niels bohr institute copenhagen university eugene polziklecture 3

36
Niels Bohr Institute Copenhagen University Eugene Polzik LECTURE 3

Post on 20-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Niels Bohr InstituteCopenhagen University

Eugene Polzik LECTURE 3

Page 2: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Einstein-Podolsky-Rosen (EPR) entanglement

Experimental techniques for observing quantum noise and entanglement

Light•Photon statistics – dc measurements•Entanglement in

the spectral modes of light – ac measurements

AtomsAddition of magnetic field – ac measurements with atoms

Generation of Entangled state of two distant Atomic Objects

N

1

Page 3: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

• Einstein-Podolsky-Rosen paradox – entanglement; 1935

2 particles entangled in position/momentum

11ˆ,ˆ PX mVPX 22

ˆ,ˆ

LXX 21ˆˆ

L

0ˆˆ21 PP

Simon (2000); Duan, Giedke, Cirac, Zoller (2000)Necessary and sufficient condition for entanglement

2)()( 221

221 PPXX

Page 4: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

2 particles entangled in position/momentum

11ˆ,ˆ PX 22

ˆ,ˆ PX

L

What does it mean in practice?

2)()( 221

221 PPXX

1. Prepare many identical pairs of particles2. Measure X1- X2 on some of those pairs3. Measure P1+P2 on others 4. Plot statistical distributions of the results5. Measure the width of these distributions L

X1- X2

0

P1+ P2

(X1- X2)

(P1+ P2)

Page 5: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

2)()( 221

221 PPXX

Why does it make sense?

21 px

11ˆ,ˆ PX

22ˆ,ˆ PX

Two independent particles

212

2,12

2,1 px Minimal symmetricuncertainties

0

P1+ P2

(P1+ P2)= 1

L

X1- X2

(X1- X2)= 1

<

Entangled state

Page 6: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

sec10 3421 Jpx

Position – momentum uncertainty

The best optical interferometry measurement:

mx 1210

Macroscopic object – a mirror

Assume M=1mg

sec/10 19 mp

Page 7: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Instead of two EPR particles we use

Two beams of light 1998

Two atomic ensembles 2001

Page 8: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Coherent state of light. Poissonian photon statistics.Delta-correlated noise.

nn

en

!2

2

!!

22 2

n

ne

nen

n

nn

Probability of counting nphotons

Variance:

nn 2Compare to

123ˆ,ˆ iSSS

nSS 41

1212

2

For coherent state

Page 9: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

12 14 16 18

4

2

0

2

4

X

(vacuum units)

Strong fie

ld A(t)

Polarizingcube

Polarizingcube 450/-450

XAaeeaAS ii ˆ)(ˆ

21

21

2

iea

0

X

coherentstate2

1

1

-1

Page 10: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

12 14 16 18 20

4

2

0

2

4

Phase squeezed

Amplitudesqueezed

Quadrature operators. Squeezed light

Page 11: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

)(radian

)( unitsvacuuminX

Single photon stateSingle photon state

Page 12: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

XnetaetanS ii ˆ))(ˆ)(ˆ(ˆ

21

21

2

x

Polarization beamsplitter

Spectral measurements of Quadrature OperatorsHomodynedetector

RF spectrum analyzer

detXtXn

detitii

i

i

:)()(:

:)()(:

Page 13: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

x

Polarization beamsplitter

Spectral measurements on vacuum state (coherent state)Homodynedetector

RF spectrum analyzer

vacuum

i

i

e

detXtXnS

)(

:)()(:2

Delta correlated noise

Flat spectrum of noiseFlat spectrum of noise2S

Page 14: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

In real world

Flat spectrum of noiseFlat spectrum of noise

n

S 2

Technical (classical) noise

Quantum noise

2n

n

n > n > n > n

Page 15: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Spectral measurements of Quadrature Operators

Spectrumanalyzer

)(ˆ tS y)(ˆ yS

Advantage: getting rid of technical noise

T

yTS dtttSXx

0

2 )cos()(ˆˆ

T

zTS dtttSPx

0

2 )cos()(ˆˆ

iPX ]ˆ,ˆ[

Same for sine modes0 5 106 1 107 1.5 107 2 107 2.5107

FrequencyHz80

78

76

74

72

70

68

66

esioN

rewopmBd

0.8 mW

1.7 mW

3.0 mW

1 MHz

Page 16: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Optical Spectrum of the strong field and the quantum field

Page 17: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4 Atomic Quantum Noise

Ato

mic

noi

se p

ower

[ar

b. u

nits

]

Atomic density [arb. units]

)(ˆ)(ˆ)(ˆ

)(ˆ)(ˆ

tStJtJ

tJtJ

zlabz

laby

laby

labz

Labz

iny

outy JSS ˆˆˆ

)]sin(ˆ)cos(ˆ[)(ˆ)(ˆ tJtJtStS yziny

outy

J

yz )(ˆ tS y

xS

Measuring rotating spin states

Page 18: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

300000 310000 320000 330000 3400000,0000

0,0002

0,0004

0,0006

0,0008

Shot noise level

Noi

se p

ower

[ar

b. u

nits

]

Frequency (Hz)

Density[arb. units]

----------------------------------1.00 ± 0.020.56 ± 0.010.21 ± 0.01

,

Probe polarizationnoise spectrum

Larmorfrequency 320kHz

Detecting quantum projections of the spin in rotating frame

Atomic density (a.u.)

1.00.5 0.2

RF frequency

z

Bprobe

y

Page 19: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3
Page 20: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

• Einstein-Podolsky-Rosen paradox – entanglement; 1935

2 particles entangled in position/momentum

11ˆ,ˆ PX mVPX 22

ˆ,ˆ

LXX 21ˆˆ

L

0ˆˆ21 PP

Simon (2000); Duan, Giedke, Cirac, Zoller (2000)Necessary and sufficient condition for entanglement

2)()( 221

221 PPXX

Page 21: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

1012 spins in each ensemble

y z

x

y z

xSpins which are “more parallel” than that

are entangled

Experimental long-lived

entanglement of two

macroscopic objects.

21

~ N

B. Julsgaard, A. Kozhekin and EP, Nature, 413, 400 (2001)

Page 22: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

X

Z or Y

2nd

1st

If the two macroscopic spins are collinear they must beentangled:

21 px xzy JJJ 2

1

Compare

2)()( 221

221 PPXX

xyyzz JJJJJ 2)()( 221

221

Compare

11ˆ,ˆ PX

Page 23: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Stern-Gerlach projectionon any axis to x:

1 21+2

J J J

Along y,z: ideally no misbalance between heads and tails of the twoensembles, or, at least, less than random misbalance N

Page 24: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

1012 atoms in each ensemble

2 gas samples

6S 1/2

Cesium

)4,...,4(m

)3,...,3( m

4

3

Page 25: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Total z and y components of twoensembles with equal and oppositemacroscopic spins can be determined simultaneously with arbitrary accuracy 0)()(ˆˆ,ˆˆ

212121 xxxxyyzz JJiJJiJJJJx x

yz z

Therefore entangled state with

0ˆˆˆˆ 2

21

2

21 yyzz JJJJ Can be created by a measurement

Top view:

Parallelspins must be

entangled

Page 26: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

How to measure the total spin projections?

•Send off-resonant light through two atomic samples•Measure polarization state of light

Duan, Cirac, Zoller, EP 2000

Page 27: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

pump

pump

Y

Z

Z

Y

Entangling beam

Polarizationdetection

Entangled state of2 macroscopic

objects

J1

J2

B

B

Page 28: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

0ˆˆˆˆ

)sin(ˆ2ˆ),cos(ˆ2ˆ

)sin(ˆ2ˆ),cos(ˆ2ˆ

2121

in2

in2

in1

in1

yyzz

zxzzxy

zxzzxy

JJJJ

tSaJJtSaJJ

tSaJJtSaJJ

)]sin()ˆˆ(

)cos()ˆˆ[()(ˆ)(ˆ

21

21

tJJ

tJJtStS

yy

zziny

outy

Page 29: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

xzzyy JJJJJ 2)()( 221

221

Establishing the entanglement bound

xzy JJJ 21

11, zy JJ22 , zy JJ

Two independent ensembles

xzzyy JJJ 212

2,12

2,1 Minimal symmetricuncertainties

0

Jy1+ Jy2

NJJ

JJJJ

xx

yyyy

21

221

121

22

21

221 )(

0

Jz1+ Jz2

NJJ zz 212

21 )(

Page 30: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Sp

ect

ral v

ari

an

ce o

f th

e p

rob

e p

uls

e

Collective spin of the atomic sample

J x [10 ]

0 2 4 60

10

20

30

40

12

CSS

xyyzz JJJJJ 2)()( 221

221

Entanglement criterion:

=

Page 31: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

xzzyy JJJJJ 2)()( 221

221

0

Jy1+ Jy2

0

Jz1+ Jz2

NJJ zz 212

21 )(

Entangled state

<

Proving the entanglement condition:

Page 32: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

B-field

PBS

Time

Verifyingpulse

Entanglingpulse

0.5 ms

m=4

700MHz

6S

6P

Entangling andverifying beams

S

Entangling andverifying pulses

F=3

F=4 = 325kHzm=4

1/2

3/2

youtx2

Opticalpumping

Pumpingbeams

J

x1

+

J -

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

0,0

0,2

0,4

0,6

Atomic density [arb. units]

21

21

ˆˆ)sin(

ˆˆ)cos()(ˆ)(ˆ

yy

zziny

outy

JJt

JJttStS

Page 33: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Entangled spin states

Create entangled state and measure the state variance

Nor

mal

ized

sp

ectr

al v

aria

nce

Collective spin of the atomic sample12Fx [10 ]

Sy(1pulse)

CSS

2Fx

Sy(1pulse) Light (1pulse)

Atoms

0 2 4 60.0

0.5

1.0

1.5

2.0

Julsgaard, Kozhekin, EP

Nature 413, 400 (2001).

Page 34: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Material objects deterministically entangled at 0.5 m distance

Niels Bohr InstituteDecember 2003

0 2 4 6 8 10 12 14 16

0,70

0,75

0,80

0,85

0,90

0,95

1,00

10-12-2003/noise.opj

Ato

m/s

ho

t(co

mp

) /

PN

Mean Faraday angle [deg]

2121 yyzz JJorJJ

Quantum uncertaintyxJ2

Page 35: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Decoherence issues

•only collective spin states are entangled•particles are indistinguishable - high symmetry of the system – - robustness against losses. This is not a Schrodinger’s cat made of 1012 atoms! •no free lunch: limited capabilities compared to ideal maximal entanglement

Sources of decoherence:stray magnetic fields decoherence time 3 millisecondscollisions decoherence time 1-2 milliseconds

Page 36: Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3

Realism – two noncommuting spin componentscannot be measured – therefore do not exist? But can be entangled

Non-locality – two entangled macroscopic objects can be used toviolate Bell-type inequalities via distillationAll entangled Gaussian two-mode states are distillable (Giedke et al)