noise in optical systems f. x. kärtner high-frequency and quantum electronics laboratory university...

22
NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Upload: neal-jordan

Post on 28-Dec-2015

222 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

NOISE IN OPTICAL SYSTEMS

F. X. Kärtner

High-Frequency and Quantum Electronics Laboratory

University of Karlsruhe

Page 2: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Outline

I. Introduction: High-Speed A/D-Conversion

II. Quantum and Classical Noise in Optical Systems

III. Dynamics of Mode-Locked Lasers

IV. Noise Processes in Mode-Locked Lasers

V. Semiconductor Versus Solid-State-Lasers

VI. Conclusions

Page 3: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

High-Speed A/D-Conversion (100 GHz)

Voltage

Time

o o

To

t

Voltage

Modulator

Timing-Jitter t:

= 2 tTo

Vo

V

VVo

VVo

: 10 bit

=100 GHz1To

=> t ~ 1 fs

Time

Page 4: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Output @ 1350 - 1550 nm

OutputCoupler

SaturableSemiconductorAbsorber

Cr :YAG - Crystal8mm long, 10 GHz Repetitionrate

4+

DichroicBeam Splitter

Nd:YAG Laseror Diode Laser

Mode-Locked Cr : YAG Microchip-Laser4+

• Compact: Saturable Absorber, Dispersion Compensating Mirrors•10 GHz, 20 fs - 1 ps, @ 1350 - 1550 nm•Very Small Timing-Jitter < 1 fs•Cheap (< 10.000 $)

Page 5: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Classical and Quantum-Noise in Optical Systems

(Modes of the EM-Field)

Length L

mmmm

tzjm m

Lea

LtzA mm

,2

,1

),(

mode, th-m ofEnergy :*mmm aa

kTe

aa kTmnmnm

1

1ˆˆ

/,*

Thermal Equilibrium

0m

mmmm aaaa ˆ,ˆ,:QM *

Page 6: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

States and Quadrature Fluctuations)2()1( jaaa

)1(a

)2(a1

)1(a

)2(a

Area=/4

Coherent States(Minium Uncertainty States)

Squeezed States

Area=/4

Page 7: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Balanced Homodyne-Detection

jeLO

a

a

jj eaea

aaI

ˆˆ

ˆˆˆ *

dttattatI )(ˆ)()(ˆ)(ˆ *

Continuum of modes

m

mmmm aaI ˆˆˆ *

Page 8: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Loss- and Amplifier-Noise

a

)'(2)(ˆ)'(ˆ;ˆˆ

zzzzadzad

dz

Loss:

Amplifier: )'(2)(ˆ)'(ˆ;ˆˆˆ

zzgzzagdzad

Necessary noise for maintaining uncertainty circle

Spontaneous emission noise

1),'(2)(ˆ)'(ˆ zzgzz Non-Ideal Amplifier:

Page 9: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Dynamics of Mode-Locked Lasers

cavity roundtrip timeTR : A(T,t)

tsmall changes per roundtrip

GDD D

SPM

Gaing, g

Sat. Loss

AAlt

gAAjt

jDtTATR

Tg

2

2

2

22

2

2

||1

1||),(

l:loss

Energy Conserving Dissipative

Page 10: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Steady-State Solution

,000

s exp),(

jTT

jtt

atTAR

s

200 2:Energy Soliton AW

2020 A

21

:Roundtrip per Shift Phase

D

0

4: WidthSoliton

W

D

If pulses are solitonlike

2g

g

D

000 A2A:TheoremArea WD

00 sech)(

ttAtas

Page 11: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

The System with Noise

0000 exp)()(),( jTT

jttattatTAR

s

)'()'(2

)','(),( * ttTTT

ghtTStTS

Rqq

),(||1

1||),( 22

2

22

2

2

tTSAAlt

gAAjt

jDtTATR

Tg

)()1

1()(

),( tatT

TgtTS s

gRg

)(1)(

),( 0 tatd

dv

nc

jT

TLtTS s

gRL

Gain Fluctuations:

Cavity Length or Index Fluctuations:

Amplifier Noise:

Page 12: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Soliton-Perturbation Theory

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4Energ

y P

ert

urb

atio

n,

f w-6 -4 -2 0 2 4 6

x

(a) 1.0

0.8

0.6

0.4

0.2

0.0Ph

ase

Pe

rtu

rba

tion

, -

i f

-6 -4 -2 0 2 4 6

x

(b)

-0.8

-0.4

0.0

0.4

0.8

Fre

quency

Pert

urb

atio

n,

-i f p

-6 -4 -2 0 2 4 6

x

(c)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Tim

ing

Pe

rtu

rba

tion

, f t

-6 -4 -2 0 2 4 6

x

(d)

),()()()()()()()()(),( tTAtfTttfTptfTtfTwtTa ctpw

Energy Phase Center-frequency Timing and Continuum

xaxxW

xf sw tanh11

)(0

xjaxf s)(

xaxxf st tanh1

)(

/:with tx

xaxxW

jxf sp tanh2

)(0

Page 13: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Linearized and Adjoint System

Linearized system is not hamiltonian,it is pumped by the steady-state pulse

)exp(),(),(),( 00

jTT

jtTStTatTaTR

TR

L

Adjoint System L+: Biorthogonal Basis

Scalar Product: ..)()( *

2

1ccdttgtfgf

Interpretation: Field g is homodyne detected by LO f

xaxxW

jxf stanh1

2)(

0

xaxf sw 2)( xaxW

jxf sp tanh2

)(0

xaxxW

xf st tanh2

)(0

Page 14: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Basic Noise Processes

)(20

0 TSR

TW

wTR

T

tpwjtTSfTS jj ,,,,),()(

)(1

TSR

TwwTR

T ww

)(1

TSR

TppTR

T pp

)(20

TSR

TW

wgpDt

TRT x

g

2

000

21AW

Wg

TRw

22341

gRp T

g

Page 15: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Noise Sources

tpwjtTSfTS gjgj ,,,,),()(,

)()(

2)( ,0 TSWT

TgTS gw

Rw

)()()(

)( ,0 TSnTn

LTL

TS g

)()( , TSTS gpp

)()()()(

)( , TSnTn

LTL

TTg

TS gtRg

t

Page 16: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Amplitude- and Frequency Fluctuations

Amplitude- and frequency fluctuations are damped and remain bounded

22

2

2)(

)(~

w

wSw

22

2

,2)(ˆ

)(~

p

gpSp

22)0(ˆ

2 ww Sw

2

,2

)0(ˆ2 gpp Sp

Correlation Spectra Variances

Page 17: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Phase- and Timing Fluctuations

Phase- and timing fluctuations are unbounded diffusion processes

2

2

222

22

02

)(ˆ)(ˆ2

)(~

SS

T w

w

R

2

2

222

22

2)(ˆ)(ˆ

2)(~

t

p

p

R

SS

TD

t

Gordon-Haus Jitter

Page 18: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Timing Fluctuations

Quantum Noise

ggR

g

g

nnn

LLL

ppR

pg

R

TT

T

g

g

g

TT

n

n

TT

L

L

TT

ThW

T

ThW

gTtTTt

exp1

exp1

exp1

exp1/

8

/32

)()(

2

2

2

2

2

2

22

2

22

2

2

22

0

20

2

0

222

00

Classical Noise

Page 19: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Long-Term Timing Fluctuations T >> p, L, n, g

Quantum Noise

22

2

2

2

2

2

2

2

2

2

0

20

2

0

222

00

/8

/32

)()(

R

g

g

n

L

R

pg

T

Tg

g

g

Tn

n

TL

L

T

T

hW

hWg

TtTTt

Classical Noise

Page 20: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Semicondutor versus Solid-State Lasers

Semicon-ductorLaser

Solid-StateLaser

W0/h g g g p/TR g/gn/nn g

107

1010

0.2

0.01

40

THz fs

200

300

10

10

1

375

75

10-3

0

ns

1

0

10-3

10-3

ns

1

1000

10

2

2t

450 fs

1 fs

Semiconductor -Laser: Gordon-Haus-Jitter + Index-Fluctuations

Solid-State Laser: Gain-Fluctuations

Dominant sources for timing jitter:

Other parameters are: T=TR=100 ps, o =1

Page 21: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

Conclusions

• Classical and quantum noise in modes of the EM-Field

• Spontaneous emission noise of amplifiers

• Dynamics of modelocked lasers (solitonlike pulses)

• Amplitude-, phase-, frequency- and timing-fluctuations

•Solid-State Lasers: no index fluctuations; possibly small

Gordon-Haus Jitter; very short pulses; superior timing jitter in

comparison to semiconductor lasers

Page 22: NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe

References:

H. A. Haus and A. Mecozzi: „Noise of modelocked lasers,“ IEEE JQE-29, 983 (1993).

J. P. Gordon and H. A. Haus: „Random walk of coherently amplified solitons in optical fiber transmission,“ Opt. Lett. 11, 665 (1986).

H. A. Haus, M. Margalit, and C. X. Yu: „Quantum noise of a mode-locked laser,“ JOSA B17, 1240 (2000).

D. E. Spence, et. al.: „Nearly quantum-limited timing jitter in a self-mode-locked Ti:sapphire laser,“ Opt. Lett. 19, 481 (1994).