nicholas j. turner school of chemistry & manchester institute ...to do real organic synthesis? 50 or...

23
Cascade Reactions Enabled by Synthetic Biology Nicholas J. Turner School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, UK ELRIG Research & Innovation 2016 Nottingham, UK 23 rd March 2016

Upload: others

Post on 29-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Cascade Reactions Enabled by Synthetic Biology

    Nicholas J. Turner School of Chemistry & Manchester Institute of Biotechnology,

    University of Manchester, UK

    ELRIG Research & Innovation 2016 Nottingham, UK 23rd March 2016

  • Manchester Institute of Biotechnology Discovery through innovation

    Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals

    Nigel Scrutton (PI/Director) Eriko Takano (Director) Nick Turner (Director)

  • Manchester Institute of Biotechnology Discovery through innovation

    CoE for Biocatalysis, Biotransformations and Biocatalytic Manufacture (est. 2005).

    C M B C Manchester Centre for Biophysics and Catalysis (est. 2009).

    Manchester Centre for Integrative Systems Biology (est. 2006).

    CENTRES

    BBSRC IB NETWORKS (est. 2014) Network in Biocatalyst Discovery, Development and Scale-up. Glycoscience Tools for Biotech. and Bioenergy Network.

    Natural Products Discovery and Bioengineering Network.

    BBSRC/EPSRC SYNBIOCHEM Centre for Synthetic Biology of Fine and Speciality Chemicals (est. 2014).

    EPSRC National Biocatalysis and Biotransformations Hub (coordinated by MIB/Harwell) (est. 2015).

    NEW CENTRES

  • SYNBIOCHEM Approach

    Biocatalyst/Pathway Selection

    design modify

    homologues

    Pathway design Vector promoter

    RBS Gene cluster order

    Chassis engineering design modify

    homologues Eg. Carbon source, minimal genome

    Pathway assembly

    synthesis automated assembly

    TEST

    Predictive modelling metabolism kinetic/flux

    catalysis machine learning

    CAD tools

    Regulatory devices light activation

    riboswitches circuit design

    Genome-editing tools

    Speedy Genes

    Testing targeted analysis

    untargeted metabolomics Microfluidics

    Screening assays

    High Throughput Tools

    (Robotics, microscale growth/expression,

    analysis/assays)

    State of the Art analytics facility

    Scale-up Fermentation optimisation

    Compilation and assembly tools

    Jr ICE Gene Genie

    Fully integrated technology platforms

  • 3 Approaches to (un)natural product synthesis

    Biosynthesis Organic

    Synthesis Biocatalysis

    • Natural products • Biosynthetic pathways • Enzyme mechanism • Specialised enzymes

    • New reagents • New catalysts • Retrosynthesis • Synthetic strategy

    • Engineered biocatalysts • Broad specificity • Systems biocatalysis • Synthetic biology

  • Nature Chem. Biol., 2013, 9, 285-288.

    Biocatalytic retrosynthesis

    HN

    NH

    N

    H

    H HN

    HN

    O

    O

    OO

    ON

    NO

    Telaprevir (Incivek)

    launched

    May

    2011

    for

    Hepatitis

    C

    NH

    N

    biocatalyst

    99% e.e.

  • • Design new & general synthetic routes to target classes (e.g. amino acids, alkaloids, terpenes etc.) based upon bio- and chemo-catalysis?

    • Develop guidelines for route design for synthetic chemists

    (biocatalytic retrosynthesis).

    • Where are the gaps in biocatalysis – which reactions are currently not available in the biocatalysis toolbox?

    • How many different biocatalyst classes do we need to be able

    to do real organic synthesis? 50 or 500 or 5000 … • Need biocatalysts with broad substrate scope that are active

    and stable under the conditions of a chemical process (fit biocatalyst to process rather than vice-versa).

    Challenges for biocatalysis

  • Protein Design Biocatalysts Synthesis Protein Evolution

    Design – Evolution - Diversity

    NH

    NH

    Design features: • Selectivity • Specificity • Stability

    HN

    Natural Diversity

  • Alkaloids

    NH

    N

    (R)-harmicine(anti-leishmania)

    H

    N

    MeO

    MeOH

    Crispine A(anti-tumour)

    NH

    NH

    Me

    (R)-Eleagnine(chocolate, cocoa)

    H

    NH

    (R)-coniine(hemlock)

    N

    NMe

    (S)-nicotine

    (S)-scoulerine

    N

    MeO

    HOOH

    OMe

    N

    MeO

    HOOH

    OMe

    (S)-reticuline

    NH

    MeO

    MeO

    (R)-salsolidine

  • Synthetic APIs

    Solifenacin Levocetirizine

    Telaprevir

    N

    ClN

    OOH

    O

    H NO

    ON

    N

    NNH

    O HN

    ON

    O

    H

    H

    O NHO

    O NHN CO2H

    OHN

    SO ONH

    HN

    H2N NH

    Argatroban

  • (Asymmetric) biocatalytic amine toolbox

    R1

    O

    R2 R1

    NH2

    R2

    transaminase

    PLP

    R1

    O

    R2 R1

    NH2

    R2

    aminedehydrogenase

    NADH

    R1

    NH2

    R2 R1

    NH

    R2

    amine oxidase

    FAD

    ArCO2H

    ammonia lyaseAr

    CO2H

    NH2

    NH

    R NH

    R

    imine reductase

    NADPH

    NH+

    R

    NH

    R

    Pictet-Spenglerase

    X X

    NH

    NOpine DH

    NADPH

    OR+

    R

  • Biocatalytic Cascade Reactions

  • Regio- and stereoselective ω-transaminase/MAO-N cascades

    ORL

    ORS N RLRS

    NH

    RLRS

    NH

    RLRS

    (R)(S)

    (S)(S)

    +

    Accumulates

    NH3.BH3non-selective reduction

    MAO-N oxidation

    (S)

    (S)-selectiveomega-TA

    Regio- & stereoselectivereductive-amination

    Regio- & stereoselectiveoxidation

    One-potnon-symmetric diketone

    E. O’Reilly et al., Angew. Chem. Int. Ed., 2014, 53, 2447-2450.

  • O

    O

    N(S )-

    C. viola

    ceum

    transam

    inase

    MAO-N D9BH3NH3

    NH

    ee: >99% (S) de: >99%(2R,5S)

    ω-TA - MAO-N tandem reaction

    E. O’Reilly et al., Angew. Chem. Int. Ed., 2014, 53, 2447.

    N

    (R)-Arthrobacter

    transaminase MAO-N D9BH3NH3 N

    Hee: >99% (R) de: 90%(2R,5R)

  • Cascade reactions with TAs/IREDs

    NH

    R1R2IRED

    N R1R2-H2O

    R1

    O

    R2

    NH2ω-TA

    R1

    O

    R2

    O

    2,6-disubstituted

    piperidine

    1,5-diketone

  • O

    O

    Nω-TA

    (R)- or (S)-IRED

    NH

    ee: >99% (S)

    Oω-TA

    (R)- or (S)-IRED

    ee: >99% (S)

    O

    N NH

    X X X

    ω-TA - IRED tandem reactions

    Shahed Hussain, Elaine O’Reilly.

  • Cascade reactions with IREDs

    NH

    R1R2IRED

    N R1R2-H2O

    R1

    O

    R2

    NH2ω-TA

    R1

    O

    R2

    O

    2,6-disubstituted

    piperidine

    1,5-diketone

    N R1

    R2

    IRED -H2Oω-TA

    1,5-ketoaldehyde

    NH

    R1

    R2

    R1

    ONH2R2

    O

    R1

    OR2

    HCAR

    HO

    O

    R1

    OR2

    1,5-ketoacid

  • CAR - ω-TA - IRED tandem reactions

    H

    O

    O

    Nω-TA

    (R)- or (S)-IRED

    NH

    ee: >99% (S)

    n

    n n

    HO

    O

    O

    n

    carboxylic acidreductase, ATP, NADH

    Elaine O’Reilly, Shahed Hussain, Scott France, Andy Hill.

    O’Reilly et al., Angew. Chem. Int. Ed. 2014, 53, 10714 - 10717 (VIP).

    ONH2

    ω-TAN

    H

    NH2NH2

    NH

    polyisoindole(coloured)

    irreversible amine donor

  • (S)-scoulerine

    N 1. MAO-N

    D11:

    NH3:BH3

    2. Berberine

    Bridge

    Enzyme

    yield = 97%

    e.e. = 99%

    MeO

    HOOH

    OMe

    N

    MeO

    HOOH

    OMe

    (R/S)-reticuline

    N

    R1

    R1

    R1

    R1

    e.e.'s > 98%

    MAO-N/Berberine bridge enzyme

    J. Schrittwieser, D. Ghisleri, W. Kroutil, N.J. Turner et al., Angew. Chem. Int. Ed., 2014, 53, 3731-3734.

  • Biocatalytic asymmetric hydrogen borrowing

    F.G. Mutti. T. Knaus, N.S. Scrutton, M. Breuer and N.J. Turner, Science, 2015, 349, 1525-1529.

    R R'

    O

    R R'

    NH2

    R R'

    OH

    *

    NADH

    NAD+

    ADH AmDH

    NH3 / NH4+

    H2Ocatalytic

    OH (S)-ADH

    (R)-AmDH

    NH3 (2.5M)

    NADH (1 mol%)conv. 95%ee: >99% (R)

    FNH2

    F

    OH (R)-ADH

    (R)-AmDH

    NH3 (2.5M)

    NADH (1 mol%)conv. 95%ee: >99% (R)

    FNH2

    F

  • Biocatalytic asymmetric hydrogen borrowing

    OH

    R'X

    X = H, F, Me, MeO; R' =

    Me, Et

    yields = 30-95%e.e.'s up to 99%

    X

    X = CH2 or O

    yields = 84-96%e.e.'s up to 99%

    X

    X = H, F, Me

    yields = 7-96%e.e.'s up to 99%

    Alkyl

    OH

    Me

    Alkyl = n-C6H13, n-C5H11. n-

    C4H9, n-C3H7, iso-C4H9

    yields = 66-96%e.e.'s >99%

    R = n-C7H15, n-C6H13, n-C5H11n-C4H9, iso-C4H9, n-C3H7, PhCH2

    yields = 8-99%

    Me

    OH

    Me

    OH

    OHR

    F.G. Mutti. T. Knaus, N.S. Scrutton, M. Breuer and N.J. Turner, Science, 2015, 349, 1525-1529.

  • Whole-cell biocatalysts for stereoselective C-H amination reactions

    P. Both et al, Angew. Chem. Int. Ed., 2015, 54, in press.

  • Acknowledgements

    amine biocatalysis:

    Rachel Heath, Marta Pontini, Friedemann Leipold, Shahed Hussain, Godwin Aleku, James Galman, Anthony Green,

    Elaine O’Reilly, Beatrice Bechi, Scott France, Iustina Slabu, Andy Hill, Fabio Parmeggiani, Syed Ahmed, Nick Weise,

    Wojciech Zawodny, Agata Brzezniak, Francesco Mutti, Diego Ghislieri, Juan Mangas

    and everyone else in the group …

    Sam Staniland, Sasha Derrington, Chantel Jensen-

    Loughrey, Will Birmingham, Ian Rowles, Mark Corbett, Jane Kwok, Frank Xu, Mark Dunstan, Daniela Quaglia

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Whole-cell biocatalysts for stereoselective C-H amination reactionsSlide Number 23