new si techniques for larg system performance tuning …for large system performance tuning (part 2)...

12
New SI Techniques for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper was originally published in the proceedings of DesignCon 2016. Part 1 of this paper was published in the July 2016 issue of The PCB Design Magazine. 3.5 FFE vs. CTLE vs. DFE While FFE, CTLE and DFE are all effective forms of equalization, they have different characteristics, both in the time domain and the frequency domain. Often, several of these forms of equalization are combined in a single channel; and so the characteristics of each form of equalization must be considered when searching for an optimum solution. Figure 11 presents the example of a single pulse response equalized by FFE, CTLE, and DFE, thus illustrating the differences in characteristics in the time domain. The unequalized pulse responses are shown in red while the equalized pulse responses are shown in blue. Note that the equalized pulse responses from FFE and CTLE look remarkably similar, although the pulse response from CTLE has lower amplitude than that of the pulse response from FFE. This difference will be explained below in the context of the frequency domain differences. The pulse response due to DFE is quite different from those due to FFE or CTLE. Whereas the FFE and CTLE pulse responses are relatively smooth, the DFE pulse response contains discontinuities spaced one UI apart. These discontinuities are due to the rising and falling edges of the recovered data driving the DFE taps. Note also that DFE does not affect the amplitude of the main pulse. One way to look at the time domain difference between FFE and DFE is that whereas a single FFE tap affects the intersymbol interference at multiple bit positions, a single DFE tap only affects a single bit position. Thus, DFE is a more flexible form equalization that is well suited

Upload: others

Post on 25-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

New SI Techniques for Large System Performance Tuning (Part 2) byDonaldTelian,SIGUYS,andMichaelSteinberger,BarryKatz,SISOFT

ThispaperwasoriginallypublishedintheproceedingsofDesignCon2016.Part1ofthispaperwaspublishedintheJuly2016issueofThePCBDesignMagazine.

3.5FFEvs.CTLEvs.DFEWhileFFE,CTLEandDFEarealleffectiveformsofequalization,theyhavedifferentcharacteristics,bothinthetimedomainandthefrequencydomain.Often,severaloftheseformsofequalizationarecombinedinasinglechannel;andsothecharacteristicsofeachformofequalizationmustbeconsideredwhensearchingforanoptimumsolution.Figure11presentstheexampleofasinglepulseresponseequalizedbyFFE,CTLE,andDFE,thusillustratingthedifferencesincharacteristicsinthetimedomain.Theunequalizedpulseresponsesareshowninredwhiletheequalizedpulseresponsesareshowninblue.NotethattheequalizedpulseresponsesfromFFEandCTLElookremarkablysimilar,althoughthepulseresponsefromCTLEhasloweramplitudethanthatofthepulseresponsefromFFE.Thisdifferencewillbeexplainedbelowinthecontextofthefrequencydomaindifferences.ThepulseresponseduetoDFEisquitedifferentfromthoseduetoFFEorCTLE.WhereastheFFEandCTLEpulseresponsesarerelativelysmooth,theDFEpulseresponsecontainsdiscontinuitiesspacedoneUIapart.ThesediscontinuitiesareduetotherisingandfallingedgesoftherecovereddatadrivingtheDFEtaps.NotealsothatDFEdoesnotaffecttheamplitudeofthemainpulse.OnewaytolookatthetimedomaindifferencebetweenFFEandDFEisthatwhereasasingleFFEtapaffectstheintersymbolinterferenceatmultiplebitpositions,asingleDFEtaponlyaffectsasinglebitposition.Thus,DFEisamoreflexibleformequalizationthatiswellsuited

Page 2: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

forcleaningupanyintersymbolinterferenceleftoverfromtheFFE/CTLEcombinationprovidedithasasufficientnumberoftaps.AnotherwaytolookatthetimedomaindifferencebetweenFFE/CTLEandDFEisthatFFEandCTLEtendtoequalizeacrosstheentirebittimewhereas,becauseofthediscontinuities,DFEisonlytryingtoequalizeinthemiddleoftheeye.Thus,FFEandCTLEtendtobebettersuitedforremovingthebulkoftheintersymbolinterference.It’salsoimportanttorecognizethatinmostcases,onlyFFEcanperformequalizationattheprecursorbitposition.Thatis,mostCTLEandDFEdesignscannotequalizetheeffectsofabitthathasn’tbeenreceivedyet.Thus,whenworkingwithaDFEthathasalargenumberoftaps,theoptimalconfigurationwillusuallyusetheFFEforprecursorequalizationonlyandlettheDFEdothepostcursorequalization[7].(Inotherwords,settheFFEpostcursorequalizationtapstozero.)ThetradeoffbetweenFFEandCTLEisaddressedlaterinthissection.

Figure11:ComparisonofEqualizedPulseResponsesfromFFE,CTLEandDFE

FFE

CTLE

DFE

Unequalized Equalized

Page 3: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

Figure12presentsthetransferfunctionsofanexamplechannelequalizedbyFFE,CTLE,andDFE.Theunequalizedtransferfunctionisshowninredandtheequalizedtransferfunctionsareshowninblue.

Figure12:ComparisonofEqualizedTransferFunctionsfromFFE,CTLEandDFEFortheCTLEthereisanadditionaltransferfunction(showningreen)whichwouldbeproducedbyaCTLEwithabetterdesign.TheCTLEtransferfunctionshowninblueistypicalofmanyCTLEdesigns-thegainatlowfrequenciesisreducedsoastocreateanincreaseingainathigherfrequencies.Thisisacomparativelysimplecircuittodesign,forexamplebyinsertingdegenerativefeedbackinthesourcecircuitofadifferentialamplifier.It’smoredifficulttodesignacircuitthathasunitygainatlowfrequenciesandthenproducesagainpeakathigherfrequencies.

FFE

CTLE

DFE

Unequalized Equalized Equalized ( better design )

Less gain than FFE (!)

More gain than FFE (good)

Page 4: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

TheadditionalinformationisinthecomparisonbetweentheFFEandCTLEresponses.Atthefrequenciesthatmatterthemost(thelowerfrequencies),theshapesofthetransferfunctionsarenearlyidentical.Themostimportantdifferenceisintheoverallgain.Atafrequencyequaltoonehalfthesymbolrate,theFFEhasexactlyunitygain.Incomparison,thelowerperformanceCTLEdesignhasasmallamountoflossatthatfrequencyandthehigherperformanceCTLEdesignhasasignificantamountofgain.Thus,forequivalentequalization,thelowerperformanceCTLEproducesalowereyeheightthantheFFEwhilethehigherperformanceCTLEproducesagreatereyeheight.

Figure13:EyeDiagramsProducedbyFFE,TypicalCTLEandDFE

Forthesakeofcompleteness,Figure13isacomparisonoftheeyediagramsproducedbythethreedifferenttypesofequalization.

FFE

CTLE

DFE

Page 5: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

ThenetresultisthatifbothFFEandCTLEarepresentinthechannelandhavesimilarequalizationcapabilities(usuallythecase),thechoicebetweenFFEandCTLEwilldependonthenetgainoftheCTLE.InthecaseofthelowerperformanceCTLE,onewoulddependprimarilyontheFFEand,ifanything,disabletheCTLE;whereasinthecaseofthehigherperformanceCTLE,onewoulddefinitelychoosetheCTLEandsettheFFEtounitygain. 3.6ManualOptimizationSummary1. Theprocedureisbasedonananalysisofthepulseresponse.2. Recovertheclockfromthepulseresponseusingthehulahoopalgorithm.3. IftheFFEhasaprecursortap,determinethattapvalueusingtheprocedureinSection3.3.4. IftheCTLEhassufficientgain,choosetheCTLEconfigurationwhichminimizesintersymbol

interference.Otherwise,iftheDFEhasenoughtaps,dependontheDFEforthebulkoftheequalization.Otherwise,usetheproceduresinSection3.3andSection3.4tochoosetheFFEtapweights.

4.Cost/PerformanceTuningwithManufacturingTechniquesManufacturingimprovementsthatenhanceperformanceand/orreducecostaredescribedinthissection.4.1RemovingDiscontinuitiesUsingDesignandProcessControlSeriallinkperformanceisdirectlyrelatedtotheexistence,placementandmagnitudeofimpedancediscontinuitiesinthesignalpath.Whilesomediscontinuitiesareunavoidable,bycoordinatingmultipledisciplinesovertimeitispossibletosignificantlyreducethemagnitudeandimpactofdiscontinuities.

Figure14:TDRof7DiscontinuitiesAcrossDesignIterations

Figure14showstheimpedanceofsimilarsignalpathsacrossthreedesigniterations,asmeasuredonthreedifferentPCBsusingTimeDomainReflectometry(TDR).Thephysical

Page 6: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

requirementsofthisinterconnectrequiredsevendiscontinuitiesinlessthanfourinchesacrossuptosevendifferentPCBlayers,bothmicrostripandstripline.Theplotillustrateshowthemagnitudeofthediscontinuitieswerereducedovertimeinrelationtoourtargetimpedance(blackline);thefirstiteration(red)showingvariationsupto20%,theseconditeration(blue)becomingmoreconsistentyetstillvaryingupto15%,andthethirditeration(green)lookingconsistentwithvariationsnowwithintypicaltolerancesof8%andmostlyrelatedtotheexternalcomponentoverwhichwehavelesscontrol.Theseconditeration(blue)showsgoodprogressinthediscontinuitiesunderdesigncontrol,yethighlightsthechallengeofachievingconsistenttraceimpedancewhenusingnewPCBmaterials.Thethirditeration(green)showsexcellentprogressinreducingdiscontinuitiesbyusingbothdesignandprocesscontrolacrosssevensignalsspreadacrosssevenPCBlayers. WhileTDRplotsrevealthemagnitudeandlocationofthediscontinuitiesofconcern,Figure15illustratestheimpactofthesediscontinuitiesintermsofmorefamiliareyeopenings.Thefirstthroughthirddesigniterationsareshownfromlefttoright.Thetoprowshowsthevariationduetoonlythesetraces,revealingtheirassociatedISIandimpactonaneyeopeningduetothediscontinuities.Asthediscontinuitiesshownrepresentonlyonesectionofalargerchannel,thebottomrowadds12”ofPCBtracetoexaminetheirsystemlevelimpact.Bothrowsaresimulatedat11.5Gbpsandutilizethetrace’smeasuredS-parameters,fromwhichtheTDRsabovewerederived.

Figure15:EyeOpeningIterations,DiscontinuitiesOnly(top)oratSystemLevel(bottom)

Page 7: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

Thesystem-levelplotsaboveillustratetheimportanceofsimulatingandmeasuringasufficientnumberofbitsand/orfailingbitpatterns,withoutwhichthethreeeyesmightlookthesame.Inotherwords,ISIcausedbydiscontinuitiesmaynotappeartoaffecteyeopeningsinallsituations.Onechallengeindevelopingseriallinksistheygivetheillusionofworkingwhentheyarenotworkingwell.Whenworkingtoreducediscontinuities,thefollowingitemsarehelpful:

1. Use2Dand3Dfieldsolversderivedimensionsthatproducedesiredimpedancesforphysicalstructuressuchasdifferentialtraces,vias,BGApadsandbreakouts,capacitorplanecutouts,etc.

2. WorkcloselywithPCBfabricationvendorstoachieveanddemonstratepredictableandconsistentimpedances–particularlywhenworkingwithnewmaterials,processes,andfabricationfacilities.

3. Measure,measure,measure.Alwaysmeasureactualhardwarewheneverpossible.Ifyoudonothavetheequipmentorcapabilitytoproducereliablemeasurements,findathirdpartythatcandoso.Thecostofperformingmeasurementsismuchlowerthanthecostofdebuggingproductsinthefield.

4. Simulateyourdesignbeforeandafterfabrication,comparingandimprovingtheresultsusingbothextractedandmeasuredstructures.Surpriseshappen.

5. LearnhowtoreadTDRinformationfrombothsimulationandmeasurement.Thishelpsyoupinpointthecause,location,andmagnitudeofeachdiscontinuityenablingyoutodeterminewhichdiscontinuitiesareofconcernandwhattodoaboutthem.

6. Developanintuitivesenseofwhichstructuresarecapacitiveandinductive,andhowthatrelatestoimpedance.Thisenablesyoutomakechangestophysicalstructuresinlayout,fieldsolvers,andsimulatorstoreducediscontinuities.Capacitivestructuresarefatandclosetoground,whileinductivestructuresareskinnyandfurtheraway.Z=sqrt(L/C).

7. Determinewhatleveloftoleranceissufficientforthetechnologyanddatarateathand.Thisenablesyoutodeterminewhenthemagnitudesofyourdiscontinuitiesare“goodenough”.

4.2ReducingDiscontinuitiesUsingDual-DiameterViasIntheauthors’DesignCon2014paper[4]wedemonstratedperformanceimprovementsupto400%byimprovingdiscontinuitiesinlessthan1%ofachannel’sinterconnect,ormorespecificallytwooftheviasinthechannel.Inpractice,onewaytoimproveavia’simpedanceistousea“dual-diameter”viastructurethatusestwodrillstoallowasmuchnarrowholeaspossible.Thissectionaugmentstheanalysisshownin[4]byprovidingmeasuredconfirmationoftheimprovementsofferedbyincreasingviaimpedance.

Page 8: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

Measureddatacomparingnormalanddual-diameterversionsofelevenvia’sdifferentialimpedanceisplottedatleftinFigure16,organizedwithdeeperPCBlayersfromlefttoright.Atrightisasampleplotcomparingoneofthelayer23vias(red=normal,green=dual-diameter)overlaidwithalayer8referencevia.Notethatdual-diameterviaimpedanceondeeperlayersisdifficulttodeterminebecauseitisnot“flat”,asshowningreen.Thisisduetothevariousimpedancesseeninthedual-diameterstructuresuchasthelargediameter,smalldiameter,viastub,andpads.Assuchanaveragemustbeused,asshownbythemarkerat84.5Ohms.Thisirregularimpedanceisincontrasttonormalviasthatshowmoreconsistentimpedance,asshowninred.

Figure16:MeasuredImpedances,NormalandDual-DiameterVias

Dimensionally,signalsonupperlayersneverseethesmallerdiameterasthetransitionoccursnearthoselayers.Asexpected,upperlayersdonotseeanimpedanceincrease.Ingeneral,itisthesedeeperlayersthatareofconcernastheypresentamoresignificantdiscontinuity.Thesemeasurementsconfirmthatthedual-diameterstructurerealizesa~20Ohmimprovementindifferentialimpedanceondeeperlayers,asdesired.

Figure17:System-levelTDRContrastingNormalandDual-DiameterVias

Page 9: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

Figure17showsaTDRmeasurementofthesameviasinanend-to-endchannelinwhichtwoofthenormalvias(red)arereplacedwithdual-diametervias(green),asseenat~2.6nSand4.2nS.Inthisplot,thefull20Ohmimprovementisnotevidentbecausetheprobeswereplacedfurtherawayfromthevias.Notethatidenticalstructuresareassembledtotheleftandrightofthealteredvias.Simulatingthesignalsusingtheend-to-endmeasurementsaschannelmodelsconfirmsconsistentupto30%improvementineyeheightandwidthwhencomparingthesamechannelwithnormalvias(red)ordual-diametervias(green),asshowninFigure18.Inaddition,thereisamuchmoreconsistentclusteringofperformance(comparegreenagainstredinplotatleftbelow)acrosschannelsvaryingintotallengthfrom10to20inches.

Figure18:EyeOpeningMetrics,ChannelswithNormalandDual-DiameterVias

4.3TraceCompensation,ImprovementsandChallengesItiscommonknowledgethatthedifferentialimpedanceofdifferentialtracesincreaseswhentheybecomeuncoupled,asoftenoccurswhenroutingintoaBGApinfieldasshownatleftinFigure19.Belowtheroutearefieldsolvedimpedances,predictingan8Ohmincreaseforthistrace’sconstruction.MeasuredimpedanceintheTDRatrightconfirmsan~8OhmincreaseontworevisionsofthisPCB,forthistraceandashortertrace.

Figure19:UncoupledvsCoupledImpedances

DiffImp Uncoupled 102 Ohms Coupled 94 Ohms Difference 8 Ohms

Page 10: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

Furtherinvestigationrevealsthatthesepredictablediscontinuitiescause,onaverage,an8%impactoneyeopeningswhenthebreakouttracesexceed¼”inlength.Assuch,itbecomesdesirabletocompensatetheimpedancebysimplywideningthetraceintheuncoupledregionhighlightedinyellow.Whilethisadaptationissimpleenoughtocomprehendintheory,itcanbemoredifficulttoachieveinpractice.Thisisbecauseon“controlledimpedance”PCBsfabricationvendorstypicallyalterlinewidthsonagivenlayeraccordingtomappingtablestunedfortheirmaterialsandprocess.Assuch,ifonlytheimpedanceofthedifferentialtraceisspecified,it’spossiblethethetraceinthecoupledregionwillbefabricatedwiderthanthetraceintheuncoupledregion–makingtheproblemevenworse.Thewaytocorrectthisproblemistoalsospecifythedesiredimpedanceoftheuncoupledsingle-endedportionsofthetrace.4.4ReducingCostbyRemovingPCBLayersAshighervolumePCBsarerevisedtoreducecostandlayers,itisimperativetoconfirmperformanceparity.TheplotsbelowcomparetwoversionsofaPCBbeforeandafterlayercountreductionbyexaminingtheirsimulatedperformancewithinthelargersystemmodel.BothplotscomparetheoriginalPCB’sperformanceontheYaxiswiththereduced-layercountPCB’sperformanceontheXaxis,showingeyewidthsatleft(blue)andeyeheightsatright(red).Thereareover2,500dotsineachdiagram,witheachdotrepresentingthesamechannelineachsystemmodel.Assuch,dotsontheblacklinesrepresentchannelsthatperformthesameonbothPCBs.DotsabovethelinerepresentchannelsthatperformbetterontheoriginalPCB,whiledotsbelowthelinerepresentchannelsthatperformbetteronthereduced-layerPCB.

Figure20:EyeWidth(left)andHeight(right)ContrastedAcrossPCBRevisions

Theplotsabovedemonstratethateyewidths(aboveleft,inblue)generallyvaryonlyupto~2%andthegreatestvariationsareseenwithchannelswithlotsofmargin(i.e.,thevariation

Page 11: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

fromtheblacklinegetswiderastheplotmovestotheright).Assuch,eyewidthvariationisnotrelevantandbelowtheanticipatedaccuracyleveloftheanalysis.Eyeheights(aboveright,inred)generallyvaryupto~5%andvariationiswiderinchannelswithlessmargin–howevertheworst-casechannelsperformthesame(ontheblacklineatthelowerleft).Theseplotsconfirmthatthereduced-layercountPCBperformsonparwiththeoriginal,withneitherversionsignificantlyout-performingtheother.Assuch,system-levelanalysisisusedtoconfirmadequateperformanceofthereduced-layerimplementationallowingustorealizecostsavingsassociatedwithlaminatingfewerPCBlayers.

SummaryandConclusionsThispaperhasdemonstratedanddescribednewtechniquesforoptimizingperformanceinhigh-speedseriallinksthroughthesystem-levelmanipulationofSerDesequalizationsettings.Themanualoptimizationapproachdescribedminimizesintersymbolinterference(ISI)byderivingTxtapweightsfromachannel’spulseresponse.Thistechniqueimprovesperformance,increasesthesystemdeveloper’sunderstandingofrelevanttradeoffs,andhasbeenautomatedandscaledtobeapplicabletothousandsofchannels.Forthesystemsshown,automatedoptimizationimprovessimulatedperformancein95%ofchannelsacrossa4xrangeoflengths.Theseimprovementsareachievedbymanagingamplitude/ISItradeoffsresultingfromTx/Rxequalizationtradingtoachieverequiredandoptimaleyeheightsandwidths.Performanceofworst-casechannelsrouted25%longerthananticipatedisshowntoimprovebymorethan60%.Thispaperalsodetailedmethodsfortuningperformanceusingmanufacturingprocessimprovements.MultiplediscontinuitiesspreadacrossvariousPCBlayersweredemonstratedtobecomenearlytransparentovertime.Dual-diameterviaconstructionandbreakouttracecompensationwerealsodetailedaswaystoreducetheimpactofdiscontinuities.SIanalysisalsoverifiedacceptableperformanceinreducedlayer-countPCBstoachievelowercost.

AcknowledgementsTheauthorswishtothankandacknowledgeSergioCamerloatEricssonasthevisionaryandmotivatorbehindthisseriesofpapers,andforhisrelentlesspursuitofengineeringexcellence.TheauthorsalsowishtothankWhelingCheng,KusumaMatta,RobertWu,andRaduTalkadatEricssonandWalterKatz,FrankdeAlbequerqueandToddWesterhoffatSiSoftfortheirsupport.AdditionalthankstoOrlandoBellatGigaTestLabsforconsistentlydeliveringhighqualitymeasureddata.Withouttheeffortsoftheseandothers,thisworkwouldnothavebeenpossible.

Page 12: New SI Techniques for Larg System Performance Tuning …for Large System Performance Tuning (Part 2) by Donald Telian, SIGUYS, and Michael Steinberger, Barry Katz, SISOFT This paper

References [1] DonaldTelian,2004[2] AnthonySanders,EETimes2007

[3] Steinberger,Westerhoff,SNUGBoston2007

[4] “SimulationTechniquesfor6+GbpsSerialLinks”Telian,Camerlo,Kirk,DesignCon2010

[5] “WhenShorterIsn’tBetter”Steinberger,Wildes,Higgins,BrockandKatz,DesignCon2010

[6] Steinberger,Brock,Telian,DesignCon2013paper8-TA1

[7] “SimulatingLargeSystemswithThousandsofSerialLinks”Telian,Camerlo,Steinberger,

Katz,Katz,DesignCon2012

[8] “MovingHigherDataRateSerialLinksintoProduction–Issues&Solutions”Telian,Camerlo,Matta,Steinberger,Katz,Katz,DesignCon2014BestPaper

Rev1.0

iconnect007.com

©2016–BRPublishing,Inc.