noc: network or chip? israel cidon technion. israel cidon, technion technion’s noc research: pis ...

42
NoC: Network OR Chip? Israel Cidon Technion

Post on 20-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

NoC:Network OR Chip?

Israel Cidon

Technion

Page 2: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Technion’s NoC Research:

PIs Israel Cidon (networking) Ran Ginosar (VLSI) Idit Keidar (Dist. Systems) Avinoam Kolodny (VLSI)

Students: Evgeny Bolotin, Reuven Dobkin, Zvika Guz, Arkadiy Morgenshtein, Zigi Walter Roman Gindin

Page 3: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Origins of the NoC concept Early publications:

Guerrier and Greiner (2000) – “A generic architecture for on-chip packet-switched interconnections”

Hemani, Jantsch, Kumar, Postula, Oberg ,Millberg and Lindqvist (2000) – “Network on chip: An architecture for billion transistor era”

Dally and Towles (2001) – “Route packets, not wires: on-chip interconnection networks”

Wingard (2001) – “MicroNetwork-based integration of SoCs”

Rijpkema, Goossens and Wielage (2001)– “A router architecture for networks on silicon”

De Micheli and Benini (2002) – “Networks on chip: A new paradigm for systems on chip design”

Bolotin, Cidon Ginosar and Kolodny (2004) – “QNoC: QoS architecture and design process for network on chip”

Page 4: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Evolution or Paradigm Shift?

Computingmodule

Networkrouter

Networklink

Architectural paradigm shift Replace wire spaghetti by an intelligent network infrastructure

Design paradigm shift Busses and signals replaced by packets

Organizational paradigm shift Create a new discipline, a new infrastructure responsibility

Bus

Page 5: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Characteristics of a paradigm shift

Addresses a critical and topical need

Enables a quantum leap in productivity and application

Resistance from legacy experts

Requires a major change of mindset and skills!

Think: Networking not Bus evolution!

successful

Page 6: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Critical needs addressed by NoC

3) Enable Chip Multi Processors

1) Efficient interconnect: delay, power, noise, scalability, reliability

2) Increase system integration productivity

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Page 7: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

NoC offers Area and Power ScalabilityFor Same Performance, compare the

n

n

dd

n

n

ddNoC: n

n

dd

Simple Bus:

Segmented Bus:Point-to Point:

3O n n

2O n n

O n

2O n n

E. Bolotin at al. , “Cost Considerations in Network on Chip”, Integration, special issue on Network on Chip, October 2004

O n n

O n n

O n

O n n

Wire-area and power:

Page 8: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

4 Decades of Network 101

Evolved from busses and p-t-p connections Extensive architectures, modeling and analysis research Architecture is about optimizing network costs Different goals and element costs => different architectures:

Local Area Networks (LANs) Metropolitan Area Networks (MANs) System interconnect networks (SAN, InfiniBand …) WAN (TCP/IP, ATM…) Wireless networks

Cross layered design Early architecture standardization is an optimization burden!

Page 9: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

4 Decades of Network 101

Page 10: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Local Area Networks (LANs) Critical need

Distributing operations and sharing of heterogeneous systems Constraints

Standardization Main Cost

Incremental cost (NICs, wiring) Typical optimized architecture:

Low cost hubs/switches Tree like architecture Exploit low cost local BW

Shared media Broadcast

Host embedded NICs

Page 11: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

System interconnect (SAN, InfiniBand)

Critical need Create a powerful specialized system from low cost units

Constraints Low latency

Main Cost Total system cost per MIP

Typical architecture: Wormhole/cut through Connection based Over-provisioned network High degree/regular topology Specific optimizations (e.g. RDMA)

Page 12: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

WAN (TCP/IP, ATM…) Critical need

Global application networking (collaboration, WWW, file sharing, voice)

Constraints Scalability Heterogeneous user and application

QoS requirements Main Cost

Physical infrastructure (mainly long distance trunks) Typical architecture of choice:

Packet switching Irregular, small degree networks of high speed trunks Optimization of topology and link capacities

Page 13: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

CAN optimization

The main cost(s) Total Area Power Others

Design time, verification and testability,

The design envelope (constraints) Collection of designs supported by a given chip Convex hull of traffic requirements all configurations QoS constraints Other requirements (eg: design automation…)

Optimization variables Switching mechanism QoS Topology (incl. links capacities) Routing Flow and congestion control Buffering Application support …..

Page 14: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

One NoC does not fit all!

Flexibility

Reconfigurationrate

single application

General purpose computer

at design time

at boot time

during run time

ASIC

CMP

ASSP

FPGA

I. Cidon and K. Goossens, in “Networks on Chips” , G. De Micheli and L. Benini, Morgan Kaufmann, 2006

Page 15: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

One NoC does not fit all!

A large solution range!

Flexibility

Traffic Unpredictability

single application

General purpose computer

At design time

At configuration

Run time

I. Cidon and K. Goossens, in “Networks on Chips” , G. De Micheli and L. Benini, Morgan Kaufmann, 2006

ASIC

CMP

ASSP

FPGA

Page 16: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Architecture of choice: Wormhole or small frame switching Small # of buffers, VCs, tables Simple QoS mechanisms (which?) Topology and routing optimized for cost

Main cost Power and area

Design envelop / constraints Well define inter-modules traffic Automatic synthesis Variable QoS requirement

Apply paradigm to ASIC based NoC

Page 17: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Example: QNoC Quality-of-service NoC architecture for ASICs

Traffic requirements are known a-priori Overall approach

Wormhole switching QoS based on priority classes Small buffer/VC budget In-order SP XY routing Irregular topology Optimized link capacities

* E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., “QNoC: QoS architecture and design process for Network on Chip”, JSA special issue on NoC, 2004.

)0,2(

)0,0(

)1,0(

)0,3(

)1,4(

)0,4(

)2,1(

)2,0(

)2,2( )2,3( )2,4(

)4,3(

)3,4(

)4,4(

R

R

R R R

R

RR R R R

R R

R

R

R

R

)5,0(

Page 18: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Quality-of-Service in QNoC

Multiple priority classes Define latency Preemptive Possible ASIC classes

Signaling Real Time Stream Read-Write DMA Block Transfer

Statistical guarantees E.g. <0.01% arrive

later then required

N

T

* E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., “QNoC: QoS architecture and design process for Network on Chip”, JSA special issue on NOC, 2004.

Page 19: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Extract inter-module traffic

QNoC Design Flow

Place modules

Allocate link capacities

Verify QoS and cost

Page 20: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Module

Module

Module

Module

Module

Module

Module

Module

Module Module Module

Module

Module

ModuleModule

Module

Module

QNoC Design FlowExtract inter-module traffic

Place modules

Allocate link capacities

Verify QoS and cost

R

R

R R R

R

RR R R R

R RR

R

R

R

R

R

RR

R

R

R

R

R

R

R R

R R

R

R

R

R

R

RR

R

R

Page 21: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Module

Module

Module

Module

Module

Module

Module

Module

Module Module Module

Module

Module

Module

R

R

R R R

R

RR R R R

R R

R

R

R

R

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module Module Module

Module

Module

Module

R

R

R R R

R

RR R R R

R R

R

R

R

R

Module

Extract inter-module traffic

Place modules

Allocate link capacities

Verify QoS and cost

Optimize capacity for performance/power tradeoff Capacity allocation is a traditional WAN optimization problem, however:

QNoC Design Flow

Page 22: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Wormhole Delay Modeling

Approximate delay analysis in wormhole networks Multiple Virtual-Channels Different link capacities Different communication

demands

| f

ij f f

jf j f i

lt

C l m

Flit interleaving delay approximation:

11 22 ( )

ii network

iinetwork

TQ

T

Queuing delay:

* I. Walter, Z. Guz, I. Cidon, R. Ginosar and A. Kolodny, “Efficient Link Capacity and QoS Design for Wormhole Network-on-Chip,” DATE 2006.  

Page 23: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

The Capacity Allocation Problem Given:

system topology and routing Each flow’s bandwidth (fi ) and delay

bound (TiREQ)

Minimize total link capacitye

e E

C

| ( )

: ie

i e path i

link e f C

: i i

REQflow i T T

Such that:

Page 24: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Capacity Allocation – Realistic Example A SoC-like system with realistic traffic demands and delay requirements “Classic” design: 41.8Gbit/sec Using the algorithm: 28.7Gbit/sec Total capacity reduced by 30%

After optimization

Before optimization00

0102

03

1011

1213

2021

2223

Page 25: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Optimizing routing on Irregular Mesh

Goal: Minimize the total size of routing tables

Around the Block

Dead End

E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, "Routing Table Minimization for Irregular Mesh NoCs", DATE 2007.

Page 26: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Saving Table Hardware

Traditional solutions - full routing tables Destination Based Routing - at router Source Routing – at sources

Solution idea: Use Reduced Tables

Store only relevant destinations (PLA) Default function (“Go XY” or “Don’t turn”) + Table for deviations

Page 27: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Routing Heuristics for Irregular Mesh

Routing Cost Reduction in Real Aplications

1

10

100

1000

MPEG4 VOPD

Lo

g (

Ro

uti

ng

Co

st

)

DR

TT

XYDT

SR

SRDP

Routing Cost in 12x12 NoC (many holes, high hotspost probability)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

10 30 50

Hotspot Number

Ro

uti

ng

Co

st

[g

ate

s]

DR

XYDT

SR

SRDP

Distributed Routing (full tables) X-Y Routing with Deviation Tables Source Routing Source Routing for Deviation Points

Systems with real applications

Random problem instances

Page 28: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Efficient Routing Results

Scaling of Savings S

avin

gs

Network Size

Page 29: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

NoC for Shared Memory CMP

Constraints Multiple access to coherent cache Unpredictable traffic pattern QoS requirements (fetch, pre-fetch)

Main cost CMP power / area per performance

Architecture of choice: Tailored for a given CMP In-order/adaptive routing? Simple QoS mechanisms? Regular topology? is CMP symmetric? Built in support functions (multicast, search…)

0 7

56 63

P0 P1

P5 P4

P6

P7

P3

P2

Distributed L2

Page 30: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

NoC can facilitate critical transactions

* E.Bolotin, Z. Guz, I.Cidon, R. Ginosar and A. Kolodny, “The Power of Priority: NoC based Distributed Cache Coherency”, NoCs 2007.

L2

Dire

ctor

y

NoC

NoC

NoC

P1L1

P2L1

P0L1

1. READ. REQ

1. R

EA

D R

EQ

P1-SharedP2-Shared

L2

Dire

ctor

yNoC

NoC

NoC

P1L1

P2L1

P0L1

3. READ EXCL. REQ

6. Read EXCL. RESP (data transfer)

5. INVALID. ACK

5. IN

VA

LID

. AC

K

P0-MOD.

Page 31: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Priority NoC: ResultsL2 Access Delay Reduction by Priority-based NoC

22.6

31.8

19.6

28.4

13.5

25.3

18.3

32.9

22.3

28.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

apache zeus fft ocean radix

De

lay

Re

du

cti

on

[%

]

Read Read Exclusive

Total Program Speedup by Priority-based NoC

9.48.7

9.08.6

5.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

apache zeus fft ocean radix

Sp

ee

du

p [

%]

0 7

56 63

P0 P1

P5 P4

P6

P7

P3

P2

Distributed L2

Page 32: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

NoC Based FPGA Architecture

CR

CR

R

FRSERDESCNI

R

FR CPU

RCNI

CR

CNIR

CR

R

CNIR

R

CR

CNIR

R

CNIR

FRDSP

CNIR

CR

R

FRPCI

RCNI

CR

CNIR

CR

CNIR

CNIR

FRCPU

RCNI

CR

CNIR

CNIR

CNIR

FRDRAM

R

CR

RCNI

R

CR

CNIR

CNIR

CNI

CNI CNI

FRETHI/F

CNIR

CNIR

FRD/AA/D

CNIR

CNIR

FRETHI/F

CNIR

CNI CNI CNI CNI

Functional unit

Routers

NoC for inter-routing

Configurable region – User

logic

Configurable network interface

Page 33: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

NoC for FPGA

Design envelope / constraints Many ASIC like applications for a given FPGA Hard NoC infrastructure – efficient but inflexible Soft logic is reusable but has inferior performance

Average NoC cost of most demanding designs Hard grid links and router logic Total configured NoC Logic used

Architecture of choice: Regular and uniform grid In-order/load balanced routing Hard logic for links, routers Soft logic for routing algorithms, headers, CNIs Soft NoC tuning (routing, CNI) for a given implementation

Page 34: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

NoC Based FPGA Architecture

CR

CR

R

FRSERDESCNI

R

FR CPU

RCNI

CR

CNIR

CR

R

CNIR

R

CR

CNIR

R

CNIR

FRDSP

CNIR

CR

R

FRPCI

RCNI

CR

CNIR

CR

CNIR

CNIR

FRCPU

RCNI

CR

CNIR

CNIR

CNIR

FRDRAM

R

CR

RCNI

R

CR

CNIR

CNIR

CNI

CNI CNI

FRETHI/F

CNIR

CNIR

FRD/AA/D

CNIR

CNIR

FRETHI/F

CNIR

CNI CNI CNI CNI

Functional unit

Routers

NoC for inter-routing

Configurable region – User

logic

Configurable network interface

Page 35: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Source Toggle XY Unlike TXY, traffic to same

destination is not split Maximum capacity similar to TXY The route is a bitwise XOR of

source and destination ID Can be extended to weighted

source toggle (WOT)

XY YX XY YX XY

YX YX XY YX

XY YX XY YX XY

YX XY YX XY YX

XY YX XY YX XY

Page 36: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Two Hotspots

1 2 3 4 5

15

20

25

30

Minimum Distance between the hotspots

Capac

ity

XY

TXY

STXY

WTXY

WOT

Maximum Capacity

Design Envelope for various distances between the hotspots for WOT

Page 37: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Generic NoC ProblemsMany shared problems across design spectrum, examples: Need for a low latency class of service Verification and predictability Power control of NoCs Centralized vs. distributed control Is single NoC enough per chip?

Bus examples suggest otherwise

Hot modules slows incoming NoC traffic Off chip systems Shared memory subsystems Expensive functional units

Page 38: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

IP3Interface

IP2

Inte

rfa

ce

IP1

Inte

rfac

e

HM is not a local problem Transparent to NoC performance

NoC clogging by hot modules

Walter, Cidon, Ginosar and Kolodny, ”Access Regulation to Hot-Modules in Wormhole NoCs”, NOCS 2007.

Page 39: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

IP(HM) Inte

rfac

e

No “fairness” is guarantied since routers’ arbitration is based on local state

The further is the source from the destination, its worm has to win more arbitrations

The HM module bandwidth isn’t fairly shared

Source Fairness

Page 40: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Hot Module Distributed Arbitration Control is distributed or centralized Centralized control can account for dependencies Requests and grants are sent at high service level Requests and grants includes additional data as needed

requested quota, source queue size, priority, deadline, etc. Granted quota, scheduling of transmission's, etc.

Initial credits hides light load request-grant latency

Page 41: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Hot vs. non-Hot ModuleTraffic

HM TrafficWithout Control

Other TrafficWithout Control

HM TrafficWith Control

Other TrafficWith Control

Page 42: NoC: Network OR Chip? Israel Cidon Technion. Israel Cidon, Technion Technion’s NoC Research: PIs  Israel Cidon (networking)  Ran Ginosar (VLSI)  Idit

Israel Cidon, Technion

Conclusions NoC is a chip design paradigm shift Introduces many diverse and new networking challenges No killer NoC for all chips Should not comply with any X-AN concept

May include centralized mechanisms May involve more than one NoC/Bus mechanisms May combine several communication methodologies

Low latency NoC/Bus for metadata and urgent signals Beware of early standardization and legacy barriers Mutual benefit for VLSI-Networking collaboration

NoC: A Network AND A Chip