ngss crosscutting concepts: scale, proportion, and quantity · 3/19/2013  · the performance...

97
LIVE INTERACTIVE LEARNING @ YOUR DESKTOP 1 March 19, 2013 6:30 p.m. – 8:00 p.m. Eastern time NGSS Crosscutting Concepts: Scale, Proportion, and Quantity Presented by: Amy Taylor and Kelly Riedinger

Upload: others

Post on 08-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

LIVE INTERACTIVE LEARNING @ YOUR DESKTOP

1

March 19, 20136:30 p.m. – 8:00 p.m. Eastern time

NGSS Crosscutting Concepts: Scale, Proportion, and Quantity

Presented by: Amy Taylor and Kelly Riedinger

Page 2: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

http://learningcenter.nsta.org2

Page 3: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

3

• 10,600+ resources– 3,700+ free!

– Add to “My Library” to access later

• Community forums

• Online advisors to assist you

• Tools to plan and document your learning

• http://learningcenter.nsta.org

NSTA Learning Center

Page 4: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Introducing today’s presenters…

4

Amy TaylorUniversity of North Carolina Wilmington

Ted WillardNational Science Teachers Association

Kelly RiedingerUniversity of North Carolina Wilmington

Page 5: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Developing the Standards

5

Page 6: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Instruction

Curricula

Assessments

Teacher Development

Developing the Standards

6

2011-2013

July 2011

Page 7: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Developing the Standards

7

July 2011

Page 8: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

A Framework for K-12 Science Education

Three-Dimensions:

Scientific and Engineering Practices

Crosscutting Concepts

Disciplinary Core Ideas

View free PDF form The National Academies Press at www.nap.edu

Secure your own copy from

www.nsta.org/store 8

Page 9: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

1. Asking questions (for science) and defining problems (for engineering)

2. Developing and using models

3. Planning and carrying out investigations

4. Analyzing and interpreting data

5. Using mathematics and computational thinking

6. Constructing explanations (for science) and designing solutions (for engineering)

7. Engaging in argument from evidence

8. Obtaining, evaluating, and communicating information

Scientific and Engineering Practices

9

Page 10: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Crosscutting Concepts1. Patterns

2. Cause and effect: Mechanism and explanation

3. Scale, proportion, and quantity

4. Systems and system models

5. Energy and matter: Flows, cycles, and conservation

6. Structure and function

7. Stability and change

10

Page 11: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Life Science Physical ScienceLS1: From Molecules to Organisms:

Structures and Processes

LS2: Ecosystems: Interactions, Energy, and Dynamics

LS3: Heredity: Inheritance and Variation of Traits

LS4: Biological Evolution: Unity and Diversity

PS1: Matter and Its Interactions

PS2: Motion and Stability: Forces and Interactions

PS3: Energy

PS4: Waves and Their Applications in Technologies for Information Transfer

Earth & Space Science Engineering & TechnologyESS1: Earth’s Place in the Universe

ESS2: Earth’s Systems

ESS3: Earth and Human Activity

ETS1: Engineering Design

ETS2: Links Among Engineering, Technology, Science, and Society

Disciplinary Core Ideas

11

Page 12: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Life Science Earth & Space Science Physical ScienceEngineering &

TechnologyLS1: From Molecules to Organisms:

Structures and ProcessesLS1.A: Structure and FunctionLS1.B: Growth and Development of 

OrganismsLS1.C: Organization for Matter and 

Energy Flow in OrganismsLS1.D: Information Processing

LS2: Ecosystems: Interactions, Energy, and Dynamics

LS2.A: Interdependent Relationships in Ecosystems

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

LS2.D: Social Interactions and Group Behavior

LS3: Heredity: Inheritance and Variation of Traits

LS3.A: Inheritance of TraitsLS3.B: Variation of Traits

LS4: Biological Evolution: Unity and Diversity

LS4.A: Evidence of Common Ancestry and Diversity

LS4.B: Natural SelectionLS4.C: AdaptationLS4.D: Biodiversity and Humans

ESS1: Earth’s Place in the UniverseESS1.A: The Universe and Its StarsESS1.B: Earth and the Solar SystemESS1.C: The History of Planet Earth

ESS2: Earth’s SystemsESS2.A: Earth Materials and SystemsESS2.B: Plate Tectonics and Large‐Scale 

System InteractionsESS2.C: The Roles of Water in Earth’s 

Surface ProcessesESS2.D: Weather and ClimateESS2.E: Biogeology

ESS3: Earth and Human ActivityESS3.A: Natural ResourcesESS3.B: Natural HazardsESS3.C: Human Impacts on Earth 

SystemsESS3.D: Global Climate Change

PS1: Matter and Its InteractionsPS1.A:Structure and Properties of 

MatterPS1.B: Chemical ReactionsPS1.C: Nuclear Processes

PS2: Motion and Stability: Forces and Interactions

PS2.A:Forces and MotionPS2.B: Types of InteractionsPS2.C: Stability and Instability in 

Physical Systems

PS3: EnergyPS3.A:Definitions of EnergyPS3.B: Conservation of Energy and 

Energy TransferPS3.C: Relationship Between Energy 

and ForcesPS3.D:Energy in Chemical Processes 

and Everyday Life

PS4: Waves and Their Applications in Technologies for Information Transfer

PS4.A:Wave PropertiesPS4.B: Electromagnetic RadiationPS4.C: Information Technologies 

and Instrumentation

ETS1: Engineering DesignETS1.A: Defining and Delimiting an 

Engineering ProblemETS1.B: Developing Possible SolutionsETS1.C: Optimizing the Design Solution

ETS2: Links Among Engineering, Technology, Science, and Society

ETS2.A: Interdependence of Science, Engineering, and Technology

ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World

Note: In NGSS, the core ideas for Engineering, Technology, and the Application of Science are integrated with the Life Science, Earth & Space Science, and Physical Science core ideas

12

Page 13: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Instruction

Curricula

Assessments

Teacher Development

Developing the Standards

2011-2013

July 2011

13

Page 14: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Developing the Standards

2011-2013

14

Page 15: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Closer Look at a Performance ExpectationMS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms,

and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts

Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. • Use and/or develop models to predict, describe,

support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d)

---------------------------------------------Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena • Laws are regularities or mathematical descriptions

of natural phenomena. (MS-PS1-d)

PS1.B: Chemical Reactions • Substances react chemically in

characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f)

• The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d)

Energy and Matter • Matter is conserved because

atoms are conserved in physical and chemical processes. (MS-PS1-d)

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

15

Page 16: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Closer Look at a Performance ExpectationMS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms,

and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts

Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. • Use and/or develop models to predict, describe,

support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d)

---------------------------------------------Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena • Laws are regularities or mathematical descriptions

of natural phenomena. (MS-PS1-d)

PS1.B: Chemical Reactions • Substances react chemically in

characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f)

• The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d)

Energy and Matter • Matter is conserved because

atoms are conserved in physical and chemical processes. (MS-PS1-d)

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

16

Page 17: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Closer Look at a Performance ExpectationMS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms,

and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts

Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. • Use and/or develop models to predict, describe,

support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d)

---------------------------------------------Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena • Laws are regularities or mathematical descriptions

of natural phenomena. (MS-PS1-d)

PS1.B: Chemical Reactions • Substances react chemically in

characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f)

• The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d)

Energy and Matter • Matter is conserved because

atoms are conserved in physical and chemical processes. (MS-PS1-d)

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

17

Page 18: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Closer Look at a Performance ExpectationMS-PS1 Matter and Its Interactions Students who demonstrate understanding can: MS-PS1-d. Develop molecular models of reactants and products to support the explanation that atoms,

and therefore mass, are conserved in a chemical reaction. [Clarification Statement: Models can include physical models and drawings that represent atoms rather than symbols. The focus is on law of conservation of matter.] [Assessment Boundary: The use of atomic masses is not required. Balancing symbolic equations (e.g. N2 + H2 -> NH3) is not required.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts

Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to support explanations, describe, test, and predict more abstract phenomena and design systems. • Use and/or develop models to predict, describe,

support explanation, and/or collect data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales. (MS-PS1-a), (MS-PS1-c), (MS-PS1-d)

---------------------------------------------Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena • Laws are regularities or mathematical descriptions

of natural phenomena. (MS-PS1-d)

PS1.B: Chemical Reactions • Substances react chemically in

characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-d), ( MS-PS1-e), (MS-PS1-f)

• The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-d)

Energy and Matter • Matter is conserved because

atoms are conserved in physical and chemical processes. (MS-PS1-d)

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

18

Page 19: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Scale, Proportion, and Quantity:A Crosscutting Concept

Amy Taylor Kelly Riedinger

19

Page 20: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Who are we?Amy Taylor• Associate Professor of science education in the Elementary, Middle Level, Literacy 

Department at University of North Carolina Wilmington • Prior work includes high school teaching in biology and environmental science, 

graduate research  with teachers’ and students’ understanding of scale and nanotechnology 

• Current work (past 5 years) supporting teachers and students in scientific practices 

Kelly Riedinger• Assistant Professor of science education in the Elementary, Middle Level, Literacy 

Department at University of North Carolina Wilmington• Prior work includes middle and high school teaching oceanography, physical 

science, and earth science as well as teaching in informal science settings (PreK‐8)• Current work (past 2 years) includes learning in informal science education 

settings and preservice teacher preparation

20

Page 21: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

We are not authors of the framework so we have no special insight into the decisions made by the committee. 

We can use our expertise having worked with teachers and students to help you think about types of scale and how you can engage your students in scaling, proportions, and quantity.

Caveats 

21

Page 22: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Why we find scale interesting• Experiences as a former high school science teacher• New emerging technologies have enabled scientists  to 

observe the extreme scales from the atomic and cosmic sciences

• Scale is common in both science and everyday life and impacts all disciplines of science

• When we asked scientists to indicate how important scale was to their work, responses included: – ‘‘I can’t operate without a sense of scale.’’ – ‘‘Scale is an integral part of what I do.’’ – Scale is ‘‘extremely important.’’ – ‘‘I think it would be impossible for me to practice without the 

concept of scale.’’ 

22

Page 23: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Overview

• What is scale? • Scale, Proportion, and Quantity as a crosscutting concept

• Why scale is important?• Approaches to teaching?

– Vignettes to illustrate and highlight essential features

• Resources• Discussion

23

Page 24: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

POLL: What do you first think of when you hear the word scale?

24

Page 25: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

POLL: How comfortable are you with the topic of scale and teaching this concept to K‐12 students?

NoviceI have no understanding 

of this concept.

Limited I need to learn more 

about scale before I can teach this topic to 

students.

Adequate I have some 

understanding of scale and I’m ready to try teaching the concept, 

but I’d like more information and ideas for learning activities.

ExpertI have an in‐depth 

understanding of scale and I’m ready to 

implement learning activities with students.

25

Page 26: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Scale, Proportion, and Quantity

The word scale has multiple definitions:– Scale can be a device to weigh objects – Can cover a fish or a butterfly– We scale a wall by climbing – Refer to measurement scales such as pH, temperature, or Richter 

– In science, when we talk about scale we are referring to the properties of an object that can change as size is increased or decreased, and behavior that changes as a result. 

26

Page 27: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Scale, Proportion, and Quantity

• Scale is described in terms of range & magnitude.• Three commonly used types of scales in science:

Ordinal                    Interval              Logarithmic Enhanced Fujita Scale  Kelvin  Richter Saffir‐Simpson  scale  Celsius  pH

27

Page 28: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Other Types of ScalesMass Geologic TimeBrightness Decibel scalesNano Light yearsCurrent VoltageParsecs MercaliArchitectural Map scalesMicroscopic Temperature

28

Page 29: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

29

Crosscutting Concepts In NGSS

Crosscutting concepts bridge boundaries across the various sub‐disciplines of science and engineering.

The crosscutting concepts provide students with an organizational framework for making sense of and connecting knowledge across the various science disciplines.

Page 30: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

30

Crosscutting Concept:Scale, Proportion, and Quantity

The concept of scale, proportion, and quantity spans disciplines in science and engineering. It concerns the sizes of things and the mathematical relationships between elements. 

Related to this concept, it is important for students to understand what is relevant at different measures and to recognize how changes in scale, proportion, or quantity affect a system’s structure and function.

Page 31: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

• Atomic Scale• Energy Transfer at different scales• The structure of matter at the atomic and sub‐atomic scales helps to explain a system’s larger scale structures, properties, and functions

• Radioactive decay, proportions of isotopes• Relationship among different types of quantities can be represented by proportions and ratios (e.g., velocity as a ratio of distance traveled versus time)

• Multiple phenomena (e.g., motion, light, sound, electrical and magnetic fields) occur at the macroscopic scale

Scale, Proportion, 

and Quantity

31

Examples in Physical Science

Page 32: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

• Living things are made of cells that can be observed at different scales 

• Surface area and cell transfer• Living organisms vary in size and scale (e.g., cells         whales)

• Lifespans vary• Life processes occur at different time scales

Scale, Proportion, 

and Quantity

32

Examples in Life Science

Page 33: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

• The geologic time scale depicts the relative times of events in Earth’s history

• Scale models are used to represent phenomena too large or small to observe (e.g., Earth‐Sun‐Moon models)

• Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale

• Geologists use relative positions to estimate dates • Relative distances of the sun and other stars from one other• Relationship between distance of stars and their apparent brightness

• Topographic maps use scale to represent relief and surface features

Scale, Proportion, 

and Quantity

33

Examples in Earth Science

Page 34: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Physical Science Earth Science

Elementary School

Relative scales allow objects to be compared and described (e.g., bigger and smaller; hotter and colder; faster and slower). 2‐PS1‐d

Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. 5‐PS1‐c

Natural objects and observable phenomena exist from the very small to the immensely large. 5‐ESS1‐a

34

Scale, Proportion, and Quantity in the Next Generation Science Standards

Page 35: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Physical Science Life Science Earth Science

Middle  School

Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. MS‐PS2‐b

Scientific relationships can be represented through the use of algebraic expressions and equations. MS‐PS2‐b

Phenomena that can be observed at one scale may not be observable at another scale. MS‐LS1‐a

Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. MS‐LS2‐g

Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. MS‐ESS1‐c, MS‐ESS1‐e, MS‐ESS1‐f, MS‐ESS1‐g

35

Scale, Proportion, and Quantity in the Next Generation Science Standards

Page 36: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Life Science Earth Science

HighSchool

The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. HS‐LS2‐a

Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale. HS‐LS2‐b

Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). HS‐LS3‐d

Patterns observable at one scale may not be observable or exist at other scales. HS‐ESS1‐a, HS‐ESS1‐I

Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g. linear growth vs. exponential growth). HS‐ESS1‐g

The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. HS‐ESS2‐a

Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale. HS‐ESS2‐f36

Scale, Proportion, and Quantity in the Next Generation Science Standards

Page 37: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

K‐2: Measurement; Counting, compare quantities, order  quantities; Use of scale models, diagrams, and maps 

3‐5: Measurement with standard units; Understanding that with natural objects scales range from very small to immensely large; Construct and interpret data models and graphs

MS: Estimation; Powers of 10 scales; Use algebraic thinking and equations; Recognize the function of a system may change with scale and that phenomena observable at one scale may not be observable at another scale

HS: Move back and forth between models at various scales; Understand that the significance of a phenomenon is dependent on the scale at which it occurs; Use more complex algebraic thinking and statistical relationships

37

Scale, Proportion, and Quantity: Progression

Page 38: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

The Next Generation Science Standards and Scale

The Framework Identifies 8 Science & Engineering Practices

Asking questions and defining problems

Using mathematics and computational thinking

Developing and using models Developing explanations and designing solutions

Planning and carrying out investigations

Engaging in argument from evidence

Analyzing and interpreting data

Obtaining, evaluating, and communicating information

38

Page 39: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

The Next Generation Science Standards and Scale

The Framework Identifies 8 Science & Engineering Practices

Asking questions and defining problems

Using mathematics and computational thinking

Developing and using models Developing explanations and designing solutions

Planning and carrying out investigations

Engaging in argument from evidence

Analyzing and interpreting data

Obtaining, evaluating, and communicating information

39

Page 40: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

The Next Generation Science Standards and Scale

The Framework Identifies 8 Science & Engineering Practices

Asking questions and defining problems

Using mathematics and computational thinking

Developing and using models Developing explanations and designing solutions

Planning and carrying out investigations

Engaging in argument from evidence

Analyzing and interpreting data

Obtaining, evaluating, and communicating information

40

Page 41: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

The Next Generation Science Standards and Scale

The Framework Identifies 8 Science & Engineering Practices

Asking questions and defining problems

Using mathematics and computational thinking

Developing and using models Developing explanations and designing solutions

Planning and carrying out investigations

Engaging in argument from evidence

Analyzing and interpreting data

Obtaining, evaluating, and communicating information

41

Page 42: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

The Next Generation Science Standards and Scale

The Framework Identifies 8 Science & Engineering Practices

Asking questions and defining problems

Using mathematics and computational thinking

Developing and using models Developing explanations and designing solutions

Planning and carrying out investigations

Engaging in argument from evidence

Analyzing and interpreting data

Obtaining, evaluating, and communicating information

42

Page 43: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Quick Write Prompts

• What are some examples of ways you have used scale, proportion, and quantity in your classroom? 

[Type your responses in the Chat.]

43

Page 44: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Time to Chat

• Any other questions?

44

Page 45: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Science Teaching Examples: Measurement

• Tools of measurement – Physical properties (e.g., meter stick, graduated cylinder, balance, electronic scale)

– Weather data tools (e.g., barometer, thermometer, rain gauge, wind vane)

– Oceanography tools (e.g., current cross, secchi disk, salinometer, pH water test kit)

45

Page 46: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Science Teaching Examples: Scale

• Types of scales (e.g., Geologic time scale, Fujita tornado scale, pH scale)

• Relative scales (e.g., bigger vs. smaller, colder vs. warmer)

• Scaled maps, models, diagrams– Topographic maps– Earth‐Sun‐Moon models– Dinosaur models– Ocean floor topography

46

Page 47: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document
Page 48: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

• Counting quantities (e.g., bacteria, leaves on a branch, number of flowering buds) 

• Comparisons of counting • Ordering quantities• Creating, analyzing and interpreting graphs

48

Science Teaching Examples: Quantity

Page 49: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

POLLWhich item would be in the “middle” if you were to arrange them from smallest to largest? 

A. Width of football field

C. Thickness of a penny

B. School bus

D. Diameter of a human hair

E. Length of an adult’s shoe

49

Page 50: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

POLL

A. Distance from Earth to International Space Station

C. Distance you could walk in  10 minutes

B. Diameter of Earth

D. Distance from Earth to Sun

E. Distance from Earth to Moon

50

Which item would be in the “middle” if you were to arrange them from smallest to largest? 

Page 51: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

POLL

1. Diameter of DNA strand

3. Size of a hydrogen atom

2. Diameter of a proton

4. Diameter of typical cell

5. Size of a typical small molecule

51

Which item would be in the “middle” if you were to arrange them from smallest to largest? 

Page 52: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

POLLCan you assign the actual size to the item?

Size of a typical small molecule:

A.  10 ‐12

C.  10 ‐15

D.  10 ‐10

B.  10 ‐5

E.  10 ‐9

52

Page 53: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Why is it important?

• Fascination with the size and scale of things• What research says…

– How people understand scale in terms of:• Learning of scale• Powers of Ten• Measurement and estimation• Use of scale in work/school

53

Page 54: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Students’ Thinking…

A little girl was riding in an airplane and while the plane was taking off she turned around to her parents and said:

“When do we get small?”

54

Page 55: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

As teachers…do we care if students are off by a factor of…

–10?–100?–1000?–1,000,000?

A Sense of Scale

55

Page 56: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Understanding Scale

Teachers• Most accurate in their 

knowledge of human scale • Being able to directly 

experience objects and distances influenced by concepts of size and scale

• Teachers hold more accurate concepts of large scale than small scale

Students• More difficulty with sizes 

outside the human scale• Found small scales more 

difficult to conceptualize than large scales

• Aware of very small and large objects but lacked accurate knowledge of the exact sizes, as well as their relative sizes

56

Page 57: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Body Rulers

• Study examined the impact of teaching students to use their bodies as rough measurement tools 

• Results showed that teaching students to use body rulers for estimation had a significant influence on their estimation accuracy

• Proportional reasoning was significantly correlated with students’ measurements

• Hopefully giving them a lifelong tool that they could use to make linear measurements and estimations

57

Page 58: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Powers of Ten

• Study that examined the impact of the film Powers of Ten on middle school students’ understanding of ‘‘size and scale’’

• Students’ proportional reasoning ability was found to be positively correlated with their accuracy of ordering objects and assigning them with correct size labels 

(Eames Office, 2009)58

Page 59: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

(Eames Office, 2009)59

Page 60: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

60(Eames Office, 2009)

Page 61: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

61(Eames Office, 2009)

Page 62: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

62(Eames Office, 2009)

Page 63: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

63(Eames Office, 2009)

Page 64: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

64(Eames Office, 2009)

Page 65: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

65(Eames Office, 2009)

Page 66: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

66(Eames Office, 2009)

Page 67: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

67(Eames Office, 2009)

Page 68: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

68(Eames Office, 2009)

Page 69: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

69(Eames Office, 2009)

Page 70: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

70(Eames Office, 2009)

Page 71: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

.

71(Eames Office, 2009)

Page 72: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Over 50 Scientists & Community Professionals

Used scale to…– Design buildings– Discover ancient cultures– Track hurricanes– Design equipment– Create sculpture– Build a home– Survey a stream

• Repeatedly these individuals said, ‘scale is my job’, ‘scale is in everything I do’, ‘it is essential to my job’, and ‘scale is critical.’

• Across disciplines, understanding the sizes of things and scale is essential to understanding phenomena and processes. 

• To be effective in their job, they needed to be able to move from small‐scale to large‐scale flexibly. 

72

Page 73: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Time to Chat

• What questions do you have?• How has the content presented so far influenced your thinking about teaching scale to students?

73

Page 74: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Implications For Teaching

Examples of lessons using scale

Grade Life Science Earth Science Physical Science

3‐5 Cartesian Diver Lab

6‐8 Topographic Maps Sea Floor Mapping

9‐12 Cell Size Sea Floor Mapping

74

Page 75: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Sample Activity: Elementary School

Cartesian Diver

• Demonstrate ratios of density and pressure

• How it works:– Squeezing the bottle increases 

the pressure and compresses the air in the diver (represented through dropper, ketchup packet, etc.).

– This increases the density of the diver, thus changing the buoyancy and causing it to sink.

75

Page 76: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Creating Topographic Maps

• Use Play‐doh® to create a landscape.• Measure and mark off 2cm sections from 

the base of the landscape to the top.• Use fishing line to cut a layer for each of 

the marked sections. Place each section on paper and trace around. Repeat with remaining marks.

• Have students note and compare the landforms to their created maps. Help them to make connections between this activity and topographic maps. 

• As an extension, use real topographic maps and have students create the landforms using their Play‐doh®. 

USGS Activity

http://vulcan.wr.usgs.gov/Outreach/Publications/GIP19/chapter_three_play‐dough_topo.pdf

76

Sample Activity: Middle School

Page 77: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Mapping the Ocean Floor

NOAA Activity

http://csc.noaa.gov/psc/seamedia/Lessons/G5U4L3%20Seafloor%20Profiling.pdf

77

Sample Activity: Middle/High School

Page 78: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Similar technique of “determining topography” at the nanoscale!

78

Atomic Force Microscope

Page 79: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Cell Size and Surface Area

• Obtain three agar/potato cubes:– 1 cm3, 2 cm3, 3 cm3

• Place the cubes in the beaker and pour in enough diffusion medium to cover them and soak for 20 minutes. 

• Cut the cubes in half and examine and compare their inside appearance. 

• Measure the depth of the colored zones for each cube in mm and record data.Extreme Science Activity

79

Sample Activity: High School

Page 80: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Parameters Case I Case III Case V Case VII Case IX

Length 1 3 5 7 9

Face area 1 9 25 49 81

Surface area 6 54 150 294 486

Volume 1 27 125 343 729

Area/Volume ratio 6 2 1.2 0.86 0.67

Volume:  Length x Width x HeightSurface Area:  Length x Width x 6 (# of faces of cube)

80

Effects of Scale

Page 81: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Examples of the impact of increasing surface area include:

• Why we chew food before swallowing (more surface area leads to faster digestion in the stomach)

• Villi in intestines and alveoli lungs• Why elephant ears are so large (more surface area 

leads to faster cooling rates)• Decreasing surface area helps an animal retain 

body heat, such as when a dog curls up outside on a cold day

• Volume of single‐celled organisms is restricted by the need for metabolites to reach interior of the cell solely by diffusion

As scales change, surface area to volume relationships have significant influences on physical, chemical, geological, and biological processes and phenomena.

81

Page 82: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

POLL: How comfortable are you with the topic of scale and teaching this concept to K‐12 students?

NoviceI have no understanding 

of this concept.

Limited I need to learn more 

about scale before I can teach this topic to 

students.

Adequate I have some 

understanding of scale and I’m ready to try teaching the concept, 

but I’d like more information and ideas for learning activities.

ExpertI have an in‐depth 

understanding of scale and I’m ready to 

implement learning activities with students.

82

Page 83: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Suggestions for Teaching Scale

• Take time to emphasize sizes and scales• Verbalize reasoning across scales• Teach students to estimate (body rulers and pacing)• Teach measurement and various units• The Powers of Ten video works!• Teach them benchmark sizes and how to reason with benchmarks

• Encourage curiosity and scale thinking across disciplines

• Awareness of emerging field of nanotechnology

83

Page 84: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Other Scale Resources

Eames Office Website. Powers of Ten Film at http://www.powersof10.com/film

Jones, M.G., Taylor A., & Falvo, M. (2009).  Extreme Science.   Arlington VA: NSTA Press, 356 pages.

Jones, M.G., Falvo, M., Taylor, A., & Broadwell, B.  (2007). Nanoscale Science.  Arlington VA: NSTA Press, 155 pages.

Nanoscale Science Education: http://www.ncsu.edu/project/scienceEd/

Taylor, A., Jones, M.G., & Pearl, T.P. (2008). Bumpy, sticky, and shaky: Nanoscale science and the curriculum.  Science Scope, 31(7), 28‐35. 

84

Page 85: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

ACKNOWLEDGEMENT

This material is based upon work supported by the NSF under Grants No. 0411656, and 0507151

All research based on collaboration with M. Gail Jones, Professor of Science Education from North Carolina State University

85

Page 86: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Contact Information

Amy [email protected]

Kelly [email protected]

86

Page 87: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

NSTA Resources on NGSSwww.nsta.org

87

Page 88: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

NSTA Resources on NGSSwww.nsta.org/ngss

88

Page 89: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Community Forums

89

Page 90: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

NSTA Print Resources

NSTA Reader’s Guide to the Framework

NSTA Journal Articles about the Framework and the Standards

90

Page 91: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

NSTA National Conference

San Antonio, TexasApril 11-14

The place to be to learn about

91

Page 92: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Web Seminars on Crosscutting Concepts

Feb. 19: PatternsMarch 5: Cause and effect: Mechanism and explanationMarch 19: Scale, proportion, and quantityApril 16: Systems and system modelsApril 30: Energy and matter: Flows, cycles, and conservationMay 14: Structure and functionMay 28: Stability and change

All sessions will take place from 6:30-8:00 p.m. Eastern time on Tuesdays

92

Page 93: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Web Seminars on NGSS

Archives of past programs

Fall 2012Scientific and Engineering Practices (series of 8)

Winter/Spring 2013Second Draft of NGSSEngineering in NGSSNGSS in the Elementary GradesConnecting NGSS with Common Core Math and ELACrosscutting Concepts series

http://learningcenter.nsta.org/products/symposia_seminars/NGSS/webseminar.aspx

93

Page 94: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

on NGSS

Moving Toward NGSS: Using Formative Assessment to Link Instruction and LearningMembers: $179; Non-members $199Live web seminars on April 18, 25, May 2Presenter: Page Keeley

Moving Toward NGSS: Visualizing K-8 Engineering Education Members: $179; Non-members $199Live web seminars on May 16, 23, 30Presenters: Christine Cunningham and Martha Davis

Register at: learningcenter.nsta.org/ngss94

Page 95: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Thanks to today’s presenters!

95

Amy TaylorUniversity of North Carolina Wilmington

Ted WillardNational Science Teachers Association

Kelly RiedingerUniversity of North Carolina Wilmington

Page 96: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

Thank you to the sponsor of today’s web seminar:

This web seminar contains information about programs, products, and services offered by third parties, as well as links to third-party websites. The presence of a listing or such information does not constitute an endorsement by NSTA of a

particular company or organization, or its programs, products, or services.96

Page 97: NGSS Crosscutting Concepts: Scale, Proportion, and Quantity · 3/19/2013  · The performance expectations above were developed using the following elements from the NRC document

National Science Teachers AssociationDavid Evans, Ph.D., Executive Director

Zipporah Miller, Associate Executive Director, Conferences and Programs

NSTA Web Seminar TeamAl Byers, Ph.D., Assistant Executive Director,

e-Learning and Government PartnershipsBrynn Slate, Manager, Web Seminars, Online

Short Courses, and SymposiaJeff Layman, Technical Coordinator, Web

Seminars, SciGuides, and Help Desk97