1.31 1.32 1.33

0 10 20 30 40 50 60 70 800

5

10

15

20

25T=25 0C, cwW=5 µm, L=3 mm, as-cleaved

Out

put p

ower

per

2 fa

cets

(mW

)

Current (mA)

Pout

V

Angle (degree)wavelength (µm)

Volta

ge (V

)

-60 -30 0 30 60

45 o

1.3µm QD ridge-waveguide laser characterization

Cross-section SEM image of1.3µm QD ridge-waveguide laser

5QWs

Ti/Au metalAu heat sink

Passive layer

Page 41: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.291.301.311.321.33

0 10 20 30 40 50 60 70 800

5

10

15

20

25T=25 0C, cwW=5 µm, L=3 mm, as-cleaved

Out

put p

ower

per

2 fa

cets

(mW

)

Current (mA)

Pout

V

Angle (degree)wavelength (µm)

Volta

ge (V

)

-60 -30 0 30 60

45 o

Low divergent angle, high differential efficiency, single mode QD lasers have been obtained !

RidgeRidge--waveguide QD laser characteristicswaveguide QD laser characteristics

Page 42: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

UltraUltra--low Threshold Current QD low Threshold Current QD EELs EELs

0 10 20 30 40 50 60 70 800

1

2

3

4

5

Wavelength (µm)Ith=1.43 mA

HR/HR(W,L)=(5µm,0.6mm)CW at T=20oC

Fr

ont F

acet

Out

put P

ower

(mW

)

Current (mA)

1.265 1.270 1.275 1.280

L-I curve

SEM of 2 stack QD layers

Cf. D. L. Huffaker et al., IEEE J. Select. Topics Quantum Electron, VOL. 6, 2000. : 4.1 mA

Page 43: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

InAs/InGaAs QD 1.3 um Lasers

0 50 100 150 2000.0

0.3

0.6

0.9

1.2

1.5

SH76 QD laserPulsed T=25oC

Vol

tage

(V)

Current (mA) P

ower

(arb

.uni

ts)

1.15 1.20 1.25 1.30 1.35

150 mA

130 mAx5

SH76 QD laserpulsed 25oC

EL

Inte

nsity

(arb

. uni

ts)

Wavelength (µm)

1.31 µ m

Potential ImpactPotential Impact: Low cost VCSELs and LDs for metro/local-access fiber networks.

InnovationInnovation: Allow GaAs technology for uncooled1.31 um components to replace the less developed InP technology. QD can be made on the cheaper and better GaAs substrates and is less temperature sensitive. It also allows integration with GaAs high speed electronics to lower the system costs.

ImportanceImportance: The characteristics of InAs/InGaAsQD epi-structure were shown to be as good as other QW LD structures. ITRI/IOFFE collaborative program will aim to be the first in commercializing QD devices at 1.3um in the world.

Lasing at 1.31 Lasing at 1.31 µµm @ 25m @ 25ooC C with low with low IIthth and high efficiency!and high efficiency!

Page 44: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

1310 nm QD VCSEL(MBE)

0 2 4 6 8 10 120.0

0.5

1.0

1.5

2.0

2.5RTCW

Ustinov

OES/ITRI

Out

put p

ower

(mW

)

Current (mA)

0.0

0.5

1.0

1.5

2.0

2.5

Vol

tage

(V)

GaAs/Al0.9Ga0.1As

GaAssubstrate

AlGaO

n-GaAs

p-GaAs

QD active region

Intra-cavity metal contacts

GaAs

InAs-InGaAs DWELLsin GaAs matrix

Room-temperature continuous operation of InAs QD intra-cavity VCSELs grown by Molecular beam epitaxy (MBE). λ : 1.3 µmIth : 2.2 mAPmax : 2 mWSlope efficiency : 0.41 W/A

The first room temperature 1.3 µm QD VCSEL with all semiconductor DBRs!

Page 45: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Comparison of QDs and InGaNAs QWs

Internal Quantum Efficiency of QDs close to 100%!

0 500 1000 1500 2000 25000.0

0.5

1.0

1.5

2.0

2.5

ηi , % αi , cm-1

4-922 ( 2QD) 100 3.5 4-917 ( 5QD) 95 2.5Wisconsin* (InGaAsN QW) 85 7.8 In

vers

e di

ffere

ntia

l effi

cien

cy, 1

/ ηD

Cavity length, L, µm

*N. Tansu and L.J. Mawst, IEEE Photonics Technol. Lett. 14, 444 (2002)

ITRI (INGaNAs QW) 96

Page 46: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

SummarySummary-- QD DevicesQD Devices

RW multi-stack (N=2, 5 and 10) InAs/InGaAs/AlGaAs QD lasers of 1.3 µm range have been fabricated. The threshold current densities per stack were about 25 A/cm2, 18 A/cm2 and 10 A/cm2 for 2-, 5- and 10-stack QDs, respectively.Low threshold current of 1.43 mA, High wall-plug efficiency exceeding 40%, and record high current density above 100× Jth for 10-stack QD lasers for RT CW and GS lasing emission was achieved.

Page 47: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Optical Interconnection Types and ApplicationsOptical Interconnection Types and Applications

Medium

1km 100m 10m 1m 10cm 1cm 1mm 100µm 10µm

inter-chipinter-MCMinter-boardinter-box intra-chip

fibers wave-guides free space

Advantages • Less cross talk• Curved path

• Stability• Easy replacement

Applications

Distance

• High channel density• 3D connection

Disadvantages • Large volume • Low channel density

• Difficult alignment• Planar configuration • High loss

Application Products

Telecomm Switch, Telecomm Transmission Equipment High End Datacom Switch and RouterAerospace and avionics communicationHigh End computer peripherals、 Enterprise computer serverMainframe Supercomputer

Page 48: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

high-density data storage (Terabyte)

carbon nanotube field-emission display

(CNT-FED)nano-electronics

(MRAM, SET)

long-life fuel cell for mobile devices Nanotechnology

Strategic ApplicationsIn Major thrust projects

next-gen. electronic packaging technology

nano-optoelectroniccommunication components(QD Laser, Nanophotonics)

ultra-thin & flexible display

nano-fluid with superb thermal-conductivity

Nano-biotechnology

Page 49: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

NanoNano--PhotonicsPhotonics RoadmapRoadmap

OES

Dev

ice

Tar

get

91 92 93 94 95

Simple QD-LEDEdge-emitting Laser

QD

PCD

metal

Enhanced QD-LED

Variable Optical Attenuator

PhotonicCrossingSplitter

Photonic Crystal

All λ’s

Total IntegrationCrossing Splitter Polarization Combiner

Page 50: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Types ofTypes of PhotonicPhotonic Crystal StructuresCrystal Structures

(b) 2D(a) 1D

(c) 3D

Page 51: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Features ofPhotonic Crystal

• periodic structure• dimension in sub-wavelength

region• various device design

Nano-fabrication Technology

Nano-patterning Technology

Page 52: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Dielectric OmniDielectric Omni--directional Reflectordirectional Reflector

White-light LED With One Dimensional Photonic Crystal

UV LED Chips

Reflector

Phosphors Layer

Substrate

1D Photonic Crystal Layer

One Dimensional Photonic Crystal Structure with High Reflectivity at Certain Wavelength ( i.e. Band Gap) Irrespective to Incident Angles and Polarizations.

Page 53: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Dielectric OmniDielectric Omni--directional Reflectordirectional Reflector

Calculated Average Spectra of Omni-directional Reflector Structure For Unpolarized Light With All Incident Angle

Page 54: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

PhotonicPhotonic Band Structure of anBand Structure of an OmnidirectionalOmnidirectionalOne Dimensional One Dimensional PhotonicPhotonic CrystalCrystal

Omni-directionalBand Gap(frequency 0.2965 c/a)

Page 55: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

PhotonicPhotonic Crystal Devices Crystal Devices

Photonic Crossing

Increased DensityPhotonic splittersIntegration with MUX/DeMUXIncrease Channel Count per Area

Photonic Crystal VOA (Transmission)

Index TuningE-O SubstrateLC FillingGeometric Tuning

Page 56: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Device DesignDevice Design

VOA

Page 57: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Low Cost Sources (OFC 2004)Low Cost Sources (OFC 2004)ThD1 KoujiNakahara 1.3-µm InGaAlAsdirectly modulated MQW RWG DFB lasers operating over 10 Gb/s and 100°C

ThD2 Satoshi Shirai120oC un-cooled operation of direct modulated 1.3µm AlGaInAs-MQW DFB laser diodes for 10Gb/stelecom applications

ThD3 TetsuroOkuda Low-operation-current and highly-reliable 1.3-µm AlGaInAsstrain compensated MQW-BH-DFB lasers for 100°C, 10-Gb/soperation

ThD4 Hélène Debrégeas-SillardLow-cost coolerless10Gb/sintegrated laser-modulator

ThD5 Osamu KagayaRecord high mask margin in uncooleddirectly-modulatedlaser diode modules with a driver IC for 10.7 Gbit/sSONET applications

ThD6 Takashi Kondo Isolator-free, uncooledoperation of highly strained 1.1 µmGaInAs/GaAsvertical cavity surface emitting laser for 10Gb/s single modefiber data transmission

ThD7Alexei Sirbu VCSELsemitting in the 1550nmwaveband with 0.6mWsingle

mode output in 20-80 °Ctemperature range

Page 58: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”
Page 59: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Practical Applications of Holey Optical FibersPractical Applications of Holey Optical Fibers(cont.) (cont.) -- D.J. Richardson, et al, University of D.J. Richardson, et al, University of SouthhapmtonSouthhapmton, (OFC 2004), (OFC 2004)

5. Conclusion. In conclusion, HF technology has advanced to the point that km-lengths of robust coated fiber can be produced with losses approaching those of conventional fiber. HFscan be processed and spliced using established procedures and thus readily integratedwith low loss to conventional fiber components and systems. HF fabrication, and associated post fabrication filling approaches have been shown to be compatible with a broad range of glasses and optical materials greatly enhancing the range and scope of devices and application that can be considered. HF technology thus promises a host of new functional passive and active fiber devices.

Page 60: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Photonic Photonic CrystalsCrystals

Eli Eli YablonovichYablonovich, UCLA (OFC, 2004), UCLA (OFC, 2004)

Page 61: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Eli Eli YablonovichYablonovich, UCLA (OFC, 2004), UCLA (OFC, 2004)

Page 62: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Eli Eli YablonovichYablonovich, UCLA (OFC, 2004), UCLA (OFC, 2004)

Page 63: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

First Swiss-Taiwanese Workshop on Challenges and Advanced Methods in Nanotechnology,

Zermatt, Switzerland, Oct 12-15, 2003

Nano-Photonics and Future Impacts- Display, Lighting and Communication

““ Where this thing Where this thing is going to stop, is going to stop, only Lord only Lord knows.knows.““

-- Thomas Edison Thomas Edison October 1879October 1879

Page 64: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Contributorsエ研院光電所奈米光電中心エ研院光電所奈米光電中心

•QD &InGaAsN VCSEL by MBE : Jyh-Shyang Wang (王智祥) , Ru-Shang Hsiao a

(蕭茹雄) , Chih-Ming Lai (賴志銘), Li-Chung Wei (魏立中), Kuen-Fong Lin(林坤鋒), Nikolai A. Maleev c, Alexey R. Kovsh c and Jim Y. Chi (祁錦雲)

•InGaAs(N) VCSEL by MOVPE : Chen-Ming Lu (呂振民), Chih-Hung Chiou (邱志鴻) , Cheng-Hung Lee (李政鴻) and Tsin-Dong Lee (李晉東)

•850 nm VCSEL Process: Hung-Pin D. Yang (楊泓斌) , Hsin-Chieh Yu b (尤信介), Jing-May Wang (王靜美), Hao-chung Kuo d and Chia-Pin Sung (宋嘉斌)

•850 nm VCSEL Package & Module :W divisiona Department of Electrophysics, National Chiao Tung Universityb Institute of Microelectronics, National Cheng Kung Universityc A. F. Ioffe Physico-Technical Institute, St. Petersburg,Russiad Institute of Electro-optical Engineer, National Chiao Tung University

Page 65: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Industrial Technology Research InstituteIndustrial Technology Research InstituteHsinchu, TaiwanHsinchu, Taiwan

liuysliuys@@itriitri.org..org.twtwThe material presented is copy right of ITRI The material presented is copy right of ITRI

Page 66: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Thank youThank you

Y.S. LiuY.S. Liuliuys@[email protected]

Page 67: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

商機一商機一 : : 都會光纖乙太網路市場都會光纖乙太網路市場

2002年都會乙太網路建設正式起飛設備方面主要競爭者:Cisco、Nortel、Riverstone、Atrica

2002都會光乙太網路設備市場地區分佈全球都會光乙太網路設備產值($M)

Grand Bahamas

NTT

Reliance Infocomm + Atrica

Al-pi + Atrica

Storm

Korea Telecom + Riverstone

Neos、Storm

Videotron

Utfors AB

AT&T、BellSouth、Qwest、WorldCom、Level 3 Cogent、Yipes、Epana、On Fiber、XO、…

Time Warner + Cisco

Hokkaido + AtricaDacom + Riverstone

SureWest + Riverstone

Chunghwa Telecom

Local governments & Municipalities + Nortel

Wienstrom + Cisco

Telefònica de España + Riverstone

FT + Atrica

Bahrain Telecom + Cisco

Cox + NortelSonera + Cisco

Lyse Tele + Cisco

Con Edison Communications + Cisco

Surf + Nortel、Atrica

City Telecom Group + Cisco

FastWeb SpA + CiscoKEPCO + Riverstone

- 2002年已開通

- 2002年後新建設案Source:IDC,2003/01

China Telecom、China Netcom、China Unicom

China Telecom + Cisco

Europe

28%

Asia

51%

ROW

3%

North

America

18%

Page 68: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

商機二商機二 ::區域及儲存網路市場區域及儲存網路市場

2002年Gig-E NIC出貨量大幅成長,顯示LAN市場的Gig-E需求開始成熟儲存網路近期蓬勃發展,系統廠商的技術發展動向值得關切

Gig-E 網路卡出貨量統計

0

500

1000

1500

2000

2500

3000

3500

4000

4Q01 1Q02 2Q02 3Q02

Source:Dataquest,2002/12

Sales (K pieces)

LOM

NIC

LOM

Intel

76%

Other

s

24%

Gig-E NIC

Others

44%Intel

56%

儲存網路市場預測

0

5

10

15

20

25

20012002200320042005

Source:IDC,2002/09Revenue (

$ B)

NAS

SAN

Page 69: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

商機三商機三 ::光纖到戶光纖到戶((FTTP)FTTP)市場市場

美、日等國的經驗證明,透過數位內容的充實與服務價格的降低,FTTH發展可期亞洲包括韓國、台灣與大陸都即將推出FTTH服務

日本光纖到戶用戶數

279.7

419.4

050

100150200250300350400450

Jan.2

002

Feb.2

002

Mar.20

02Apr.

2002

May.20

02Ju

n.200

2Ju

l.200

2Aug

.2002

Sep.20

02Oct.

2002

Nov.20

02Dec

.2002

Jan.2

003

Feb.2

003

Mar.20

03

用戶數

(K)

實際用戶數

樂觀預測

一般預測

•日本-推行FTTH服務最力的國家

•由政府政策主導,推動業者提供低價的FTTH服務

•以10Mbps為例,月費4,000日圓

•以10Mbps為例,月費6,000-8,000日圓

• 2001三月開始提供服務之後,連續六個月成長率超過130%

美國光纖到戶用戶數 800-1400

315

72.1

0

200

400

600

800

1000

2001 2002 2003 2004

用戶數(K)

•美國-最早推出FTTH服務的國家(1995)

•由電信業者根據市場需求推動

•早期由於成本過高,內容服務不足,推

行效果不彰

•2001寬頻通訊熱潮之後,搭配數位內容

服務的增加,開始有較大的成長

Source:矢野經濟研究所;Render;Vanderslice& Associates

Page 70: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Photonic Photonic Society of Chinese American Annual Meeting, Los Angels, CA, USA,Society of Chinese American Annual Meeting, Los Angels, CA, USA, Feb. 22, 2004Feb. 22, 2004

•• TaiwanTaiwan’’s s OptoelectronicOptoelectronic IndustryIndustry•• The Optical Communication Industry The Optical Communication Industry

•• Industry OverviewIndustry Overview•• Technology DevelopmentTechnology Development•• Infrastructure BuildingInfrastructure Building•• International & University CollaborationInternational & University Collaboration•• FutureFuture

Page 71: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

40 40 G G 高速元件高速元件•• CambridgeCambridge

•• SOA SOA 、、SLEDSLED及及 DFB LaserDFB Laser

•• UMBCUMBC 下世代下世代 PLC PLC 技術應用於技術應用於 ROADMROADM

•• PLC based optical PLC based optical transceiver transceiver

subsub--assemblyassembly•• TelcordiaTelcordia標準驗證技術引進標準驗證技術引進

•• 可疊式開關技術合作可疊式開關技術合作

((ethernetethernet stackable switch)stackable switch)

•• Advanced transponderAdvanced transponder

••在在 OFC 2003 OFC 2003 與國外大廠與國外大廠共同發表共同發表 1010GE TransponderGE Transponder

•• AgilentAgilent測試實驗室共同合作測試實驗室共同合作

•• Standard ActivitiesStandard Activities•• IEEE SA Cooperate membershipIEEE SA Cooperate membership

IEEE 802.3ah EFMIEEE 802.3ah EFMIEEE 802.3ae 10Gbps EthernetIEEE 802.3ae 10Gbps Ethernet

•• MultisourceMultisource Agreement (MSA) Agreement (MSA) •• Optical Internetworking ForumOptical Internetworking Forum

Principal MemberPrincipal Member

加強推動國際合作建立領先優勢加強推動國際合作建立領先優勢

Page 72: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

光通訊光通訊 FTTPFTTP產業的機會與挑戰產業的機會與挑戰

新興市場應用將帶動新一波產業成長都會乙太網路市場於2002年正式起飛,市場成長力道強勁,區域網路升級至Gigabit Ethernet 需求浮現儲存網路市場蓬勃發展,元件廠商需密切配合系統廠商技術規格發展

FTTH市場蓄勢待發,元件廠商需首重價格因素光通訊產業屬新興產業,國際化規格正熱絡制定

IP及規格可引導新技術開發帶動產業發展,大陸及台灣協手協訂規格、跳脫以往跟隨者角色

LCD-TV will accelerate digital media centers to home and create demand for FTTP大陸、台灣應加强分工合作以掌握國際未耒市塲

Page 73: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

Photonic Photonic Society of Chinese American Annual Meeting, Los Angels, CA, USA,Society of Chinese American Annual Meeting, Los Angels, CA, USA, Feb. 22, 2004Feb. 22, 2004

台灣光通訊產業現況與發展台灣光通訊產業現況與發展Optical Communication industry in TaiwanOptical Communication industry in Taiwan

-- Present and FuturePresent and Future

劉容生劉容生

工研院光電所工研院光電所及及

台灣光通訊產業聯盟台灣光通訊產業聯盟

Y.S. LiuY.S. LiuOptoelectronics Optoelectronics & Systems Labs. (OES)& Systems Labs. (OES)

Industrial Technology Research Institute (ITRI)Industrial Technology Research Institute (ITRI)&&

TOCIA TOCIA -- Taiwan Optical Communication Industry AllianceTaiwan Optical Communication Industry Alliance

Page 74: Novel Optoelectronics Devices for Broadband Photonics Network Applications ‰®¹ç”

0 50 100 150 2000.0

0.3

0.6

0.9

1.2

1.5

SH76 QD laserPulsed T=25oC

Vol

tage

(V)

Current (mA) P

ower

(arb

.uni

ts)

1.15 1.20 1.25 1.30 1.35

150 mA

130 mAx5

SH76 QD laserpulsed 25oC

EL

Inte

nsity

(arb

. uni

ts)

Wavelength (µm)

1.31 µ m

Potential ImpactPotential Impact: Low cost VCSELs and LDs for metro/local-access fiber networks.

InnovationInnovation: Allow GaAs technology for uncooled1.31 um components to replace the less developed InP technology. QD can be made on the cheaper and better GaAs substrates and is less temperature sensitive. It also allows integration with GaAs high speed electronics to lower the system costs.

ImportanceImportance: The characteristics of InAs/InGaAs QDepi-structure were shown to be as good as other QW LD structures. ITRI/IOFFE collaborative program will aim to be the first in commercializing QD devices at 1.3um in the world.

InAsInAs/InGaAs QD 1.3 um Lasers/InGaAs QD 1.3 um LasersLasing at 1.31 Lasing at 1.31 µµm @ 25m @ 25ooC C with low with low IIthth and high efficiency!and high efficiency!