non-equilibrium quantum dynamics of many-body systems of ultracold...

51
Non-equilibrium quantum dynamics of many-body systems of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI Collaboration with E. Altman, A. Burkov, V. Gritsev, B. Halperin, M. Lukin, A. Polkovnikov, experimental groups of I. Bloch (Mainz) and J. Schmiedmayer (Heidelberg/Vienna)

Upload: others

Post on 18-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Non-equilibrium quantum

dynamics of many-body systems

of ultracold atoms

Eugene Demler Harvard University

Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI

Collaboration with E. Altman, A. Burkov, V. Gritsev, B. Halperin, M. Lukin, A. Polkovnikov,

experimental groups of I. Bloch (Mainz) and

J. Schmiedmayer (Heidelberg/Vienna)

Page 2: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Landau-Zener tunneling

q(t)

E1

E2ω12 – Rabi frequency at crossing point

τd – crossing time

Hysteresis loops of Fe8 molecular clusters

Wernsdorfer et al., cond-mat/9912123

Landau, Physics of the Soviet Union 3:46 (1932)

Zener, Poc. Royal Soc. A 137:692 (1932)

Probability of nonadiabatic transition

Page 3: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Single two-level atom and a single mode field

Jaynes and Cummings,

Proc. IEEE 51:89 (1963)

Observation of collapse and revival in a one atom maser

Rempe, Walther, Klein,

PRL 58:353 (87)

See also solid state realizations

by R. Shoelkopf, S. Girvin

Page 4: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Superconductor to Insulator

transition in thin films

Marcovic et al., PRL 81:5217 (1998)

Bi films

Superconducting films

of different thickness.Transition can also be tunedwith a magnetic field

d

Page 5: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Yazdani and Kapitulnik

Phys.Rev.Lett. 74:3037 (1995)

Scaling near the superconductor to insulator transition

Mason and Kapitulnik

Phys. Rev. Lett. 82:5341 (1999)

Yes at “higher” temperatures No at lower” temperatures

Page 6: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

New many-body state

Kapitulnik, Mason, Kivelson, Chakravarty,

PRB 63:125322 (2001)

Refael, Demler, Oreg, Fisher

PRB 75:14522 (2007)

Extended crossover

Mechanism of scaling breakdown

Page 7: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Dynamics of many-body quantum systems

Heavy Ion collisions at RHIC

Signatures of quark-gluon plasma?

Page 8: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Dynamics of many-body quantum systems

Big Bang and Inflation.Origin and manifestations

of cosmological constant

Cosmic microwave background radiation.

Manifestation of

quantum fluctuationsduring inflation

Page 9: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Goal:

Create many-body systems with interesting collective properties

Keep them simple enough to be able to control and understand them

Page 10: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Non-equilibrium dynamics of

many-body systems of ultracold

atoms

Emphasis on enhanced role of fluctuations in low dimensional systems

Dynamical instability of strongly interacting

bosons in optical lattices

Dynamics of coherently split condensates

Many-body decoherence and Ramsey interferometry

Page 11: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Dynamical Instability of strongly interacting bosons in optical lattices

References:

J. Superconductivity 17:577 (2004)Phys. Rev. Lett. 95:20402 (2005)Phys. Rev. A 71:63613 (2005)

Collaboration with E. Altman, B. Halperin, M. Lukin, A. Polkovnikov

Page 12: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Atoms in optical lattices

Theory: Zoller et al. PRL (1998)

Experiment: Kasevich et al., Science (2001);

Greiner et al., Nature (2001);

Phillips et al., J. Physics B (2002)

Esslinger et al., PRL (2004);

Ketterle et al., PRL (2006)

Page 13: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Equilibrium superfluid to insulator transition

1−n

t/U

SuperfluidMott insulator

Theory: Fisher et al. PRB (89), Jaksch et al. PRL (98)Experiment: Greiner et al. Nature (01)

U

µ

Page 14: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Moving condensate in an optical lattice. Dynamical instability

v

Theory: Niu et al. PRA (01), Smerzi et al. PRL (02)Experiment: Fallani et al. PRL (04)

Related experiments by

Eiermann et al, PRL (03)

Page 15: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Question: Question: How to connectHow to connect

the the dynamical instabilitydynamical instability (irreversible, classical)(irreversible, classical)

to the to the superfluid to Mott transitionsuperfluid to Mott transition (equilibrium, quantum)(equilibrium, quantum)

U/t

p

SF MI

???Possible experimental

sequence:

p

Unstable

???

U/J

π/π/π/π/2222

Stable

SF MI

Page 16: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Linear stability analysis: States with p>p/2 are unstable

Classical limit of the Hubbard model. Discreet Gross-Pitaevskii equation

Current carrying states

r

Dynamical instability

Amplification ofdensity fluctuations

unstableunstable

Page 17: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

GP regime . Maximum of the current for .

When we include quantum fluctuations, the amplitude of the order parameter is suppressed

Dynamical instability for integer filling

decreases with increasing phase gradient

Order parameter for a current carrying state

Current

Page 18: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

SF MI

p

U/J

π/π/π/π/2222

Dynamical instability for integer filling

0.0 0.1 0.2 0.3 0.4 0.5

p*

I(p)

ρs(p)

sin(p)

Condensate momentum p/π

Dynamical instability occurs for

Vicinity of the SF-I quantum phase transition. Classical description applies for

Page 19: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Dynamical instability. Gutzwiller approximation

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0

d=3

d=2

d=1

unstable

stable

U/Uc

p/π

Wavefunction

Time evolution

Phase diagram. Integer filling

We look for stability against small fluctuations

Altman et al., PRL 95:20402 (2005)

Page 20: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

The first instability

develops near the edges,

where N=1

0 100 200 300 400 500

-0.2

-0.1

0.0

0.1

0.2

0.00 0.17 0.34 0.52 0.69 0.86

Ce

nte

r o

f M

ass M

om

en

tum

Time

N=1.5

N=3

U=0.01 t

J=1/4

Gutzwiller ansatz simulations (2D)

Optical lattice and parabolic trap.

Gutzwiller approximation

Page 21: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body
Page 22: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Beyond semiclassical equations. Current decay by tunneling

phase

jphase

jphase

j

Current carrying states are metastable. They can decay by thermal or quantum tunneling

Thermal activation Quantum tunneling

Page 23: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

2

2 31 ( ) 0

2c

dxS d x bx p p

m dτ ε ε

τ

≅ + − ∝ − →

Decay rate from a metastable state. Example

Expansion in small ε

Our small parameter of expansion: proximity to the classical dynamical instability

0

2

2 3

0

1 ( ) 0

2c

dxS d x bx p p

m d

τ

τ ε ετ

≅ + − ∝ − → ∫

Page 24: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Need to consider dynamics of many degrees of

freedom to describe a phase slip

A. Polkovnikov et al., Phys. Rev. A 71:063613 (2005)

Page 25: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Strong broadening of the phase transition in d=1 and d=2

is discontinuous at the transition. Phase slips are not important.Sharp phase transition

- correlation length

SF MI

p

U/J

π/π/π/π/2222

Strongly interacting regime. Vicinity of the SF-Mott transitionDecay of current by quantum tunneling

Action of a quantum phase slip in d=1,2,3

Page 26: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Similar results in NIST experiments,Fertig et al., PRl (2005)

Page 27: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Decay of current by thermal activationphase

j

Escape from metastable state by thermal activation

phase

j

Thermalphase slip

∆E

Page 28: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Thermally activated current decay. Weakly interacting regime

∆E

Activation energy in d=1,2,3

Thermal fluctuations lead to rapid decay of currents

Crossover from thermal to quantum tunneling

Thermalphase slip

Page 29: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Phys. Rev. Lett. (2004)

Decay of current by thermal fluctuations

Also experiments by Brian DeMarco et al., arXiv 0708:3074

Page 30: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Dynamics of coherently split

condensates.

Interference experiments

Collaboration with A. Burkov and M. Lukin

Phys. Rev. Lett. 98:200404 (2007)

Page 31: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Interference of independent condensates

Experiments: Andrews et al., Science 275:637 (1997)

Theory: Javanainen, Yoo, PRL 76:161 (1996)

Cirac, Zoller, et al. PRA 54:R3714 (1996)

Castin, Dalibard, PRA 55:4330 (1997)

and many more

Page 32: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

x

z

Time of

flight

Experiments with 2D Bose gasHadzibabic, Dalibard et al., Nature 441:1118 (2006)

Experiments with 1D Bose gasHofferberth et al. arXiv0710.1575

Page 33: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Interference of independent 1d condensatesS. Hofferberth, I. Lesanovsky, T. Schumm, J. Schmiedmayer,

A. Imambekov, V. Gritsev, E. Demler, arXiv:0710.1575

Page 34: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Studying dynamics using interference experiments

Prepare a system by

splitting one condensate

Take to the regime of

zero tunnelingMeasure time evolution

of fringe amplitudes

Page 35: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Finite temperature phase dynamics

Temperature leads to phase fluctuations within individual condensates

Interference experiments measure only the relative phase

Page 36: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Relative phase dynamics

Conjugate variables

Hamiltonian can be diagonalizedin momentum space

A collection of harmonic oscillatorswith

Need to solve dynamics of harmonic oscillators at finite T

Coherence

Initial state φq = 0

Page 37: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Relative phase dynamics

High energy modes, , quantum dynamics

Combining all modes

Quantum dynamics

Classical dynamics

For studying dynamics it is important to know the initial width of the phase

Low energy modes, , classical dynamics

Page 38: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Relative phase dynamics

Naive estimate

Page 39: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Adiabaticity breaks down when

Relative phase dynamics

Separating condensates at finite rateJ

Instantaneous Josephson frequency

Adiabatic regime

Instantaneous separation regime

Charge uncertainty at this moment

Squeezing factor

Page 40: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Relative phase dynamics

Quantum regime

1D systems

2D systems

Classical regime

1D systems

2D systems

Different from the earlier theoretical work based on a single

mode approximation, e.g. Gardiner and Zoller, Leggett

Page 41: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

1d BEC: Decay of coherenceExperiments: Hofferberth, Schumm, Schmiedmayer, Nature (2007)

double logarithmic plot of the coherence factor

slopes: 0.64 ± 0.08

0.67 ± 0.1

0.64 ± 0.06

get t0 from fit with fixed slope 2/3 and calculate T from

T5 = 110 ± 21 nK

T10 = 130 ± 25 nK

T15 = 170 ± 22 nK

Page 42: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Many-body decoherence and

Ramsey interferometry

Collaboration with A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier, I. Bloch, V. Gritsev, M. Lukin

Preprint arXiv:0709.2094

Page 43: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Working with N atoms improves the precision by .

Need spin squeezed states to

improve frequency spectroscopy

Ramsey interference

t0

1

Page 44: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Squeezed spin states for spectroscopy

Generation of spin squeezing using interactions.Two component BEC. Single mode approximation

Motivation: improved spectroscopy, e.g. Wineland et. al. PRA 50:67 (1994)

Kitagawa, Ueda, PRA 47:5138 (1993)

In the single mode approximation we can neglect kinetic energy terms

Page 45: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Interaction induced collapse of Ramsey fringes

Experiments in 1d tubes:A. Widera, I. Bloch et al.

time

Ramsey fringe visibility

- volume of the system

Page 46: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Spin echo. Time reversal experiments

Single mode approximation

Predicts perfect spin echo

The Hamiltonian can be reversed by changing a12

Page 47: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Spin echo. Time reversal experiments

No revival?

Expts: A. Widera, I. Bloch et al.

Experiments done in array of tubes.

Strong fluctuations in 1d systems.

Single mode approximation does not apply.

Need to analyze the full model

Page 48: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Interaction induced collapse of Ramsey fringes.

Multimode analysis

Luttinger model

Changing the sign of the interaction reverses the interaction part

of the Hamiltonian but not the kinetic energy

Time dependent harmonic oscillators

can be analyzed exactly

Low energy effective theory: Luttinger liquid approach

Page 49: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Time-dependent harmonic oscillator

Explicit quantum mechanical wavefunction can be found

From the solution of classical problem

We solve this problem for each

momentum component

See e.g. Lewis, Riesengeld (1969)

Malkin, Man’ko (1970)

Page 50: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Interaction induced collapse of Ramsey fringes

in one dimensional systems

Fundamental limit on Ramsey interferometry

Only q=0 mode shows complete spin echo

Finite q modes continue decay

The net visibility is a result of competition

between q=0 and other modes

Conceptually similar to experiments with

dynamics of split condensates.

T. Schumm’s talk

Page 51: Non-equilibrium quantum dynamics of many-body systems of ultracold atomscmt.harvard.edu/demler/old_talks/2007_stanford.pdf · 2007-12-17 · Non-equilibrium quantum dynamics of many-body

Summary

Experiments with ultracold atoms can be used

to study new phenomena in nonequilibrium

dynamics of quantum many-body systems.

Today’s talk: strong manifestations of enhanced

fluctuations in dynamics of low dimensional

condensates

Thanks to: