no s is good s sheffield physoc 21/04/2005 jeanne wilson a historical introduction to neutrinoless...

43
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Post on 21-Dec-2015

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

No s is good s

Sheffield Physoc21/04/2005

Jeanne Wilson

A historical introduction to neutrinoless double beta decay

Page 2: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Introducing the Neutrino

A*

A

e-

The Beta Decay Puzzle

Breaks energy and momentum conservation

Page 3: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Wolfgang Pauli, 1930

A*

A

e-

C

Page 4: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

DiscoveryLooking for something:• very light, possibly massless• electrically neutral• produced alongside electron. • very weakly interacting

It would take 1019 m (300 light years) of water to absorb a single neutrino.

25 years later • Frederick Reines and Clyde Cowan

Page 5: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Project Poltergeist

n p

e-

e

p n

e+e

Page 6: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Solar Neutrinos

Page 7: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

380,000 bottles of cleaning fluid

Inverse Beta DecayCl + e Ar + e-

Extract and measure the amount of argon converted in one month.

expect 10 atoms in 1030!

Page 8: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Some of our neutrinos are missing

Page 9: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Neutrino Oscillations

Page 10: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

–Mass difference m2

–Neutrino energy E–Distance travelled L–Mixing angle

)E

LΔm27.1(sin2sin1)(

222 eeP

Neutrino Oscillations

Page 11: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Sudbury Neutrino Observatory

1700 tonnes InnerShielding H2O

1000 tonnes D2O

5300 tonnes Outer Shield H2O

12m Diameter Acrylic Vessel

Support Structure for 9500 PMTs, 60% coverage

Urylon Liner andRadon Seal

Page 12: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Reactions in SNO

NC xx npd

CC epd e p -

Page 13: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

How to Observe Neutrinos

Page 14: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Working in a Mine

Page 15: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Going Underground

Page 16: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Construction

Page 17: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Going Underground

Page 18: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Water Purity

Page 19: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Class 2000 Clean Room

Page 20: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Detector Operation

Page 21: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

How to Observe Neutrinos

•Deep Underground•Low Radioactive Backgrounds

•Precise Measurements•Detailed Calibrations

Page 22: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Reactions in SNO

NC xx npd

CC epd e p -

Page 23: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

SNO Results

1.0 (23%)

0.85 (9%)

0.29 (6%)

CC NC

Standard Solar Model Prediction

= 0.34 0.04CCNC

Neutrino flux

http://arxiv.org nucl-ex/0502021

Page 24: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Neutrino Masses

RelativeMassScale

Mas

s

AbsoluteMassScale

)E

LΔm27.1(sin2sin1)(

222 eeP

Page 25: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Neutrino Nature• Majorana particle

neutrino = antineutrino

•Dirac Particles

Like all other fundamental particles

Particle antiparticle

Page 26: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Double Beta Decay

n p

e-

e

n p

e-

e

0+1+

0+(A,Z)(A,Z+1)

(A,Z+2)

Only 35 isotopes known in nature

First proposed 1935

Maria Goeppet-Mayer 1935

First observed 1987

Page 27: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Neutrinoless Double Beta Decay

n p

e-

n p

e-

e

e

e

e

X

NeutrinoAntineutrino

Only for Majorana neutrinos

Gold-Plated Channel

Page 28: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

How to detect double beta decay

2.01.51.00.50.0Sum Energy for the Two Electrons (MeV)

Two Neutrino Spectrum Zero Neutrino Spectrum

1% resolution(2) = 100 * (0)

Page 29: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Choose your isotope:

•Detector technology•High isotopic abundance•High energy release

–Fast rate–Above U and Th background

Page 30: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Measuring neutrino mass

0G0|M0|2m2

<m> ( bE/Mtlive)1/4

Phase space factorNuclear Matrix

element

Background

Energy resolutionMass of isotope

Measuring time

Page 31: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

The Ideal Experiment

<m> ( bE/Mtlive)1/4

•Large Mass (~ 1 ton)

•Radiopurity

•Demonstrated Technology

•Easy operation

•Large E release

•High Natural Abundance

•Small Volume:

•source = detector

•Good Energy Resolution

•Background separation

Page 32: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

The COBRA experiment

Cadmium-Telluride O-neutrino double-Beta Research Apparatus

Use a large amount of CdTe (CdZnTe) Semiconductor Detectors

Array of 1cm3

CdTe detectors

K. Zuber, Phys. Lett. B 519,1 (2001)

Page 33: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Semiconductors

Insulator Semiconductor Metal

Conduction band

Conduction band

Valence band

Valence band

Energy gap

~6 eV ~1 eV

Free electrons

holes

•Ionising particle creates electron-hole pairs

•Apply electric field – collect electrons and holes

•Amount of charge carriers energy deposited

Page 34: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Isotopes in CdZnTe

Zn70 0.62 1001 ß-ß-Cd114 28.7 534 ß-ß-Cd116 7.5 2805 ß-ß-Te128 31.7 868 ß-ß-Te130 33.8 2529 ß-ß-Zn64 48.6 1096 ß+/ECCd106 1.21 2771 ß+ß+Cd108 0.9 231 EC/ECTe120 0.1 1722 ß+/EC

nat. ab. (%) Q (keV) Decay mode

Page 35: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

The Ideal Experiment?

•Large Mass (~ 1 ton)

•Radiopurity

•Demonstrated Technology

•Easy operation

•Large E release

•High Natural Abundance

•Small Volume:

•source = detector

•Good Energy Resolution

•Background separation

Page 36: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Background Separation

0

Page 37: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

The COBRA Setup

Page 38: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

The Crystals

Page 39: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Shielding

Page 40: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Electronics readout

Page 41: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Calibration

60Co

1332 keV

60Co

1173 keV

137Cs

662 keV

Page 42: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

The next step

Page 43: No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay

Ssssummary

• 1931 – Neutrino first hypothesised• 1956 – Neutrino first detected• 2001 – Neutrino mass confirmed• Today...

Plans to search for 0 DecaysT1/2 ~ 1025 years