nonlinear control of mechatronicsystemsclemson u n i v e r s i t y darren dawson mcqueen quattlebaum...

31
Nonlinear Nonlinear Control of Control of Mechatronic Mechatronic Systems Systems CLEMSON CLEMSON U N I V E R S I T Y Darren Dawson Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Upload: duane-parrish

Post on 23-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Nonlinear Nonlinear Control ofControl of

MechatronicMechatronicSystemsSystems

CLEMSONCLEMSONU N I V E R S I T Y

Darren DawsonDarren DawsonMcQueen Quattlebaum Professor

Electrical and Computer Engineering

Page 2: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

• Research Overview• Applications and Areas of Interest • Key Elements of the Research Program • A Motivating Example• The Flexible Rotor Problem• Introduction and Problem Formulation• Motivation for Control Design• Control Structure• Experimental Results• Administrative Plans• Academic Qualifications• Departmental Goals • Attaining the Goals

Overview of PresentationOverview of Presentation

PART 1

PART 2

PART 3

Page 3: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Applications and Areas of InterestApplications and Areas of Interest

Mobile Platforms

• UUV, UAV, and UGV• Satellites & Aircraft

Automotive Systems

• Steer-By-Wire• Thermal Management• Hydraulic Actuators• Spark Ignition• CVT

Mechanical Systems

• Textile and Paper Handling• Overhead Cranes• Flexible Beams and Cables• MEMS Gyros

Robotics

• Position/Force Control • Redundant and Dual Robots• Path Planning• Fault Detection• Teleoperation and Haptics

Electrical/Computer Systems

• Electric Motors• Magnetic Bearings• Visual Servoing• Structure from Motion

Nonlinear Control Nonlinear Control and Estimationand Estimation

Page 4: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

The Mathematical ProblemThe Mathematical Problem

Typical Electromechanical System Model Classical Control Solution

Obstacles to Increased Performance

– System Model often contains Hard Nonlinearities

– Parameters in the Model are usually Unknown

– Actuator Dynamics cannot be Neglected

– System States are Difficult or Costly to Measure

x f x y·= ( , )y g x y u

·= ( , , )u y x

Electrical Dynamics Mechanical Dynamics

x f x y·= ( , )y g x y u

·= ( , , )u y x

LinearController

fLinear

f

x

gLinear

g

y

u y xy x y u· =?( , , ) x x y

· =?( , )

x f x y·= ( , )?u y x

x f x y·= ( , )y g x y u

·= ( , , )u ? ?

Page 5: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Nonlinear Lyapunov-Based Techniques Provide

– Controllers Designed for the Full-Order Nonlinear Models

– Adaptive Update Laws for On-line Estimation of Unknown Parameters

– Observers or Filters for State Measurement Replacement

– Analysis that Predicts System Performance by Providing Envelopes for the Transient Response

The Mathematical Solution or ApproachThe Mathematical Solution or Approach

Mechatronics

Based Solution

AdvancedNonlinear Control

Design Techniques

RealtimeHardw are/Software+

NewControl

Solutions

u y x

NonlinearParameterEstimator

NonlinearController

y x y u· =?( , , ) x x y

· =?( , )

x f x y·= ( , )y g x y u

·= ( , , )u ? x

NonlinearObserver

NonlinearController

t

Transient Performance Envelopes

Page 6: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Control Design/Implementation CycleControl Design/Implementation Cycle

Testbed ConstructionSensors: Encoders, Force Sensor, Camera

Actuators: Motors, Electromagnets, Speakers

Software Development

QMotor 3.0 (QNX, C++)RTLT 1.0 (RT-Linux, Simulink)

Mathematical Model

PDE-ODE model (flexible systems)ODE model (rigid systems)

Stability Analysis

Lyapunov TechniquesSimulation Studies

Model-Based, Adaptive, Robust

Hamilton’s Hamilton’s Principle,Principle,Newton’s LawNewton’s Law

Control Control ObjectiveObjective

Problem FormulationTracking, Setpoint

Parametric UncertaintyBounded DisturbanceUnmeasurable Signals

ControlControlDesignDesign

Data Acquisition

MultiQ, ServoToGo I/O Board(encoders, D/A, A/D, digital I/O)

Real-Time OS,Real-Time OS,Driver Interface,Driver Interface,

Data HandlingData Handling

Signal Conditioning

Linear Power Amplifiers OPAMPS (gains, offsets)

Interface andInterface andSafety IssuesSafety Issues

ElectronicElectronicCompatibilityCompatibility

CodingCodingthe Controlthe ControlAlgorithmAlgorithm

Master ThesisStudents

PhDStudents

Page 7: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Motivating Example (Model Known)Motivating Example (Model Known)

• Dynamics:

Mass

bx3

asin(t) bx3

u(t)Nonlinear Damper

Disturbance Velocity

Control Input

a,b are constants

_x = ¡ bx3 ¡ asin(t)+u

• Tracking Control Objective: e= xd¡ x

• Open Loop Error System: _e= _xd ¡ _x = _xd +bx3 +asin(t) ¡ u

• Control Design:

• Closed Loop Error System: _e= ¡ K e

• Solution: e(t) = e(0)exp(¡ K t)

Feedforward Feedback

Assume a,b are known

Drive e(t) to zero

Exponential Stability

u = _xd + bx3 +asin(t) +K e

Page 8: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Motivating Example (Unknown Model)Motivating Example (Unknown Model)

• Open Loop Error System: _e= _xd ¡ _x = _xd +bx3 +asin(t) ¡ u

• Control Design:

a,b are unknownconstants

u = _xd +bb(t) x3 +ba(t) sin(t) + K x

Same controller as before, but and are functions of timeu = _x d + bb(t) x3 + ba (t) sin ( t) + K xu = _x d + bb(t) x3 + ba (t) sin ( t) + K x

How do we adjust and ?u = _x d + bb(t) x3 + ba (t) sin ( t) + K xu = _x d + bb(t) x3 + ba (t) sin ( t) + K x

Use the Lyapunov Stability Analysis to develop an adaptive control design tool for compensation of parametric uncertainty

• Closed Loop Error System: _e= ¡ K e+ ea(t) sin(t) +eb(t) x3ea(t) = a¡ ba(t)eb(t) = b¡ bb(t)

At this point, we have not fully developed the controller since and are yet to be determined.

u = _x d + bb(t) x3 + ba (t) sin ( t) + K xu = _x d + bb(t) x3 + ba (t) sin ( t) + K x

parameter error

u = _xd + bx3 +asin(t) +K e

Page 9: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

( is UC)

Motivating Example (Unknown Model)Motivating Example (Unknown Model)

Fundamental Theorem

V (t) ¸ 0_V (t) · 0

ÄV (t)V (t) ¸ 0

V (t) ¸ 0

effects of conditions i) and ii)

i) If

ii) IfV (t) ¸ 0is bounded

iii) If is bounded

limt! 1

V (t) = 0_V (t) · 0limt! 1

V (t) = 0

satisfies condition i)

V (t) ¸ 0

finally becomes a constantV (t) ¸ 0

• Non-Negative Function: V =12

e2 +12

ea2 +12

eb2

• Time Derivative of V(t): _V = _ee¡ ea:ba ¡ eb

:bb

_e= ¡ K e+ ea(t) sin(t) +eb(t) x3

is bounded

examine condition ii)

design andu = _x d + bb(t) x3 + ba (t) sin ( t) + K xu = _x d + bb(t) x3 + ba (t) sin ( t) + K x

substitute the dynamics for

limt! 1

V (t) = constant

effects of condition iii)

_V (t) · 0

l imt! 1

e (t) = 0

Page 10: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Motivating Example (Unknown Model)Motivating Example (Unknown Model)

• Substitute Error System: _V = ¡ K e2 + ea³sin(t) e¡

:ba

´+eb

µx3e¡

:bb¶

How do we select and such that ?u = _x d + bb(t) x3 + ba (t) sin ( t) + K xu = _x d + bb(t) x3 + ba (t) sin ( t) + K x

• Update Law Design::ba= sin(t)e

:bb= x3e

• Substitute in Update Laws: _V = ¡ K e2 · 0 V (t) ¸ 0 _V (t ) · 0and

Fundamental Theorem is boundedV (t) ¸ 0 all signals are bounded

limt! 1

e(t) = 0limt! 1

V (t) = 0_V (t) · 0limt! 1

V (t) = 0Fundamental Theorem

u = _xd +µZ t

0x3 (¾)e(¾)d¾

¶x3 +

µZ t

0sin(¾)e(¾)d¾

¶sin(t) +K e

Feedforward Feedback

control structurederived fromstability analysis

control objective achieved

_V (t ) · 0

ÄV (t) is bounded

Page 11: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Boundary Control of a Boundary Control of a Flexible Rotor SystemFlexible Rotor System

Page 12: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Overview of Part II – Flexible Rotor Control ProblemOverview of Part II – Flexible Rotor Control Problem

• Examples of Flexible Systems

• Background on Flexible Systems Research

• Flexible Rotor Problem Formulation

• Comparison to Previous Work

• Flexible Rotor System Model

• Control Objectives

• Heuristic Design of Control

• Model-Based Boundary Controller

• Adaptive Control Redesign

• Experimental Results

• Concluding Remarks

Page 13: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Space-Based Systems that VibrateSpace-Based Systems that Vibrate

Long-Reach Robot Manipulators often Exhibit Vibration

Aircraft Wings may Exhibit Vibration

Other Light-Weight Components on Space Probes may Vibrate

Cassini :

Mission to Saturn

Page 14: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

What is the Problem ?What is the Problem ?

• Mechanical systems containing flexible parts are subject to undesirable vibrations under motion or disturbances.

• Mathematically, these hybrid systems are composed of rigid and flexible subsystems that are described by– a ordinary differential equation (ODE) subsystem,

– a partial differential equation (PDE) subsystem, and

– a set of boundary conditions (static or dynamic)

• Control design for hybrid systems is complicated due to – the infinite dimensional nature of the PDE subsystem

– the nonlinearities associated with hybrid systems, and

– the coupling between the PDE and ODE subsystems

Problem

Model

Challenge

Page 15: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Hybrid System(PDE+ODE)

Based on aLinear/Discrete Model

DistributedControl

Linear ControlBoundaryControl

• Requires large number of sensors and actuators or smart structures

• Difficult and costly to implement

• Uses infinite dimensional system model (no spillover)

• Simple control structure

• Requires very few actuators/sensors

• Can excite unmodeled high-order vibration modes (spillover)

• Yields a controller that might require a high order observer (robustness problems)

AdvantagesDisadvantages

How are Flexible Systems Controlled ?How are Flexible Systems Controlled ?

Disadvantages

Page 16: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

What is Boundary Control ?What is Boundary Control ?

• Heuristically, boundary control involves the design/use of virtual dampers to reduce the vibration associated with flexible components

• Virtual damping can be applied to the end of the rotor via a magnetic bearing

• The nonlinearities and the coupling between the rigid/flexible subsystems mandate the design of a nonlinear damper-like scheme

Flexible Rotor

Virtual Dampers

Applied Torque

Virtual Dampers suck the energy

out of the system

Rotor at rest

• A Lyapunov-type analysis is used to derive the structure of the nonlinear damper-like control scheme

Page 17: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Rotor Displacement

Rotor Displacement

The Flexible Rotor ProblemThe Flexible Rotor Problem

Rotating Disk

Actuator Mass

f (t)1

f (t)2

(t)

Flexible Rotor

BoundaryControl Torque

Input

Boundary Control Force Inputs

Control Objective : Drive u(x,t) and v(x,t) to zero and force to track d(t)

f (t)1

x

u(x,t)

u(x,t) (t)

Cutaway

View

x u

v

(t)

x

v(x,t) f (t)2

v(x,t)

Page 18: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Comparison To Previous WorkComparison To Previous Work

• Morgul (1994), Laousy (1996) - [1-D Problem]

– Exponentially stabilized the system with a free-end boundary control force

– Desired angular velocity setpoint had to be sufficiently small

– Neglected the disk and free-end dynamics (Morgul)

– Neglected the free-end dynamics (Laousy)

• Proposed Control - [2-D Problem]

– Exponentially stabilizes the system with a free-end boundary control force

– No magnitude restrictions on the desired angular velocity– Includes both the disk and free-end dynamics (Includes Nonlinearities & Coupling)

– Controller provides for angular velocity tracking

– Redesigned adaptive controller compensates for parametric uncertainty

Displacementconfined to 1-D

Rotation

1-D Problem1-D Problem

Neglects Nonlinearities& ODE/PDE Coupling

Page 19: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

2-D Flexible Rotor Model2-D Flexible Rotor Model

• Field Equation (PDE Subsystem - Euler Bernoulli Model)

• Boundary Conditions q (0; t) = qx (0; t ) = qx x ( L ; t) = 0

½³

qtt (x; t ) + 2S qt (x ; t) _µ ( t ) + S q (x ; t) ĵ (t ) ¡ q ( x; t) _µ2

( t)´

+ E I qx x xx ( x ; t) = 0

½³

qtt (x; t ) + 2S qt (x ; t) _µ ( t ) + S q (x ; t) ĵ (t ) ¡ q ( x; t) _µ2

( t)´

+ E I qx x xx ( x ; t) = 0

q (x; t) =£

u (x ; t ) v ( x; t)¤T

where

F (t) =£

f 1 ( t) f 2 ( t)¤T

where

J ĵ (t ) = ¿ ( t )• Disk Dynamics (ODE Subsystem: J - Disk Inertia)

S =·

0 ¡ 11 0

¸;

EI -bending stiffness & mass per unit length

• Free-End Dynamics (ODE Subsystem: m - actuator mass )

m·qt t (L ; t ) + 2S qt ( L ; t) _µ ( t) + S q ( L ; t) ĵ ( t) ¡ q (L ; t) _µ

2(t)

¸¡ E I qx x x (L ; t) = F (t )

Beam is clamped at the disk No applied Torque at the Free End

Composite Rotor Displacement

Page 20: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Control ObjectivesControl Objectives

• Angular velocity tracking error regulation

• Auxiliary tracking signal regulation

where is the desired angular velocity trajectorye ( t) = _µ ( t) ¡ ! d

e ( t) = _µ ( t) ¡ ! d 0

• Rotor displacement regulation

q (x; t) =£

u (x ; t ) v ( x; t)¤T 0

´ ( t) = qt ( L ; t) + _µ ( t) S q ( L ; t) ¡ qx xx ( L ; t ) 0

ApplicationBased

Laws ofNature

AnalysisGenerated

Free-EndVelocity

AngularVelocity

Free-EndDisplacement

Free-EndShear

ReasonsReasons

e ( t) = _µ ( t) ¡ ! d

e ( t) = _µ ( t) ¡ ! d

Page 21: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Heuristic Control Design - Flexible Rotor SubsystemsHeuristic Control Design - Flexible Rotor Subsystems

Flexible Rotor Dynamics

Rotating Disk Dynamics

Free-EndDynamics

Input Force

Clamped Boundary

FreeBoundary

Input Torque

RotorRotorDisplacementDisplacement

Angular Velocity

Free EndMotion

Page 22: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Heuristic Control Design - Dynamic CouplingHeuristic Control Design - Dynamic Coupling

Flexible Rotor Dynamics

Rotating Disk Dynamics

Free-EndDynamics

Input Force

Clamped Boundary

FreeBoundary

Input Torque

PDE/ODECoupling

PDE/ODECoupling

ODE/ODECoupling

RotorRotorDisplacementDisplacement

Angular Velocity

Free EndMotion

Page 23: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Heuristic Control Design - Control ObjectivesHeuristic Control Design - Control Objectives

Flexible Rotor Dynamics

Rotating Disk Dynamics

Free-EndDynamics

AuxiliaryTracking Signal

Input Force

Clamped Boundary

FreeBoundary

RotorRotorDisplacementDisplacement

Angular VelocityTracking Error

Input Torque

q(x,t) 0

td(t)(L,t) 0

PDE/ODECoupling

PDE/ODECoupling

ODE/ODECoupling

ControlControlObjectivesObjectives

{

Design Boundary Control

{

Design Boundary Control

Page 24: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Model-Based Boundary Control LawModel-Based Boundary Control Law

• Based on the stability analysis, the boundary control force applied to the free end of the rotor is given by

• The boundary control torque applied to the disk is given by

F (t) = ¡h

k s ´ ( t) + E I qx xx (L ; t ) + m³

_µ2

( t) q (L ; t) ¡ _µ (t ) S qt (L ; t) ¡ qx x x t (L ; t)´ i

F (t) = ¡h

k s ´ ( t) + E I qx xx (L ; t ) + m³

_µ2

( t) q (L ; t) ¡ _µ (t ) S qt (L ; t) ¡ qx x x t (L ; t)´ i

F (t) = ¡h

k s ´ ( t) + E I qx xx (L ; t ) + m³

_µ2

( t) q (L ; t) ¡ _µ (t ) S qt (L ; t) ¡ qx x x t (L ; t)´ i

F (t) = ¡h

k s ´ ( t) + E I qx xx (L ; t ) + m³

_µ2

( t) q (L ; t) ¡ _µ (t ) S qt (L ; t) ¡ qx x x t (L ; t)´ i

F (t) = ¡h

k s ´ ( t) + E I qx xx (L ; t ) + m³

_µ2

( t) q (L ; t) ¡ _µ (t ) S qt (L ; t) ¡ qx x x t (L ; t)´ i

where is the free-end displacement, is the

free-end velocity, and is the free-end shear

´ ( t) = qt ( L ; t) + _µ ( t ) S q ( L ; t) ¡ qx xx ( L ; t ) ´ ( t) = qt ( L ; t) + _µ ( t) S q ( L ; t) ¡ qx xx ( L ; t )´ ( t) = qt ( L ; t) + _µ ( t ) S q ( L ; t) ¡ qx xx ( L ; t )

¿ (t) = ¡ kr e(t) +J _! d (t)

Only Boundary Terms

• The boundary control force and torque are designed to yield

m_́(t) = ¡ ks´ (t) and J _e(t) = ¡ kre(t) Exponentially Stable Closed-Loop Error Systems

Auxiliary Tracking Signal Angular Velocity

Standard Tracking Control

Page 25: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

• If the control gain is selected to satisfy the following sufficient condition,

Stability ResultStability Result

ks >E I2

then the angular velocity tracking error and the rotor displacement are globally exponentially regulated as given by

ks >E I2

RotorEnergy

AngularVelocity TrackingError

E I2L3

kq(x;t)k2 · kE R (t)k; je(t)j · · 0 exp(¡ · 1t)

RotorDisplacement

By Means ofan IntegralInequality

Directly from previous inequalities ( )

_V · ¡ · V

l i mt! 1

kq (x ; t )k ; j e ( t )j = 0 8x 2 [0; L ]

Page 26: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Adaptive ControlAdaptive ControlRobustness - Parametric UncertaintyRobustness - Parametric Uncertainty

• The boundary control force and torque are redesigned as a certainty equivalence adaptive controller as follows

• The adaptive update laws for the bending stiffness, the free-end mass and the inertia of the disk are shown below

where m ( t) = _µ2

( t) q ( L ; t) ¡ _µ (t ) S qt (L ; t) ¡ qxx xt (L ; t) :

, and are positive adaptive update gains

F ( t) = ¡hks ´ ( t) + dE I ( t) qxx x (L ; t) + cm ( t) m ( t)

i

:

:bJ (t) = ¡ ° j _! d (t) e(t)

¿ (t) = ¡ kre(t)+ bJ (t) _! d (t)

:bm (t) = °m T

m (t) ´ (t)

°e °m °j

:dEI (t) = ° eq

Txxx (L;t) ´ (t)

AnalysisGenerated

Page 27: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Block Diagram Overview of the Adaptive Boundary ControllerBlock Diagram Overview of the Adaptive Boundary Controller

Flexible RotorSystem

Disk Torque Control

Free-End Force Control

Parameter UpdateLaw Disk Position,

Free-End Shear,Free-End Displacement

Sensor Measurements:

Rotor VibrationRegulation

Disk VelocityTracking

Page 28: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

TechronLinear Power

Amplifiers

Multi Q I/O Board

Camera Decoder Board

Pentium166 MHzHost PC System

Hall EffectCurrentSensors

Shear Sensor

Amplifier

BDC Motor

InstrumentationAmplifiers

boundary controltorque applied via belt-pulley transmission

via slip ringassembly

Encoder

A/D

D/AMagnetic Bearing AppliesBoundary ControlForce Linear

CCD Cameras

Rotating Disk

Two-AxisShear Sensor

Flexible Rotor

LED

Actuator Mass

Experimental SetupExperimental Setup

x uv

Page 29: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Free-End Snapshot of RotorFree-End Snapshot of Rotor

Flexible Rotor

Magnetic Bearing

2-Axis Shear Sensor

Actuator Mass

Page 30: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Free-End Displacement RegulationFree-End Displacement Regulation(Velocity Setpoint Regulation Objective)(Velocity Setpoint Regulation Objective)

0 10 255 2015Time [s]

0.02

0

-0.02

Open Loop

Damper

Peak Model-Based Controller Displacement = 4.7% (approx.) x Peak Open Loop Displacement = 26% (approx.) x Peak Damper Displacement

Model Based

One direction

&other

direction issimilar

[m]

d = 380 [rpm]

Page 31: Nonlinear Control of MechatronicSystemsCLEMSON U N I V E R S I T Y Darren Dawson McQueen Quattlebaum Professor Electrical and Computer Engineering

Technical ConclusionsTechnical Conclusions

• Developed a model-based boundary control strategy for the hybrid model of a 2-D flexible rotor– Exponentially regulated the rotor displacement and the angular velocity

tracking error

– Uses measurements of the link’s free-end displacement, free-end shear, angular velocity, and the time derivatives of some of these quantities

• Developed an adaptive boundary controller for the flexible rotor– Asymptotically regulated the rotor displacement and the angular velocity

tracking error

– Compensated for parametric uncertainties in the system

• Both controllers were implemented on a flexible rotor test-stand

• The controllers account for the disk inertia and free-end dynamics

• No restriction on the magnitude of the desired angular velocity; moreover, a solution for the angular velocity tracking problem was proposed