new the revival of active set methods - argonne national laboratorymmin/mcs/sven.pdf · 2005. 1....

60
Informal Argonne Seminar Series, 2004 The Revival of Active Set Methods Sven Leyffer, [email protected] Mathematics & Computer Science Division, Argonne National Laboratory 1. Why Do We Need Active Set Methods? 2. Active Set Methods for Quadratic Programs 3. Active Set Methods for Nonlinear Programs

Upload: others

Post on 16-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Informal Argonne Seminar Series, 2004

The Revival of Active Set Methods

Sven Leyffer, [email protected]

Mathematics & Computer Science Division, Argonne National Laboratory

1. Why Do We Need Active Set Methods?

2. Active Set Methods for Quadratic Programs

3. Active Set Methods for Nonlinear Programs

Page 2: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Philosophy

Lesson

Sven Leyffer Active Set Methods 2 of 31

Page 3: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence

• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification

• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence

• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 4: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification

• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence

• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 5: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence

• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 6: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Issues in Optimization Solvers

minimizex

f (x) subject to c(x) ≥ 0

1. Global Convergence• merit function, e.g. f (x) + π‖c(x)−‖ for π > ‖y∗‖D

• filter ... more later

2. Active Set Identification• given active set, simply use Newton’s method• step computation: update estimate of active set• alternative: interior point methods Yc(x) = µe & µ ↘ 0

3. Fast Local Convergence• conjugate gradients et al.• (constrained) preconditioners

Sven Leyffer Active Set Methods 3 of 31

Page 7: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Interior point methods (IPMs) usually faster than ASMs:

1. Pivoting inefficient for huge problems

2. Single QP solve ' several Newton steps of IPM

3. Null-space projected Hessian factors are DENSE

Why should we be interested in ASMs?

• ASMs often more robust than interior point methods• ASMs better for warm-starts (repeated solves)• Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

1. Projected gradient approach

2. Sequential linear programming approach

Sven Leyffer Active Set Methods 4 of 31

Page 8: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Interior point methods (IPMs) usually faster than ASMs:

1. Pivoting inefficient for huge problems

2. Single QP solve ' several Newton steps of IPM

3. Null-space projected Hessian factors are DENSE

Why should we be interested in ASMs?

• ASMs often more robust than interior point methods• ASMs better for warm-starts (repeated solves)• Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

1. Projected gradient approach

2. Sequential linear programming approach

Sven Leyffer Active Set Methods 4 of 31

Page 9: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Why Do We Need Active Set Methods (ASMs)?

Interior point methods (IPMs) usually faster than ASMs:

1. Pivoting inefficient for huge problems

2. Single QP solve ' several Newton steps of IPM

3. Null-space projected Hessian factors are DENSE

Why should we be interested in ASMs?

• ASMs often more robust than interior point methods• ASMs better for warm-starts (repeated solves)• Easier to precondition ... iterative solves

Challenge: overcome 1. & 2. from above

Two ways to make large changes to active set

1. Projected gradient approach

2. Sequential linear programming approachSven Leyffer Active Set Methods 4 of 31

Page 10: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

ACTIVE SETMETHODSFOR QPs

Sven Leyffer Active Set Methods 5 of 31

Page 11: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Sets for Quadratic Programs (QPs)

minimizex

12xTHx + gTx

subject to ATx = bl ≤ x ≤ u

• H is symmetric (indefinite?)

• AT is m × n, m < n, full rank

• General: l ≤(

xATx

)≤ u

Active set A(x) = {i | xi = li or xi = ui}Inactive set I(x) = {1, . . . , n} − A(x)

Sven Leyffer Active Set Methods 6 of 31

Page 12: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Sets for Quadratic Programs (QPs)

Active set A(x) = {i | xi = li or xi = ui}Inactive set I(x) = {1, . . . , n} − A(x)

Given A, QP solution (x∗I , y∗) solves[

HI,I −A:,IAT

:,I

](xIy

)=

(−gI − HI,AxA

b − AT:,AxA

)Active-set methods search for A∗:• Delete entries from Ak ; update a factorization; compute step

• Possibly add entries to Ak

• ∃ robust solvers; good for warm starts ... n large ???

Sven Leyffer Active Set Methods 7 of 31

Page 13: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

PROJECTEDGRADIENT

Sven Leyffer Active Set Methods 8 of 31

Page 14: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Projected Gradient for Box Constrained QPs

Simpler box constrained QP ...{minimize

x

12xTHx + gTx =: q(x)

subject to l ≤ x ≤ u

Projected steepest descent P[x − α∇q(x)]◦ piecewise linear path

... large changes to A-set

... but slow (steepest descent)

x−tg

P[x−tg]

xc Cauchy point ≡ first minimum of q(x(α)), for α ≥ 0

Theorem: Cauchy points converge to stationary point.

Sven Leyffer Active Set Methods 9 of 31

Page 15: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Projected Gradient & CG for Box Constrained QPs

x0 given such that l ≤ x0 ≤ u; set k = 0WHILE (not optimal) BEGIN

1. find Cauchy point xck & active set A(xc

k )

2. (approx.) solve box QP in subspace I := {1, . . . , n} − A(xck )

minimizex

12xTHx + gTx

subject to l ≤ x ≤ uxi = [xc

k ]i ,∀ i ∈ A(xck )

⇔ apply CG to ...HI,IxI = ...

for xk+1; set k = k + 1

END

Cauchy point ⇒ global convergence ... but faster due to CG

Sven Leyffer Active Set Methods 10 of 31

Page 16: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

How to Include ATx = b?

Projection onto box is easy, but tough for general QP

PQP [z ] =

minimize

x(x − z)T (x − z)

subject to ATx = bl ≤ x ≤ u

... as hard as original QP! ... Idea: project onto box only

⇒ subspace solve HI,IxI = ... becomes solve with KKT system[HI,I −A:,IAT

:,I

](xIy

)= ...

Which gradient / merit function in Cauchy step?

Sven Leyffer Active Set Methods 11 of 31

Page 17: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

AUGMENTEDLAGRANGIAN

Sven Leyffer Active Set Methods 12 of 31

Page 18: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

The Augmented Lagrangian

Arrow & Solow (’58), Hestenes (’69), Powell (’69)

minimizex

L(x , yk , ρk) = f (x) − yTk c(x) + 1

2ρk‖c(x)‖2

As yk → y∗: • xk → x∗ for ρk > ρ• No ill-conditioning, improves convergence rate

• An old idea for nonlinear constraints ... smooth merit function• Poor experience with LPs (e.g., MINOS vs. LANCELOT)• But special structure of LPs (and QPs) not fully exploited

f (x) = 12xTHx + gTx & c(x) = ATx − b

Sven Leyffer Active Set Methods 13 of 31

Page 19: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal xk of

minimizel≤x≤u

f (x)− yTk c(x) + 1

2ρk‖c(x)‖2

2. IF ‖c(xk)‖ ≤ ηk ↘ 0 THENUpdate yk

(typically yk+1 = yk − ρkc(xk)

)ELSE increase ρk

END

Arbitrary sequences: ηk&ωk control feasibility & optimality

Sven Leyffer Active Set Methods 14 of 31

Page 20: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal xk of

minimizel≤x≤u

f (x)− yTk c(x) + 1

2ρk‖c(x)‖2

2. IF ‖c(xk)‖ ≤ ηk ↘ 0 THENUpdate yk

(typically yk+1 = yk − ρkc(xk)

)ELSE increase ρk

END

Arbitrary sequences: ηk&ωk control feasibility & optimality

Sven Leyffer Active Set Methods 14 of 31

Page 21: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Bound Constrained Lagrangian (BCL)

Minimizing the augmented Lagrangian subject to bounds:

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal xk of

minimizel≤x≤u

f (x)− yTk c(x) + 1

2ρk‖c(x)‖2

2. IF ‖c(xk)‖ ≤ ηk ↘ 0 THENUpdate yk

(typically yk+1 = yk − ρkc(xk)

)ELSE increase ρk

END

Arbitrary sequences: ηk&ωk control feasibility & optimality

Sven Leyffer Active Set Methods 14 of 31

Page 22: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian for Linear Constraints

Nonlinear c(x) c(x) = ATx − b

(yk , ρk) ∈ D ρk > ρ

∀(ρ, y) ∈ D, minimize L(x , y , ρ) has unique solution x(y , ρ):• bound constrained augmented Lagrangian converges• Hessian ∇2

xxL(x , y , ρ) is positive definite on optimal face

ρ ≈ 2‖H∗‖

‖A∗AT∗‖... depends on active set ... from dual Hessian

Sven Leyffer Active Set Methods 15 of 31

Page 23: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian for Linear Constraints

Nonlinear c(x) c(x) = ATx − b

(yk , ρk) ∈ D ρk > ρ

∀(ρ, y) ∈ D, minimize L(x , y , ρ) has unique solution x(y , ρ):• bound constrained augmented Lagrangian converges• Hessian ∇2

xxL(x , y , ρ) is positive definite on optimal face

ρ ≈ 2‖H∗‖

‖A∗AT∗‖... depends on active set ... from dual Hessian

Sven Leyffer Active Set Methods 15 of 31

Page 24: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 25: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)

5. Line-search on L(xck + α∆x , y c

k + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 26: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END

1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 27: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set

... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 28: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

QP by Projected Augmented Lagrangian QPPAL

WHILE (not optimal) BEGIN

1. Find ωk ↘ 0 optimal solution xck of

minimizel≤x≤u

12xTHx + gTx − yT (ATx − b) + 1

2ρk‖ATx − b‖2

2. Find A(xck ) & estimate penalty ρ = 2 ‖HI‖/‖AIAT

I ‖3. IF ρ > ρk THEN update ρk+1 = ρ & CYCLE

ELSE update multiplier: y ck = yk − ρk(A

Txck − b)

4. Solve equality QP in subspace → (∆xI , ∆y)[HI,I −A:,IAT

:,I

](∆xI∆y

)= −

([∇xL(xc

k , y ck , 0)]I

ATxck − b

)5. Line-search on L(xc

k + α∆x , y ck + α∆y , ρ); update x , y , k , ρ

END1.-3. identify active set ... 4. gives fast convergence

Sven Leyffer Active Set Methods 16 of 31

Page 29: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

FilterMethods

Sven Leyffer Active Set Methods 17 of 31

Page 30: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Two competing aims in augmented Lagrangian:

1. reduce hk := ‖ATxk − b‖ ≤ ηk ↘ 0

2. reduce θk := ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk ↘ 0

... why should one sequence {ωk} , {ηk} fit all problems ???

Sven Leyffer Active Set Methods 18 of 31

Page 31: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Two competing aims in augmented Lagrangian:

1. reduce hk := ‖ATxk − b‖ ≤ ηk ↘ 0

2. reduce θk := ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk ↘ 0

... why should one sequence {ωk} , {ηk} fit all problems ???

Sven Leyffer Active Set Methods 18 of 31

Page 32: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

Ax − b

L(x,y,r)−z

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 33: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

L(x,y,r)−z

Ax − b

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 34: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

L(x,y,r)−z

Ax − b

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 35: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

A Filter for Augmented Lagrangian Methods

Introduce a filter F to promote convergence

• list of pairs (‖ATxl − b‖, ‖∇Ll − zl‖)• no pair dominates any other pair

• new xk acceptable to filter F , iff

1. hk ≤ 0.99 · hl ∀l ∈ F2. θk ≤ 0.99 · θl ∀l ∈ F

• remove redundant entries

• reject new xk , if hk ≥ hl & θk ≥ θl

forbidden

L(x,y,r)−z

Ax − b

... and old friend from Chicago ...

Sven Leyffer Active Set Methods 19 of 31

Page 36: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 37: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 38: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 39: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 40: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 41: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point xck for filter:

1. xck , y c

k acceptable to filter

2. ‖∇L(xk , yk , ρk)− zk‖ ≤ ωk

. . . optimality of Lagrangian

New: ωk := 0.1 max {‖∇Ll − zl‖}... depends on filter

forbidden

Ax − b

L(x,y,r)−z

1. ensures that back-tracking line-search will succeed... if not acceptable then reduce ωk+1 = ωk/2

2. & ωk+1 = ωk/2 ensure new entry can be added to filter

Why do you keep the penalty parameter?... combines search directions for ‖ATx − b‖, and‖∇L(xl , yl , ρl)− zl‖⇒ gradient projection possible

Sven Leyffer Active Set Methods 20 of 31

Page 42: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Evolution: blockqp4 100

AUGLAG

FILTER

red = lower bound activegreen = upper bound active

Sven Leyffer Active Set Methods 21 of 31

Page 43: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Evolution: blockqp4 100

AUGLAG FILTER

red = lower bound activegreen = upper bound active

Sven Leyffer Active Set Methods 21 of 31

Page 44: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence

• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification

• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 45: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification

• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 46: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 47: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set QP Method

1. Global Convergence• augmented Lagrangian & filter⇒ no arbitrary parameters

2. Active Set Identification• projected gradient on augmented Lagrangian• easy penalty parameter estimate

3. Fast Local Convergence• conjugate gradients on equality QP• (constrained) preconditioners ???• Benzi-Golub ... ties in with augmented Lagrangian

Sven Leyffer Active Set Methods 22 of 31

Page 48: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

ACTIVE SETMETHODSFOR NLPs

Sven Leyffer Active Set Methods 23 of 31

Page 49: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Quadratic Programming (SQP)

NLP: minimizex

f (x) subject to c(x) ≥ 0

SQP method of choice for NLP

Compute displacement/step d by solving QP subproblem

minimized

gTd + 12dTWd

subject to c + ATd ≥ 0‖d‖∞ ≤ ∆ Trust-Region

where g = ∇f (x), A = ∇c(x)T , W = ∇2L(x , y)

Sven Leyffer Active Set Methods 24 of 31

Page 50: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Quadratic Programming (SQP)

WHILE (not optimal) BEGIN

1. Compute displacement/step d by solving QP subproblem

2. IF step d acceptable THENx = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSEx = x & decrease trust-region radius ∆ = ∆/2

END

• How to make it work for n large ???QP solve is bottleneck ... could use new QPFIL

• ∃ excellent LP solvers ... but QP harder

Sven Leyffer Active Set Methods 25 of 31

Page 51: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

Throw away quadratic term ⇒ linear program

Compute displacement/step dLP by solving LP subproblem

minimized

gTd+12dTWd

subject to c + ATd ≥ 0‖d‖∞ ≤ ∆ Trust-Region

where g = ∇f (x), A = ∇c(x)T , W = ∇2L(x , y)

Sven Leyffer Active Set Methods 26 of 31

Page 52: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

WHILE (not optimal) BEGIN

1. Compute displacement/step dLP by solving LP subproblem

2. Identify active constraints: A = {i : ci + aTi dLP = 0} & solve

minimized

gTd + 12dTWd

subject to ci + aTi d = 0 i ∈ A

⇔[

HI,I −AT:,I

A:,I

](dIy

)= ...

equality QP for step d

3. IF step d acceptable THENx = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSEx = x & decrease trust-region radius ∆ = ∆/2

END⇒ slow local convergence ... steepest descent

How expensive areLPs??

Sven Leyffer Active Set Methods 27 of 31

Page 53: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Sequential Linear Programming

WHILE (not optimal) BEGIN

1. Compute displacement/step dLP by solving LP subproblem

2. Identify active constraints: A = {i : ci + aTi dLP = 0} & solve

minimized

gTd + 12dTWd

subject to ci + aTi d = 0 i ∈ A

⇔[

HI,I −AT:,I

A:,I

](dIy

)= ...

equality QP for step d

3. IF step d acceptable THENx = x + d & increase trust-region radius ∆ = 2 ∗∆

ELSEx = x & decrease trust-region radius ∆ = ∆/2

ENDHow expensive are LPs??

Sven Leyffer Active Set Methods 27 of 31

Page 54: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Identification by SLP

Polyhedral trust-region makes LP solves inefficient

minimized

gTd

subject to c + ATd ≥ 0‖d‖∞ ≤ ∆ Trust-Region

• many changes to active trust-region bounds

• LP solvers too slow near solution

Sven Leyffer Active Set Methods 28 of 31

Page 55: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

minimized

gTd

subject to c + ATd ≥ 0‖d‖2 ≤ ∆ Trust-Region

• trust-region (always) active ⇒ no changes

• subproblem is now NLP ... as hard as original problem ???

Sven Leyffer Active Set Methods 29 of 31

Page 56: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Active Set Identification by SLP

Ellipsoidal trust-region makes LPs into NLPs

minimized

gTd

subject to c + ATd ≥ 0dTd ≤ ∆2 Trust-Region

• trust-region (always) active ⇒ no changes

• subproblem is now NLP ... as hard as original problem ???

Sven Leyffer Active Set Methods 30 of 31

Page 57: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence

• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification

• dLP LP steps from subproblem

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31

Page 58: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification

• dLP LP steps from subproblem

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31

Page 59: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification• dLP LP steps from subproblem

3. Fast Local Convergence

• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31

Page 60: New The Revival of Active Set Methods - Argonne National Laboratorymmin/MCS/sven.pdf · 2005. 1. 24. · The Revival of Active Set Methods Sven Leyffer, leyffer@mcs.anl.gov Mathematics

Philosophy Quadratic Programs Nonlinear Programs

Summary: Active Set NLP Method

1. Global Convergence• Sequential bound constraint• Trust-region & Filter

2. Active Set Identification• dLP LP steps from subproblem

3. Fast Local Convergence• conjugate gradients on equality QP• (constrained) preconditioners ???

Sven Leyffer Active Set Methods 31 of 31