novel devices circuits computingstrukov/ece594bbwinter2013/veiwgraphs/...• t lee et al, “organic...

23
Novel Devices and Circuits for Computing UCSB 594BB Winter 2013 Lecture 1: Phenomenology and Basics of Resistive Switching

Upload: others

Post on 16-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Novel Devices and Circuits for Computing

UCSB 594BBWinter 2013

Lecture 1:  Phenomenology and Basics of Resistive Switching

Page 2: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Course OutlineCourse Outline

Mostly focus on resistive switching memories (Devices, Circuits and y g ( ,Applications)

Course work ) d1) Papers to read 

2) Project

GradingGrading 1) Paper presentation  2) Class project

Web site: www.ece.ucsb.edu/~strukov/

Textbook (not required):   Nanoelectronics and Information Technology , 3rd editionISBN: 978 3 527 40927 3ISBN: 978‐3‐527‐40927‐3

Page 3: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Tentative Topics on Resistive Switching PhenomenaPhenomena

• Devices– Phenomenology, basics and performance aspects– Switching mechanism for ECM, VCM, TCM cells and some others

• Circuitsb d– Xbar and CMOL

• Applications– Memories (passive crossbar, complimentary resistive switch …)

L i (FPGA li ti ifi i li ti l i li ti i– Logic (FPGA, application specific, implication logic, applications in security and redesigning memory hierarchy …) 

– Neuromorphic (STDP, STP and LTD, Pavlov’s dog, classification and pattern recognition, Hopfield networks, …)  

Comparison to other competitive emerging devices and circuits whenever appropriate 

Page 4: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Very Small Subset of Review Literature on Resistive Switching Eff t d th i A li tiEffects and their Applications

– Nanoelectronics and Information Technology , 2nd editionh id “ i i i ”• Chapter 24 G Snider, “Cognitive computing”

• Chapter 23 DBS and KK Likharev, “Reconfigurable nano‐crossbar architectures”

• Chapter 30: R Waser, “Redox‐based resistive switching memories”– MRS Bulletin, February 2012, vol. 37 (2) 

• DBS and H Kohlstedt, “Resistive switching phenomena in thin films, “Materials, devices, and applications”

• W Lu et al, “Electrochemical metallization cells – blending nanoionics into l ”nanoelectronics”

• J Yang et al, “Metal oxide memories based on thermochemical and valence change mechanisms”

• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive devices for computing, 

Nature Nano, January 2013– DS Jeong et al, “Emerging memories: Resistive switching mechanisms 

and current status”a d cu e t status

Page 5: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Resistive Switching is Hot TopicResistive Switching is Hot Topic

Page 6: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Basics and phenomenology ofBasics and phenomenology of resistive switching

Page 7: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Basics and Phenomenology

S MetalS

A

V

Metal

Insulator

Metal

• Metal‐Insulator‐Metal Structure

A Metal

insulator = ion conducting or mixed ionic‐electronicoxides, chalcognedes, ionic solids 

possibly two different metals• Controlled breakdown• Based on internal redox reactions ‐ electrochemical and 

thermochemical effects• First observation in 1960th but forgotten because of Si‐

based memories (EEPROM and DRAM)• Many different names RRAM ReRAM memristor or• Many different names – RRAM, ReRAM, memristor or 

memristive devices, electroresistive memories, CBRAM• Pinched hysteresis I‐V loop

Current and resistance response to triangular or sinusoidal   voltage sweep for bipolar cell

Page 8: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Basics and Phenomenology

• Often require initial electroforming stepRESET tti th d i t hi h i ti• RESET = setting the device to high resistive state (also called erase or programming to the OFF state)SET is the oppositepp

• Above certain threshold voltage Vset and Vreset the cell changes resistance rapidly

• Dotted line = current compliance• Intermediate states (multilevel switching) by 

different current compliance• The state can be read with relatively small 

VreadVread• Current excitation with recording voltage is 

also plausible• Characteristics of I‐V strongly depends onCharacteristics of I V strongly depends on 

the material system – e.g. unipolar devices  Current and resistance response to triangular or sinusoidal   voltage sweep for bipolar cell

Page 9: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Basics and Phenomenology• For bipolar switching in different polarities, 

for unipolar in the same quadrant• Typically reset at higher voltage but lower 

current• Bipolar switching due to assymetry in MIM 

structure (i.e. M’ and M’’) or dedicated voltage polarity during forming

• Interplay between electrochemical and thermochemical redox processes determinesthermochemical redox processes determines type of switching

• Both types have been shown in the same device 

• Main application is memoryMain application is memory• Crude requirements (to be discussed more in 

details):• <30 ns write (to beat DRAM)• Iread > 100 nAIread > 100 nA• Roff/Ron > 10 • High endurance (10^3 – 10^7 for 

flash)• High retention > 10 years (at

Bipolar and unipolarswitching

High retention > 10 years (at potnetially high temperatures and certain small DC bias i.e. Vread)

Page 10: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Switching Kinetics Requirements

• Vwrite should force changes in time Twriteg• Vread should not disturb the state, i.e. ensure Tretention

/ /• Vwrite/Vread ~ 10   Tretention /Twrite > 10^15 !    (with say Vwrite – 3 V Vread = 0 3 V Tretention(with, say, Vwrite – 3 V, Vread = 0.3 V, Tretention= 10 years, Twrite = 30 ns)How is it achieved?

• May not be true for some applications (i.e. with destructive read operation) 

Page 11: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Forming Process and Geometry AspectsAspects

• Very often need electroforming step• Electroforming produce filament • Single crystal require 10 – 100 V and long time (hours to break), thin films of the orderSingle crystal require 10  100 V and long time (hours to break), thin films  of the order 

of few volts and seconds• Forming voltage is proportional to film thickness of I layer (field dependence)  which is 

not the same for subsequent switching• Subsequent switching takes place in the localized are of the filament (either at interfaceSubsequent switching takes place in the localized are of the filament (either at interface 

of in the bulk) and hence switching parameters (switching voltage) is typically independent of film thickness

• Electrical breakdown  local Joule heating in localized channel Morphological and redox changesg

• Current compliance to control the size of the channel

metallicinsulating

E

gap 

forming

E

onintermediateoffvirgin

gap

Page 12: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Forming Process and Geometry Aspects

• Proofs for filamentary conduction?

Aspects

1)  Cut electrodes after forming (only one specific place is changed)

2)  Current in ON state independent of electrode area (but electrodeof electrode area (but electrode resistance should be always considered)

3) Pressure‐Modulated Conducting3)  Pressure Modulated Conducting Map with nonconductive AFM tip

• There are some devices with uniform conductance (likely to consider later)

• In reality could be several filamentsfilaments 

Experiment scheme and resistance map

Page 13: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Generic Aspect of Resistive Switching• M’ and M’’ carry electronic current only• I layer is denoted MX may carry 

electronic and ionic currents– Anions X(‐)– Anions X(‐)– Cations M(+) or M’(+)

• Ionic current in MX leads to electrochemical reaction (oxidation at the anode and reduction a the cathode)anode and reduction a the cathode)

• Contribution of anions and cationscurrents and specific reaction is determined by ReRAM

• One of the interfaces could be ionOne of the interfaces could be ion blocking leading to accumulation of ions

• Ad‐atom diffusion

• Main driving forces:• Main driving forces:– Gradient in electochemical potential – Gradient in temperature– Could be also gradient in stress 

All conceivable processes related to electroforming and switching in MIM under load

• State of matter is changed by redoxreactions reversibly  SET and RESET switching

Page 14: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Redox ProcessRedox Process

• Redox = Coupled reduction (gain of electron)Redox = Coupled reduction (gain of electron) and oxidation (loss of electron) reaction– H + F → 2 HF (hydrogen is oxidezed and flourine– H2 + F2 → 2 HF  (hydrogen is oxidezed and flourineis reduced)

– Trapping/detrapping is also redoxTrapping/detrapping is also redox

• Redox processes are typically accompanied by transport of atoms and ionstransport of atoms and ions 

Page 15: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Resistive Switching By Driving Forces and Types of Cells Concentrationand Types of Cells

Field dominating thermal dominatingField + thermal

Concentrationgradient

Vn

U A

-10

-5

0

5

10

Cur

rent

(mA

)

-4

-2

0

2

4

Cur

rent

(mA

)

-4

-2

0

2

4

Cur

rent

(mA

)

x x+a

Field gradient

El h i l t lli ti (ECM) ll

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Voltage (V)

-1.0 -0.5 0.0 0.5 1.0Voltage (V)

-1.0 -0.5 0.0 0.5 1.0Voltage (V)

Temperature

Eaq

• Elecrochemical metallization (ECM) cells – Oxidation, drift and reduction of electrochemically active 

electrode (such as Ag)• Valence change memories  (VCM) cell

Temperature gradientT

– Migration of anions (oxygen ions) leads to change in stochiometry (and hence redox of cations) with changes in resistance

• Thermochemical memory (TCM)  cell

TakB

y ( )– Thermophoresis induced change in stochiometry (valence)

Page 16: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Nonlinear switching kinetics 

effective barrier modulation due to:

heating

electric field

1

2 ion hopping

e‐

ion hoping

z+z+e‐

electrodeelectrode 

UA

~Eaq/2

~ kB∆T

initial profile

2

1

eoxidation reduction‐+ v

Eaq/2

energy a∆UA

h t iti d ti3

3

2

hop distance

position

phase transition or redox reaction3

Page 17: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Speed vs. retention

linear ionic transport linear ionic transport pp

TI

I

write

store ~)()0(

VV

DV

Vvv

nonnonlinearlinear effect due to temperature and/or electric field

)(~ writeB

A

storeB

A

store TkU

TkU

eeVV

e.g. temperature only:

Twrite V

Page 18: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Typical Switching Kinetics in TiO2

RESET: R =Rd

setvoltage initialize to R0FF

10

100

RESET: R0=RON

SET: R0=ROFF

reset

read

time initialize to R0N

1

10

R/R

0

‐ Small pulse amp = finer state change butmay require exp long time

‐ Large pulse amp faster but at cruder step

1E 8

0.11E-4

-0.9VmV

(A) -0.5V to -0.8V

1E-81E-6

1E-40.01

1

-1.5-1.0-0.5

0.00.5

1.01 5 Tim

e (s)

Pulse voltage (1E-5

-1.0V

-1.1V

-1.2V

-1.3V

Cur

rent

@ -2

00

1.5 Timge (V)0 1x10-5 2x10-5

Time (s)

Page 19: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Empirical Set and Reset Characteristics• SET: Ron = Von/Icc

as a reminder compliance due 1) series resistance1)   series resistance,  2)   transistor in series, or 3)   equipment (param.analaz.)

• Why voltageWhy   voltage redistribution + strong nonlinearity 

• Ireset = Vreset/Ron = A*Icc (but typically for linear ON state devices)linear ON state devices)

• Dependence is somehwat universal d i d d fand independent of 

physical mechanism  

Page 20: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Technology and Device Aspects

Most important issues:Most important issues:

• Reliability (device to device and cycle to cycle variance)variance)

• Endurance (limited number of times the cell b i h d)can be switched)

• Retention 

Page 21: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Reliability • Problems due to

– Random walk of ions

Weilbull distribution of Ron 

– Irregular atomic structure

and Roff values in 1 kbit 1T1RRu/Ta2O5/TiO2/Ru VCM cells

b) (c)50

30

40

Devic

es

(d

0

10

20

# of

D

2.92.6 3.2 3.5 3.8 4.1 4.40

Vth1 (V)…threshold variations in Ag/p‐Si/Pt ECMYield and …

Page 22: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Endurance

• How many write cycles can be performed before it fallsbe performed before it falls out of predefined acceptance window

1013 • Limited endurance due to 

109

1011

10

SAIT

ycle

s)

HP Labs

– Morphological changes• Gradual growth or dissolution of phases

105

107

10

Fujitsu Labs

Panasonic Corp.

drua

nce

(cy

– Oxydation and/or drift of electrode material 

– Leakage of oxygen 

2006 2007 2008 2009 2010 2011103

10

En

Year

several groups

g yg

Page 23: Novel Devices Circuits Computingstrukov/ece594BBWinter2013/veiwgraphs/...• T Lee et al, “Organic resistive nonvolatile memory materials” – J Yang, DBS and D Stewart, Memristive

Retention

• One or all states are thermodynamicallythermodynamically metastable

High activation energy for hopping but with  possible tradeoff to endurance

Retention in Ag/GeSx/W ECM cell

tradeoff to endurance• Accelerated life time test by heating and 

l hextrapolation with Arrhenius plot

Ir/TaOx/TaN VCM cell