new sharp inequalities in analysis and geometry · 2020. 6. 1. · changfeng gui lebedev-milin...

124
New Sharp Inequalities in Analysis and Geometry Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality Logrithemic Determinants New Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Asia-Pacific Analysis and PDE Seminar New Sharp Inequalities in Analysis and Geometry Changfeng Gui University of Texas at San Antonio Based on a joint paper with Amir Moradifam, UC Riverside, and a recent work with Alice Sun-Yung Chang, Princeton University Virtual Seminar, June 1, 2020

Upload: others

Post on 23-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The Asia-Pacific Analysis and PDE Seminar

New Sharp Inequalities in Analysis andGeometry

Changfeng Gui

University of Texas at San Antonio

Based on a joint paper withAmir Moradifam, UC Riverside,

and a recent work withAlice Sun-Yung Chang, Princeton University

Virtual Seminar, June 1, 2020

Page 2: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Outline

1 Lebedev-Milin Inequality and Toeplitz Determinants

2 Aubin-Onofri Inequality

3 Sphere Covering Inequality

4 Logrithemic Determinants

5 New Inequality

Page 3: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Lebedev-Milin inequality and exponentiation ofpower seriesLebedev-Milin inequality is a classical inequality of functionsdefined on the unit circle S1,

Assume on S1 ⊂ R2 ∼ C

v(z) =∞∑

k=1akzk, ev(z) =

∞∑k=0

βkzk,

Thenlog(

∞∑k=0

|βk|2) ≤∞∑

k=1k|ak|2

orlog(

12π

∫S1|ev|2dθ) ≤ 1

∫S1

vvz(z)zdθ

and equality holds if and only if ak = γk/k for some γ ∈ C with|γ| < 1.This is well known in the community of univalent functions, inparticular in connection with Bieberbach conjecture.

Page 4: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Lebedev-Milin inequality and exponentiation ofpower seriesLebedev-Milin inequality is a classical inequality of functionsdefined on the unit circle S1,

Assume on S1 ⊂ R2 ∼ C

v(z) =∞∑

k=1akzk, ev(z) =

∞∑k=0

βkzk,

Then

log(∞∑

k=0|βk|2) ≤

∞∑k=1

k|ak|2

orlog(

12π

∫S1|ev|2dθ) ≤ 1

∫S1

vvz(z)zdθ

and equality holds if and only if ak = γk/k for some γ ∈ C with|γ| < 1.This is well known in the community of univalent functions, inparticular in connection with Bieberbach conjecture.

Page 5: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Lebedev-Milin inequality and exponentiation ofpower seriesLebedev-Milin inequality is a classical inequality of functionsdefined on the unit circle S1,

Assume on S1 ⊂ R2 ∼ C

v(z) =∞∑

k=1akzk, ev(z) =

∞∑k=0

βkzk,

Thenlog(

∞∑k=0

|βk|2) ≤∞∑

k=1k|ak|2

orlog(

12π

∫S1|ev|2dθ) ≤ 1

∫S1

vvz(z)zdθ

and equality holds if and only if ak = γk/k for some γ ∈ C with|γ| < 1.This is well known in the community of univalent functions, inparticular in connection with Bieberbach conjecture.

Page 6: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Lebedev-Milin inequality and exponentiation ofpower seriesLebedev-Milin inequality is a classical inequality of functionsdefined on the unit circle S1,

Assume on S1 ⊂ R2 ∼ C

v(z) =∞∑

k=1akzk, ev(z) =

∞∑k=0

βkzk,

Thenlog(

∞∑k=0

|βk|2) ≤∞∑

k=1k|ak|2

orlog(

12π

∫S1|ev|2dθ) ≤ 1

∫S1

vvz(z)zdθ

and equality holds if and only if ak = γk/k for some γ ∈ C with|γ| < 1.

This is well known in the community of univalent functions, inparticular in connection with Bieberbach conjecture.

Page 7: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Lebedev-Milin inequality and exponentiation ofpower seriesLebedev-Milin inequality is a classical inequality of functionsdefined on the unit circle S1,

Assume on S1 ⊂ R2 ∼ C

v(z) =∞∑

k=1akzk, ev(z) =

∞∑k=0

βkzk,

Thenlog(

∞∑k=0

|βk|2) ≤∞∑

k=1k|ak|2

orlog(

12π

∫S1|ev|2dθ) ≤ 1

∫S1

vvz(z)zdθ

and equality holds if and only if ak = γk/k for some γ ∈ C with|γ| < 1.This is well known in the community of univalent functions, inparticular in connection with Bieberbach conjecture.

Page 8: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Real Valued Function: Another Form

Denote D the unit disc on R2. For any real functionu ∈ H 1

2 (S1) , the norm of u is identified as the the H1(D) normof the harmonic extension of u, which we denote again by u, onthe disc D.

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D) (1)

Note:||∇u||2L2(D) =

∫S1

u∂u∂ndθ

is the H1/2(S1) norm.

Page 9: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Real Valued Function: Another Form

Denote D the unit disc on R2. For any real functionu ∈ H 1

2 (S1) , the norm of u is identified as the the H1(D) normof the harmonic extension of u, which we denote again by u, onthe disc D.

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D) (1)

Note:||∇u||2L2(D) =

∫S1

u∂u∂ndθ

is the H1/2(S1) norm.

Page 10: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Real Valued Function: Another Form

Denote D the unit disc on R2. For any real functionu ∈ H 1

2 (S1) , the norm of u is identified as the the H1(D) normof the harmonic extension of u, which we denote again by u, onthe disc D.

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D) (1)

Note:||∇u||2L2(D) =

∫S1

u∂u∂ndθ

is the H1/2(S1) norm.

Page 11: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Toeplitz Determinants and the Szego LimitTheoremGiven f(θ) ∈ L1(S1). Let

ck =1

∫S1

eikθf(θ)dθ, k = 0,±1,±2, · · · ,

and T(p, q) = cp−q, p, q ∈ Z be the Toeplitz matrix, andTn(p, q) = cp−q, 0 ≤ p, q ≤ n be the n-th Toeplitz matrix.Define

Dn(f) = det(Tn).

Then lnDn(eu)− (n + 1) 12π∫

S1 udθ is nondecreasing and

limn→∞

lnDn(eu)− (n + 1) 12π

∫S1

udθ =1

4π ||∇u||2L2(D).

In particular,

lnDn(eu)− (n + 1) 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D), n ≥ 0.

.

Page 12: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Toeplitz Determinants and the Szego LimitTheoremGiven f(θ) ∈ L1(S1). Let

ck =1

∫S1

eikθf(θ)dθ, k = 0,±1,±2, · · · ,

and T(p, q) = cp−q, p, q ∈ Z be the Toeplitz matrix, andTn(p, q) = cp−q, 0 ≤ p, q ≤ n be the n-th Toeplitz matrix.

DefineDn(f) = det(Tn).

Then lnDn(eu)− (n + 1) 12π∫

S1 udθ is nondecreasing and

limn→∞

lnDn(eu)− (n + 1) 12π

∫S1

udθ =1

4π ||∇u||2L2(D).

In particular,

lnDn(eu)− (n + 1) 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D), n ≥ 0.

.

Page 13: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Toeplitz Determinants and the Szego LimitTheoremGiven f(θ) ∈ L1(S1). Let

ck =1

∫S1

eikθf(θ)dθ, k = 0,±1,±2, · · · ,

and T(p, q) = cp−q, p, q ∈ Z be the Toeplitz matrix, andTn(p, q) = cp−q, 0 ≤ p, q ≤ n be the n-th Toeplitz matrix.Define

Dn(f) = det(Tn).

Then lnDn(eu)− (n + 1) 12π∫

S1 udθ is nondecreasing and

limn→∞

lnDn(eu)− (n + 1) 12π

∫S1

udθ =1

4π ||∇u||2L2(D).

In particular,

lnDn(eu)− (n + 1) 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D), n ≥ 0.

.

Page 14: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Toeplitz Determinants and the Szego LimitTheoremGiven f(θ) ∈ L1(S1). Let

ck =1

∫S1

eikθf(θ)dθ, k = 0,±1,±2, · · · ,

and T(p, q) = cp−q, p, q ∈ Z be the Toeplitz matrix, andTn(p, q) = cp−q, 0 ≤ p, q ≤ n be the n-th Toeplitz matrix.Define

Dn(f) = det(Tn).

Then lnDn(eu)− (n + 1) 12π∫

S1 udθ is nondecreasing and

limn→∞

lnDn(eu)− (n + 1) 12π

∫S1

udθ =1

4π ||∇u||2L2(D).

In particular,

lnDn(eu)− (n + 1) 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D), n ≥ 0.

.

Page 15: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Toeplitz Determinants and the Szego LimitTheoremGiven f(θ) ∈ L1(S1). Let

ck =1

∫S1

eikθf(θ)dθ, k = 0,±1,±2, · · · ,

and T(p, q) = cp−q, p, q ∈ Z be the Toeplitz matrix, andTn(p, q) = cp−q, 0 ≤ p, q ≤ n be the n-th Toeplitz matrix.Define

Dn(f) = det(Tn).

Then lnDn(eu)− (n + 1) 12π∫

S1 udθ is nondecreasing and

limn→∞

lnDn(eu)− (n + 1) 12π

∫S1

udθ =1

4π ||∇u||2L2(D).

In particular,

lnDn(eu)− (n + 1) 12π

∫S1

udθ ≤ 14π ||∇u||2L2(D), n ≥ 0.

.

Page 16: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The first two inequalities in the Szego limit theorem

We have

D1(eu) = (1

∫S1

eudθ)2 − (1

∫S1

eueiθdθ)2.

The first inequality when n = 0 of Szego limit theorem is theLebedev-Milin Inequality.

When n = 1, the second inequality in the Szego limit theorem is

log(| 12π

∫S1

eudθ|2−| 12π

∫S1

eueiθdθ|2)− 1π

∫S1

udθ ≤ 14π ||∇u||2L2(D).

(2)One notes that in the special case when

∫S1 eueiθdθ = 0, as a

direct consequence of above inequality we have

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 18π ||∇u||2L2(D). (3)

Question: Any similar inequalities in higher dimensions?

Page 17: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The first two inequalities in the Szego limit theorem

We have

D1(eu) = (1

∫S1

eudθ)2 − (1

∫S1

eueiθdθ)2.

The first inequality when n = 0 of Szego limit theorem is theLebedev-Milin Inequality.When n = 1, the second inequality in the Szego limit theorem is

log(| 12π

∫S1

eudθ|2−| 12π

∫S1

eueiθdθ|2)− 1π

∫S1

udθ ≤ 14π ||∇u||2L2(D).

(2)

One notes that in the special case when∫

S1 eueiθdθ = 0, as adirect consequence of above inequality we have

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 18π ||∇u||2L2(D). (3)

Question: Any similar inequalities in higher dimensions?

Page 18: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The first two inequalities in the Szego limit theorem

We have

D1(eu) = (1

∫S1

eudθ)2 − (1

∫S1

eueiθdθ)2.

The first inequality when n = 0 of Szego limit theorem is theLebedev-Milin Inequality.When n = 1, the second inequality in the Szego limit theorem is

log(| 12π

∫S1

eudθ|2−| 12π

∫S1

eueiθdθ|2)− 1π

∫S1

udθ ≤ 14π ||∇u||2L2(D).

(2)One notes that in the special case when

∫S1 eueiθdθ = 0, as a

direct consequence of above inequality we have

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 18π ||∇u||2L2(D). (3)

Question: Any similar inequalities in higher dimensions?

Page 19: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The first two inequalities in the Szego limit theorem

We have

D1(eu) = (1

∫S1

eudθ)2 − (1

∫S1

eueiθdθ)2.

The first inequality when n = 0 of Szego limit theorem is theLebedev-Milin Inequality.When n = 1, the second inequality in the Szego limit theorem is

log(| 12π

∫S1

eudθ|2−| 12π

∫S1

eueiθdθ|2)− 1π

∫S1

udθ ≤ 14π ||∇u||2L2(D).

(2)One notes that in the special case when

∫S1 eueiθdθ = 0, as a

direct consequence of above inequality we have

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 18π ||∇u||2L2(D). (3)

Question: Any similar inequalities in higher dimensions?

Page 20: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Outline

1 Lebedev-Milin Inequality and Toeplitz Determinants

2 Aubin-Onofri Inequality

3 Sphere Covering Inequality

4 Logrithemic Determinants

5 New Inequality

Page 21: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Trudinger-Moser Inequality (1967, 1971)

Let S2 be the unit sphere and for u ∈ H1(S2).

Jα(u) =α

4

∫S2|∇u|2dω +

∫S2

udω − log

∫S2

eudω ≥ C > −∞,

if and only if α ≥ 1, where the volume form dω is normalizedso that

∫S2 dω = 1.

Page 22: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Aubin’s Result (1979) and Onofri Inequality (1982)

Onofri showed for α ≥ 1

Jα(u) ≥ 0;

Aubin observed that for α ≥ 12 ,

Jα(u) ≥ C > −∞

for

u ∈ M := u ∈ H1(S2) :

∫S2

euxi = 0, i = 1, 2, 3,

Page 23: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Aubin’s Result (1979) and Onofri Inequality (1982)

Onofri showed for α ≥ 1

Jα(u) ≥ 0;

Aubin observed that for α ≥ 12 ,

Jα(u) ≥ C > −∞

for

u ∈ M := u ∈ H1(S2) :

∫S2

euxi = 0, i = 1, 2, 3,

Page 24: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Chang and Yang Conjecture (1987)

Chang and Yang showed that for α close to 1 the best constantagain is equal to zero.

They proposed the following conjecture.Conjecture A. For α ≥ 1

2 ,

infu∈M

Jα(u) = 0.

Indeed, they showed that the minimizer u exists and satisfiesthe Euler-Lagrange equations

α

2∆u +eu∫

S2 eudω − 1 =i=3∑i=1

µixieu, on S2. (4)

andµi = 0, i = 1, 2, 3.

Page 25: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Chang and Yang Conjecture (1987)

Chang and Yang showed that for α close to 1 the best constantagain is equal to zero.They proposed the following conjecture.Conjecture A. For α ≥ 1

2 ,

infu∈M

Jα(u) = 0.

Indeed, they showed that the minimizer u exists and satisfiesthe Euler-Lagrange equations

α

2∆u +eu∫

S2 eudω − 1 =i=3∑i=1

µixieu, on S2. (4)

andµi = 0, i = 1, 2, 3.

Page 26: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Chang and Yang Conjecture (1987)

Chang and Yang showed that for α close to 1 the best constantagain is equal to zero.They proposed the following conjecture.Conjecture A. For α ≥ 1

2 ,

infu∈M

Jα(u) = 0.

Indeed, they showed that the minimizer u exists and satisfiesthe Euler-Lagrange equations

α

2∆u +eu∫

S2 eudω − 1 =i=3∑i=1

µixieu, on S2. (4)

andµi = 0, i = 1, 2, 3.

Page 27: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Chang and Yang Conjecture (1987)

Chang and Yang showed that for α close to 1 the best constantagain is equal to zero.They proposed the following conjecture.Conjecture A. For α ≥ 1

2 ,

infu∈M

Jα(u) = 0.

Indeed, they showed that the minimizer u exists and satisfiesthe Euler-Lagrange equations

α

2∆u +eu∫

S2 eudω − 1 =i=3∑i=1

µixieu, on S2. (4)

andµi = 0, i = 1, 2, 3.

Page 28: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Chang and Yang Conjecture (1987)

Chang and Yang showed that for α close to 1 the best constantagain is equal to zero.They proposed the following conjecture.Conjecture A. For α ≥ 1

2 ,

infu∈M

Jα(u) = 0.

Indeed, they showed that the minimizer u exists and satisfies

α

2∆u +eu∫

S2 eudω − 1 = 0, on S2. (5)

Page 29: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Axially symmetric functions

For every function g on (−1, 1) satisfying∥g∥2 =

∫ 1−1(1 − x2)|g′(x)|2dx < ∞ and∫ 1

−1e2g(x)xdx = 0,

it holds for α ≥ 1/2,

α

2

∫ 1

−1(1 − x2)|g′(x)|2dx +

∫ 1

−1g(x)dx − log

12

∫ 1

−1e2g(x)dx ≥ 0,

Feldman, Froese, Ghoussoub and G. (1998)

α >1625 − ϵ

G. and Wei, and independently Lin (2000)

Page 30: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Axially symmetric functions

For every function g on (−1, 1) satisfying∥g∥2 =

∫ 1−1(1 − x2)|g′(x)|2dx < ∞ and∫ 1

−1e2g(x)xdx = 0,

it holds for α ≥ 1/2,

α

2

∫ 1

−1(1 − x2)|g′(x)|2dx +

∫ 1

−1g(x)dx − log

12

∫ 1

−1e2g(x)dx ≥ 0,

Feldman, Froese, Ghoussoub and G. (1998)

α >1625 − ϵ

G. and Wei, and independently Lin (2000)

Page 31: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Axially symmetric functions

For every function g on (−1, 1) satisfying∥g∥2 =

∫ 1−1(1 − x2)|g′(x)|2dx < ∞ and∫ 1

−1e2g(x)xdx = 0,

it holds for α ≥ 1/2,

α

2

∫ 1

−1(1 − x2)|g′(x)|2dx +

∫ 1

−1g(x)dx − log

12

∫ 1

−1e2g(x)dx ≥ 0,

Feldman, Froese, Ghoussoub and G. (1998)

α >1625 − ϵ

G. and Wei, and independently Lin (2000)

Page 32: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Axially symmetric functions

For every function g on (−1, 1) satisfying∥g∥2 =

∫ 1−1(1 − x2)|g′(x)|2dx < ∞ and∫ 1

−1e2g(x)xdx = 0,

it holds for α ≥ 1/2,

α

2

∫ 1

−1(1 − x2)|g′(x)|2dx +

∫ 1

−1g(x)dx − log

12

∫ 1

−1e2g(x)dx ≥ 0,

Feldman, Froese, Ghoussoub and G. (1998)

α >1625 − ϵ

G. and Wei, and independently Lin (2000)

Page 33: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Earlier Result for general functions:

Ghoussoub and Lin (2010):

Conjecture A holds for

α ≥ 23 − ϵ

Page 34: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Strategies of Proof

For axially symmetric functions, to show (3) has only solutionu ≡ C.

For general functions, to show solutions to (3) are axiallysymmetric.

Page 35: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Strategies of Proof

For axially symmetric functions, to show (3) has only solutionu ≡ C.

For general functions, to show solutions to (3) are axiallysymmetric.

Page 36: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Sterographic Projection

Figure: Sterographic Projection

Page 37: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Equations on R2

Let Π be the stereographic projection S2 → R2 with respect tothe north pole N = (1, 0, 0):

Π :=

(x1

1 − x3,

x21 − x3

).

Suppose u is a solution of (3) and let

v = u(Π−1(y))− 2αln(1 + |y|2) + ln(

8α), (6)

then v satisfies

∆v + (1 + |y|2)2( 1α−1)ev = 0 in R2, (7)

and ∫R2(1 + |y|2)2( 1

α−1)evdy =

8πα. (8)

Page 38: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Equations on R2

Let Π be the stereographic projection S2 → R2 with respect tothe north pole N = (1, 0, 0):

Π :=

(x1

1 − x3,

x21 − x3

).

Suppose u is a solution of (3) and let

v = u(Π−1(y))− 2αln(1 + |y|2) + ln(

8α), (6)

then v satisfies

∆v + (1 + |y|2)2( 1α−1)ev = 0 in R2, (7)

and ∫R2(1 + |y|2)2( 1

α−1)evdy =

8πα. (8)

Page 39: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Equations on R2

Let Π be the stereographic projection S2 → R2 with respect tothe north pole N = (1, 0, 0):

Π :=

(x1

1 − x3,

x21 − x3

).

Suppose u is a solution of (3) and let

v = u(Π−1(y))− 2αln(1 + |y|2) + ln(

8α), (6)

then v satisfies

∆v + (1 + |y|2)2( 1α−1)ev = 0 in R2, (7)

and ∫R2(1 + |y|2)2( 1

α−1)evdy =

8πα. (8)

Page 40: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

General Equations

Consider in general the equation

∆v + (1 + |y|2)lev = 0 in R2, (9)

and ∫R2(1 + |y|2)levdy = 2π(2l + 4). (10)

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

For −2 < l < 0: Chanillo and Kiessling (1994)

0 < l ≤ 1: Ghoussoub and Lin (2010)

Page 41: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

General Equations

Consider in general the equation

∆v + (1 + |y|2)lev = 0 in R2, (9)

and ∫R2(1 + |y|2)levdy = 2π(2l + 4). (10)

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

For −2 < l < 0: Chanillo and Kiessling (1994)

0 < l ≤ 1: Ghoussoub and Lin (2010)

Page 42: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

General Equations

Consider in general the equation

∆v + (1 + |y|2)lev = 0 in R2, (9)

and ∫R2(1 + |y|2)levdy = 2π(2l + 4). (10)

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

For −2 < l < 0: Chanillo and Kiessling (1994)

0 < l ≤ 1: Ghoussoub and Lin (2010)

Page 43: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

General Equations

Consider in general the equation

∆v + (1 + |y|2)lev = 0 in R2, (9)

and ∫R2(1 + |y|2)levdy = 2π(2l + 4). (10)

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

For −2 < l < 0: Chanillo and Kiessling (1994)

0 < l ≤ 1: Ghoussoub and Lin (2010)

Page 44: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

General Equations

Consider in general the equation

∆v + (1 + |y|2)lev = 0 in R2, (9)

and ∫R2(1 + |y|2)levdy = 2π(2l + 4). (10)

Are solutions to (9) and (10) radially symmetric?

For l = 0: Chen and Li (1991)

For −2 < l < 0: Chanillo and Kiessling (1994)

0 < l ≤ 1: Ghoussoub and Lin (2010)

Page 45: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence of Non Radial Solutions

Lin (2000): For 2 < l = (k − 1)(k + 2), where k ≥ 2 there is anon radial solution.

Dolbeault, Esteban, Tarantello (2009): For all k ≥ 2 andl > k(k + 1)− 2, there are at least 2(k − 2) + 2 distinct radialsolutions, which implies the existence of non radial solutions.(The bigger the l is, the more complicated the solutionstructure becomes.)

Conjecture B. For 0 < l ≤ 2, solutions to (9) and (10) mustbe radially symmetric.

Page 46: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence of Non Radial Solutions

Lin (2000): For 2 < l = (k − 1)(k + 2), where k ≥ 2 there is anon radial solution.

Dolbeault, Esteban, Tarantello (2009): For all k ≥ 2 andl > k(k + 1)− 2, there are at least 2(k − 2) + 2 distinct radialsolutions, which implies the existence of non radial solutions.(The bigger the l is, the more complicated the solutionstructure becomes.)

Conjecture B. For 0 < l ≤ 2, solutions to (9) and (10) mustbe radially symmetric.

Page 47: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence of Non Radial Solutions

Lin (2000): For 2 < l = (k − 1)(k + 2), where k ≥ 2 there is anon radial solution.

Dolbeault, Esteban, Tarantello (2009): For all k ≥ 2 andl > k(k + 1)− 2, there are at least 2(k − 2) + 2 distinct radialsolutions, which implies the existence of non radial solutions.(The bigger the l is, the more complicated the solutionstructure becomes.)

Conjecture B. For 0 < l ≤ 2, solutions to (9) and (10) mustbe radially symmetric.

Page 48: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence of Non Radial Solutions

Lin (2000): For 2 < l = (k − 1)(k + 2), where k ≥ 2 there is anon radial solution.

Dolbeault, Esteban, Tarantello (2009): For all k ≥ 2 andl > k(k + 1)− 2, there are at least 2(k − 2) + 2 distinct radialsolutions, which implies the existence of non radial solutions.(The bigger the l is, the more complicated the solutionstructure becomes.)

Conjecture B. For 0 < l ≤ 2, solutions to (9) and (10) mustbe radially symmetric.

Page 49: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Main Theorem ( G. and Moradifam, Inventiones,2018)

Both Conejcture A and B hold true.

Conjecture A.For α ≥ 1

2 ,inf

u∈MJα(u) = 0.

Conjecture B.For 0 < l ≤ 2, solutions to (9) and (10) must be radiallysymmetric.Note

l = 2( 1α− 1) = 2( ρ

8π − 1)

.

Page 50: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Main Theorem ( G. and Moradifam, Inventiones,2018)

Both Conejcture A and B hold true.

Conjecture A.For α ≥ 1

2 ,inf

u∈MJα(u) = 0.

Conjecture B.For 0 < l ≤ 2, solutions to (9) and (10) must be radiallysymmetric.Note

l = 2( 1α− 1) = 2( ρ

8π − 1)

.

Page 51: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Main Theorem ( G. and Moradifam, Inventiones,2018)

Both Conejcture A and B hold true.

Conjecture A.For α ≥ 1

2 ,inf

u∈MJα(u) = 0.

Conjecture B.For 0 < l ≤ 2, solutions to (9) and (10) must be radiallysymmetric.

Notel = 2( 1

α− 1) = 2( ρ

8π − 1)

.

Page 52: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Main Theorem ( G. and Moradifam, Inventiones,2018)

Both Conejcture A and B hold true.

Conjecture A.For α ≥ 1

2 ,inf

u∈MJα(u) = 0.

Conjecture B.For 0 < l ≤ 2, solutions to (9) and (10) must be radiallysymmetric.Note

l = 2( 1α− 1) = 2( ρ

8π − 1)

.

Page 53: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A general equation on R2

Assume u ∈ C2(R2) satisfies

∆u + k(|y|)e2u = 0 in R2, (11)

and

12π

∫R2

k(|y|)e2udy = β < ∞, (12)

where K(y) = k(|y|) ∈ C2(R2) is a non constant positivefunction satisfying

(K1) ∆ ln(k(|y|)) ≥ 0, y ∈ R2

(K2) lim|y|→∞

|y|k′(|y|)k(|y|) = 2l > 0, y ∈ R2.

Page 54: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A general equation on R2

Assume u ∈ C2(R2) satisfies

∆u + k(|y|)e2u = 0 in R2, (11)

and

12π

∫R2

k(|y|)e2udy = β < ∞, (12)

where K(y) = k(|y|) ∈ C2(R2) is a non constant positivefunction satisfying

(K1) ∆ ln(k(|y|)) ≥ 0, y ∈ R2

(K2) lim|y|→∞

|y|k′(|y|)k(|y|) = 2l > 0, y ∈ R2.

Page 55: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A general equation on R2

Assume u ∈ C2(R2) satisfies

∆u + k(|y|)e2u = 0 in R2, (11)

and

12π

∫R2

k(|y|)e2udy = β < ∞, (12)

where K(y) = k(|y|) ∈ C2(R2) is a non constant positivefunction satisfying

(K1) ∆ ln(k(|y|)) ≥ 0, y ∈ R2

(K2) lim|y|→∞

|y|k′(|y|)k(|y|) = 2l > 0, y ∈ R2.

Page 56: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A general symmetry result

The following general symmetry result is proven.

PropositionAssume that K(y) = k(|y|) > 0 satisfies (K1)− (K2), and u is asolution to (11)-(12) with l + 1 < β ≤ 4. Then u must beradially symmetric.

Page 57: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Outline

1 Lebedev-Milin Inequality and Toeplitz Determinants

2 Aubin-Onofri Inequality

3 Sphere Covering Inequality

4 Logrithemic Determinants

5 New Inequality

Page 58: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The Sphere Covering Inequality: GeometricDescription

Page 59: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The Sphere Covering Inequality: AnalyticStatement

Theorem ( G. and Moradifam, Inventiones, 2018)Let Ω be a simply connected subset of R2 and assumewi ∈ C2(Ω), i = 1, 2 satisfy

∆wi + ewi = fi(y), (13)

where f2 ≥ f1 ≥ 0 in Ω.

Suppose w2 > w1 in Ω and w2 = w1 on ∂Ω, then∫Ω

ew1 + ew2dy ≥ 8π. (14)

Furthermore if f1 ≡ 0 or f2 ≡ f1 in Ω, then∫Ω ew1 + ew2dy > 8π.

Page 60: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The Sphere Covering Inequality: AnalyticStatement

Theorem ( G. and Moradifam, Inventiones, 2018)Let Ω be a simply connected subset of R2 and assumewi ∈ C2(Ω), i = 1, 2 satisfy

∆wi + ewi = fi(y), (13)

where f2 ≥ f1 ≥ 0 in Ω.Suppose w2 > w1 in Ω and w2 = w1 on ∂Ω, then

∫Ω

ew1 + ew2dy ≥ 8π. (14)

Furthermore if f1 ≡ 0 or f2 ≡ f1 in Ω, then∫Ω ew1 + ew2dy > 8π.

Page 61: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The Sphere Covering Inequality: AnalyticStatement

Theorem ( G. and Moradifam, Inventiones, 2018)Let Ω be a simply connected subset of R2 and assumewi ∈ C2(Ω), i = 1, 2 satisfy

∆wi + ewi = fi(y), (13)

where f2 ≥ f1 ≥ 0 in Ω.Suppose w2 > w1 in Ω and w2 = w1 on ∂Ω, then∫

Ωew1 + ew2dy ≥ 8π. (14)

Furthermore if f1 ≡ 0 or f2 ≡ f1 in Ω, then∫Ω ew1 + ew2dy > 8π.

Page 62: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The Sphere Covering Inequality: AnalyticStatement

Theorem ( G. and Moradifam, Inventiones, 2018)Let Ω be a simply connected subset of R2 and assumewi ∈ C2(Ω), i = 1, 2 satisfy

∆wi + ewi = fi(y), (13)

where f2 ≥ f1 ≥ 0 in Ω.Suppose w2 > w1 in Ω and w2 = w1 on ∂Ω, then∫

Ωew1 + ew2dy ≥ 8π. (14)

Furthermore if f1 ≡ 0 or f2 ≡ f1 in Ω, then∫Ω ew1 + ew2dy > 8π.

Page 63: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Rigidity of Two Objects: Seesaw Effect

∫Ω

ew1dy vs∫Ω

ew2dy. (15)

Page 64: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Isoperimetric Inequalities

Suppose Ω ⊂ R2, then

L2(∂Ω) ≥ 4πA(Ω)

Equality holds if and only if Ω is a disk.

Page 65: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Levy’s Isoperimetric inequalities on spheres (1919)

On the standard unit sphere with the metric induced from theflat metric of R3,

L2(∂Ω) ≥ A(Ω)(4π − A(Ω)

)

If the sphere has radius R, then

L2(∂Ω) ≥ A(Ω)(4πR2 − A(Ω)

)/R2

i.e.,L2(∂Ω) ≥ A(Ω)

(4π − A(Ω)/R2)

Page 66: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Levy’s Isoperimetric inequalities on spheres (1919)

On the standard unit sphere with the metric induced from theflat metric of R3,

L2(∂Ω) ≥ A(Ω)(4π − A(Ω)

)If the sphere has radius R, then

L2(∂Ω) ≥ A(Ω)(4πR2 − A(Ω)

)/R2

i.e.,L2(∂Ω) ≥ A(Ω)

(4π − A(Ω)/R2)

Page 67: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Alexandrov-Bol’s inequality (1941)

In general, we can identify a sphere with R2 by a stereographicprojection, and equip it with a metric conformal to the flatmetric of R2, i.e., ds2 = e2v(dx2

1 + dx22).

Assume v satisfies

∆v + K(x)e2v = 0, R2

with the gaussian curvature K ≤ 1.Then

(

∫∂Ω

evds)2 ≥(∫

Ωe2v)(4π −

∫Ω

e2v)

Page 68: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Alexandrov-Bol’s inequality (1941)

In general, we can identify a sphere with R2 by a stereographicprojection, and equip it with a metric conformal to the flatmetric of R2, i.e., ds2 = e2v(dx2

1 + dx22).

Assume v satisfies

∆v + K(x)e2v = 0, R2

with the gaussian curvature K ≤ 1.

Then(

∫∂Ω

evds)2 ≥(∫

Ωe2v)(4π −

∫Ω

e2v)

Page 69: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Alexandrov-Bol’s inequality (1941)

In general, we can identify a sphere with R2 by a stereographicprojection, and equip it with a metric conformal to the flatmetric of R2, i.e., ds2 = e2v(dx2

1 + dx22).

Assume v satisfies

∆v + K(x)e2v = 0, R2

with the gaussian curvature K ≤ 1.Then

(

∫∂Ω

evds)2 ≥(∫

Ωe2v)(4π −

∫Ω

e2v)

Page 70: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Outline

1 Lebedev-Milin Inequality and Toeplitz Determinants

2 Aubin-Onofri Inequality

3 Sphere Covering Inequality

4 Logrithemic Determinants

5 New Inequality

Page 71: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Logrithemic Determinants and ConformalGeometry

Given a Riemanian surface (M, σ0) with Gaussian curvature K0and normalized area |M| = 1. Consider a conformal metric onσ = e2u on M.If ∂M = ∅, define

F(u) = 12

∫M|∇0u|2dA0 +

∫M

K0udA0 − πχ(M) ln(

∫M

e2udA0).

If ∂M consists of nice boundary with geodesic curvature k0,assume that (M, σ0) and (M, σ) are flat. Define

F(u) = 12

∫∂M

u∂u∂nds0 +

∫∂M

k0uds0 − 2πχ(M) ln(

∫∂M

euds0).

Page 72: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Logrithemic Determinants and ConformalGeometry

Given a Riemanian surface (M, σ0) with Gaussian curvature K0and normalized area |M| = 1. Consider a conformal metric onσ = e2u on M.If ∂M = ∅, define

F(u) = 12

∫M|∇0u|2dA0 +

∫M

K0udA0 − πχ(M) ln(

∫M

e2udA0).

If ∂M consists of nice boundary with geodesic curvature k0,assume that (M, σ0) and (M, σ) are flat. Define

F(u) = 12

∫∂M

u∂u∂nds0 +

∫∂M

k0uds0 − 2πχ(M) ln(

∫∂M

euds0).

Page 73: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Extremals

B. Osgood, R. Phillips and P. Sarnak. (1988):

logDet(∆σ)

Det(∆σ0)= − 1

6πF(u) + 14π

∫∂M

∂u∂nds0

Maximizing logDet(∆σ) is equivalent to minimizing F.

Uniformization, Isospectral Properties, etc.

Page 74: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Extremals

B. Osgood, R. Phillips and P. Sarnak. (1988):

logDet(∆σ)

Det(∆σ0)= − 1

6πF(u) + 14π

∫∂M

∂u∂nds0

Maximizing logDet(∆σ) is equivalent to minimizing F.

Uniformization, Isospectral Properties, etc.

Page 75: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Extremals

B. Osgood, R. Phillips and P. Sarnak. (1988):

logDet(∆σ)

Det(∆σ0)= − 1

6πF(u) + 14π

∫∂M

∂u∂nds0

Maximizing logDet(∆σ) is equivalent to minimizing F.

Uniformization, Isospectral Properties, etc.

Page 76: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Widom’s observation (1988), Chang-Hang (2019)

If∫

S1 eikθeudθ = 0,−n ≤ k ≤ n, then

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π(n + 1) ||∇u||2L2(D) (16)

Chang-Hang showed:Let

Pn = all polynomials in R3 with degree at most n.

If∫

S2 eup(x)dω = 0, ∀p ∈ Pn, then for any ϵ > 0 there existN(n) ∈ Z and Cn(ϵ) ∈ R such that

J 1N(n)+ϵ(u) ≥ Cn(ϵ) > −∞, ∀u ∈ H1(S2).

Here, N(1) = 2,N(2) = 4 and (⌊n2⌋+ 1)2 ≤ N(n) ≤ n(n + 1)

Jα(u) =α

4

∫S2|∇u|2dω +

∫S2

udω − log

∫S2

eudω,

Page 77: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Widom’s observation (1988), Chang-Hang (2019)

If∫

S1 eikθeudθ = 0,−n ≤ k ≤ n, then

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π(n + 1) ||∇u||2L2(D) (16)

Chang-Hang showed:Let

Pn = all polynomials in R3 with degree at most n.

If∫

S2 eup(x)dω = 0, ∀p ∈ Pn, then for any ϵ > 0 there existN(n) ∈ Z and Cn(ϵ) ∈ R such that

J 1N(n)+ϵ(u) ≥ Cn(ϵ) > −∞, ∀u ∈ H1(S2).

Here, N(1) = 2,N(2) = 4 and (⌊n2⌋+ 1)2 ≤ N(n) ≤ n(n + 1)

Jα(u) =α

4

∫S2|∇u|2dω +

∫S2

udω − log

∫S2

eudω,

Page 78: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Widom’s observation (1988), Chang-Hang (2019)

If∫

S1 eikθeudθ = 0,−n ≤ k ≤ n, then

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π(n + 1) ||∇u||2L2(D) (16)

Chang-Hang showed:Let

Pn = all polynomials in R3 with degree at most n.

If∫

S2 eup(x)dω = 0, ∀p ∈ Pn, then for any ϵ > 0 there existN(n) ∈ Z and Cn(ϵ) ∈ R such that

J 1N(n)+ϵ(u) ≥ Cn(ϵ) > −∞, ∀u ∈ H1(S2).

Here, N(1) = 2,N(2) = 4 and (⌊n2⌋+ 1)2 ≤ N(n) ≤ n(n + 1)

Jα(u) =α

4

∫S2|∇u|2dω +

∫S2

udω − log

∫S2

eudω,

Page 79: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Widom’s observation (1988), Chang-Hang (2019)

If∫

S1 eikθeudθ = 0,−n ≤ k ≤ n, then

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π(n + 1) ||∇u||2L2(D) (16)

Chang-Hang showed:Let

Pn = all polynomials in R3 with degree at most n.

If∫

S2 eup(x)dω = 0, ∀p ∈ Pn, then for any ϵ > 0 there existN(n) ∈ Z and Cn(ϵ) ∈ R such that

J 1N(n)+ϵ(u) ≥ Cn(ϵ) > −∞, ∀u ∈ H1(S2).

Here, N(1) = 2,N(2) = 4 and (⌊n2⌋+ 1)2 ≤ N(n) ≤ n(n + 1)

Jα(u) =α

4

∫S2|∇u|2dω +

∫S2

udω − log

∫S2

eudω,

Page 80: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Widom’s observation (1988), Chang-Hang (2019)

If∫

S1 eikθeudθ = 0,−n ≤ k ≤ n, then

log(1

∫S1

eudθ)− 12π

∫S1

udθ ≤ 14π(n + 1) ||∇u||2L2(D) (16)

Chang-Hang showed:Let

Pn = all polynomials in R3 with degree at most n.

If∫

S2 eup(x)dω = 0, ∀p ∈ Pn, then for any ϵ > 0 there existN(n) ∈ Z and Cn(ϵ) ∈ R such that

J 1N(n)+ϵ(u) ≥ Cn(ϵ) > −∞, ∀u ∈ H1(S2).

Here, N(1) = 2,N(2) = 4 and (⌊n2⌋+ 1)2 ≤ N(n) ≤ n(n + 1)

Jα(u) =α

4

∫S2|∇u|2dω +

∫S2

udω − log

∫S2

eudω,

Page 81: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Outline

1 Lebedev-Milin Inequality and Toeplitz Determinants

2 Aubin-Onofri Inequality

3 Sphere Covering Inequality

4 Logrithemic Determinants

5 New Inequality

Page 82: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A Variant of Aubin-Onofri Inequality, Alice Changand G., 2019Let us consider the following functionals in H1(S2):

Iα(u) = α

∫S2|∇u|2dω + 2

∫S2

udω

−12 log[(

∫S2

e2udω)2 −3∑

i=1(

∫S2

e2uxidω)2].

Theorem (Chang and G., 2019)For any α > 1/2, we have

Iα(u) ≥ (α− 2/3)∫

S2|∇u|2dω, ∀u ∈ H1(S2). (17)

In particular, when α ≥ 2/3 we have Iα(u) ≥ 0, ∀u ∈ H1(S2)But Iα is NOT bounded below in H1(S2) for α < 2/3.

Page 83: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A Variant of Aubin-Onofri Inequality, Alice Changand G., 2019Let us consider the following functionals in H1(S2):

Iα(u) = α

∫S2|∇u|2dω + 2

∫S2

udω

−12 log[(

∫S2

e2udω)2 −3∑

i=1(

∫S2

e2uxidω)2].

Theorem (Chang and G., 2019)For any α > 1/2, we have

Iα(u) ≥ (α− 2/3)∫

S2|∇u|2dω, ∀u ∈ H1(S2). (17)

In particular, when α ≥ 2/3 we have Iα(u) ≥ 0, ∀u ∈ H1(S2)But Iα is NOT bounded below in H1(S2) for α < 2/3.

Page 84: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A Variant of Aubin-Onofri Inequality, Alice Changand G., 2019Let us consider the following functionals in H1(S2):

Iα(u) = α

∫S2|∇u|2dω + 2

∫S2

udω

−12 log[(

∫S2

e2udω)2 −3∑

i=1(

∫S2

e2uxidω)2].

Theorem (Chang and G., 2019)For any α > 1/2, we have

Iα(u) ≥ (α− 2/3)∫

S2|∇u|2dω, ∀u ∈ H1(S2). (17)

In particular, when α ≥ 2/3 we have Iα(u) ≥ 0, ∀u ∈ H1(S2)

But Iα is NOT bounded below in H1(S2) for α < 2/3.

Page 85: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A Variant of Aubin-Onofri Inequality, Alice Changand G., 2019Let us consider the following functionals in H1(S2):

Iα(u) = α

∫S2|∇u|2dω + 2

∫S2

udω

−12 log[(

∫S2

e2udω)2 −3∑

i=1(

∫S2

e2uxidω)2].

Theorem (Chang and G., 2019)For any α > 1/2, we have

Iα(u) ≥ (α− 2/3)∫

S2|∇u|2dω, ∀u ∈ H1(S2). (17)

In particular, when α ≥ 2/3 we have Iα(u) ≥ 0, ∀u ∈ H1(S2)But Iα is NOT bounded below in H1(S2) for α < 2/3.

Page 86: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Euler-Lagrange Equation

Letai =

∫S2

e2uxidω, i = 1, 2, 3. (18)

DefineH = u ∈ H1(S2) :

∫S2

e2udω = 1. (19)

PropositionThe Euler Lagrange equation for the functional Iα in H is

α∆u +1 −

∑3i=1 aixi

1 −∑3

i=1 a2i

e2u − 1 = 0 on S2. (20)

Page 87: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Euler-Lagrange Equation

Letai =

∫S2

e2uxidω, i = 1, 2, 3. (18)

DefineH = u ∈ H1(S2) :

∫S2

e2udω = 1. (19)

PropositionThe Euler Lagrange equation for the functional Iα in H is

α∆u +1 −

∑3i=1 aixi

1 −∑3

i=1 a2i

e2u − 1 = 0 on S2. (20)

Page 88: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence and Nonexistence of Solutions

Propositioni ) When α ∈ [1

2 , 1) and α = 23 , equation (20) has only

constant solutions;

ii) When α = 23 , for any a = (a1, a2, a3) ∈ B1, there is a unique

solution u to equation (20) in H such that (18) holds.In particular, u is axially symmetric about a if a = (0, 0, 0).After a proper rotation, the solution u is explicitly given by theformula in (26) below.

Page 89: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence and Nonexistence of Solutions

Propositioni ) When α ∈ [1

2 , 1) and α = 23 , equation (20) has only

constant solutions;ii) When α = 2

3 , for any a = (a1, a2, a3) ∈ B1, there is a uniquesolution u to equation (20) in H such that (18) holds.

In particular, u is axially symmetric about a if a = (0, 0, 0).After a proper rotation, the solution u is explicitly given by theformula in (26) below.

Page 90: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence and Nonexistence of Solutions

Propositioni ) When α ∈ [1

2 , 1) and α = 23 , equation (20) has only

constant solutions;ii) When α = 2

3 , for any a = (a1, a2, a3) ∈ B1, there is a uniquesolution u to equation (20) in H such that (18) holds.In particular, u is axially symmetric about a if a = (0, 0, 0).

After a proper rotation, the solution u is explicitly given by theformula in (26) below.

Page 91: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Existence and Nonexistence of Solutions

Propositioni ) When α ∈ [1

2 , 1) and α = 23 , equation (20) has only

constant solutions;ii) When α = 2

3 , for any a = (a1, a2, a3) ∈ B1, there is a uniquesolution u to equation (20) in H such that (18) holds.In particular, u is axially symmetric about a if a = (0, 0, 0).After a proper rotation, the solution u is explicitly given by theformula in (26) below.

Page 92: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Kazdan-Warner condition

For the Gaussian curvature equation:

∆u + K(x)e2u = 1 on S2, (21)

we have

∫S2(∇K(x) · ∇xj)e2udω = 0 for each j= 1,2, 3. (22)

Page 93: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Kazdan-Warner condition

For the Gaussian curvature equation:

∆u + K(x)e2u = 1 on S2, (21)

we have∫S2(∇K(x) · ∇xj)e2udω = 0 for each j= 1,2, 3. (22)

Page 94: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Stereographic Project

For α = 23 , we assume that (a1, a2, a3) = (0, 0, a) with

a ∈ (0, 1) and consider23∆u +

1 − ax31 − a2 e2u − 1 = 0 on S2. (23)

Use the stereographic projection to transform the equation tobe on R2. Let

w(y) := u(Π−1(y))− 32 ln(1 + |y|2) for y ∈ R2.

Then w satisfies

∆w +6

1 + a(b2 + |y|2)e2w = 0 in R2 (24)

where b2 = 1+a1−a > 1, b > 0 and∫

R2(b2 + |y|2)e2wdy = (1 + a)π. (25)

Page 95: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Stereographic Project

For α = 23 , we assume that (a1, a2, a3) = (0, 0, a) with

a ∈ (0, 1) and consider23∆u +

1 − ax31 − a2 e2u − 1 = 0 on S2. (23)

Use the stereographic projection to transform the equation tobe on R2. Let

w(y) := u(Π−1(y))− 32 ln(1 + |y|2) for y ∈ R2.

Then w satisfies

∆w +6

1 + a(b2 + |y|2)e2w = 0 in R2 (24)

where b2 = 1+a1−a > 1, b > 0 and∫

R2(b2 + |y|2)e2wdy = (1 + a)π. (25)

Page 96: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Stereographic Project

For α = 23 , we assume that (a1, a2, a3) = (0, 0, a) with

a ∈ (0, 1) and consider23∆u +

1 − ax31 − a2 e2u − 1 = 0 on S2. (23)

Use the stereographic projection to transform the equation tobe on R2. Let

w(y) := u(Π−1(y))− 32 ln(1 + |y|2) for y ∈ R2.

Then w satisfies

∆w +6

1 + a(b2 + |y|2)e2w = 0 in R2 (24)

where b2 = 1+a1−a > 1, b > 0 and

∫R2(b2 + |y|2)e2wdy = (1 + a)π. (25)

Page 97: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Stereographic Project

For α = 23 , we assume that (a1, a2, a3) = (0, 0, a) with

a ∈ (0, 1) and consider23∆u +

1 − ax31 − a2 e2u − 1 = 0 on S2. (23)

Use the stereographic projection to transform the equation tobe on R2. Let

w(y) := u(Π−1(y))− 32 ln(1 + |y|2) for y ∈ R2.

Then w satisfies

∆w +6

1 + a(b2 + |y|2)e2w = 0 in R2 (24)

where b2 = 1+a1−a > 1, b > 0 and∫

R2(b2 + |y|2)e2wdy = (1 + a)π. (25)

Page 98: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Exact Solution

Now it is easy to verify directly that

w(y) = −32 ln(b2 + |y|2) + 2 ln b +

12 ln

21 + b2

is a solution to (24) and (25), and hence u(x) defined by

u(x) = u(Π−1(y)) := 32 ln

1 + |y|2b2 + |y|2 + 2 ln b +

12 ln

21 + b2 (26)

is a solution to (23).

Page 99: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Symmetry and Uniqueness of Solutions

Use symmetry result of G.-Moradifam (2018) and uniquenessresult of C.S. Lin (2000) on axially symmetric solutions, weknow that the solution above is a unique solution.Define

uα,b(x) = uα,b(Π−1(y)) := 1αln

1 + |y|2b2 + |y|2 + 2 ln b +

12 ln

21 + b2

(27)

Direct computations show thatlimb→∞ Iα(uα,b) = −∞, if α < 2

3limb→∞ Iα(uα,b) = ∞, if α > 2

3I 2

3(u 2

3 ,b) = 0, ∀b > 0

Indeed,

uα,a(x) = − 1αln (1 − a · x) + ln(1 − |a|2), x ∈ S2.

Page 100: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Symmetry and Uniqueness of Solutions

Use symmetry result of G.-Moradifam (2018) and uniquenessresult of C.S. Lin (2000) on axially symmetric solutions, weknow that the solution above is a unique solution.Define

uα,b(x) = uα,b(Π−1(y)) := 1αln

1 + |y|2b2 + |y|2 + 2 ln b +

12 ln

21 + b2

(27)Direct computations show that

limb→∞ Iα(uα,b) = −∞, if α < 23

limb→∞ Iα(uα,b) = ∞, if α > 23

I 23(u 2

3 ,b) = 0, ∀b > 0

Indeed,

uα,a(x) = − 1αln (1 − a · x) + ln(1 − |a|2), x ∈ S2.

Page 101: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Challenge: Compactness?

It is NOT clear if the minimum is attained and a minimizerexists!

The compactness of the minimizing sequence is NOT known.

Page 102: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Challenge: Compactness?

It is NOT clear if the minimum is attained and a minimizerexists!

The compactness of the minimizing sequence is NOT known.

Page 103: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A Constrained Minimization Problem andCompactness

For any a = (a1, a2, a3) ∈ B1 := |a| < 1 ⊂ R2, let us define

Ma := u ∈ H1(S2) :

∫S2

e2uxi = ai, i = 1, 2, 3 ∩ H. (28)

We consider a constrained minimizing problem on Ma :

minu∈Ma

Iα(u).

and recall the following compactness result:

PropositionFor any α > 1

2 , a = (a1, a2, a3) ∈ B1, there exists Cα,a ∈ R suchthat

Iα(u) ≥ Cα,a, ∀u ∈ Ma (29)

Page 104: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A Constrained Minimization Problem andCompactness

For any a = (a1, a2, a3) ∈ B1 := |a| < 1 ⊂ R2, let us define

Ma := u ∈ H1(S2) :

∫S2

e2uxi = ai, i = 1, 2, 3 ∩ H. (28)

We consider a constrained minimizing problem on Ma :

minu∈Ma

Iα(u).

and recall the following compactness result:

PropositionFor any α > 1

2 , a = (a1, a2, a3) ∈ B1, there exists Cα,a ∈ R suchthat

Iα(u) ≥ Cα,a, ∀u ∈ Ma (29)

Page 105: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

A Constrained Minimization Problem andCompactness

For any a = (a1, a2, a3) ∈ B1 := |a| < 1 ⊂ R2, let us define

Ma := u ∈ H1(S2) :

∫S2

e2uxi = ai, i = 1, 2, 3 ∩ H. (28)

We consider a constrained minimizing problem on Ma :

minu∈Ma

Iα(u).

and recall the following compactness result:

PropositionFor any α > 1

2 , a = (a1, a2, a3) ∈ B1, there exists Cα,a ∈ R suchthat

Iα(u) ≥ Cα,a, ∀u ∈ Ma (29)

Page 106: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

E-L Equation of the constrained problem

It is standard to show that there exists a minimizer uα,a ∈ Maof (28) satisfying

α∆u + e2u(ρ−3∑

i=1βixi) = 1, x ∈ S2 (30)

for some ρ ∈ R and β = (β1, β2, β3) ∈ R3 with

ρ = 1 +3∑

i=1βiai.

Luckily for α = 23 , βj =

aj1−|a|2 , j = 1, 2, 3. Then (30) is

equivalent to (20) and

minu∈Ma

I 23(u) = I 2

3(u 2

3 ,|a|) = 0.

Page 107: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

E-L Equation of the constrained problem

It is standard to show that there exists a minimizer uα,a ∈ Maof (28) satisfying

α∆u + e2u(ρ−3∑

i=1βixi) = 1, x ∈ S2 (30)

for some ρ ∈ R and β = (β1, β2, β3) ∈ R3 with

ρ = 1 +3∑

i=1βiai.

Luckily for α = 23 , βj =

aj1−|a|2 , j = 1, 2, 3. Then (30) is

equivalent to (20) and

minu∈Ma

I 23(u) = I 2

3(u 2

3 ,|a|) = 0.

Page 108: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

E-L Equation of the constrained problem

It is standard to show that there exists a minimizer uα,a ∈ Maof (28) satisfying

α∆u + e2u(ρ−3∑

i=1βixi) = 1, x ∈ S2 (30)

for some ρ ∈ R and β = (β1, β2, β3) ∈ R3 with

ρ = 1 +3∑

i=1βiai.

Luckily for α = 23 , βj =

aj1−|a|2 , j = 1, 2, 3. Then (30) is

equivalent to (20) and

minu∈Ma

I 23(u) = I 2

3(u 2

3 ,|a|) = 0.

Page 109: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

E-L Equation of the constrained problem

It is standard to show that there exists a minimizer uα,a ∈ Maof (28) satisfying

α∆u + e2u(ρ−3∑

i=1βixi) = 1, x ∈ S2 (30)

for some ρ ∈ R and β = (β1, β2, β3) ∈ R3 with

ρ = 1 +3∑

i=1βiai.

Luckily for α = 23 , βj =

aj1−|a|2 , j = 1, 2, 3. Then (30) is

equivalent to (20) and

minu∈Ma

I 23(u) = I 2

3(u 2

3 ,|a|) = 0.

Page 110: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

When α = 23

Rotate the coordinates properly so that β1 = β2 = 0. Withoutloss of generality, we assume that β3 > 0.We can obtain

a31 − a2

3≤ β3 ≤

2( 1α − 1)a31 − a2

3, if α ∈ (

12 ,

23 ] (31)

anda3

1 − a23≥ β3 ≥

2( 1α − 1)a31 − a2

3, if α ∈ [

23 , 1]. (32)

Page 111: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Difference: Equation on R2

Let b be a positive constant with b2 = ρ+β3ρ−β3

> 1. Set

wα,a(y) := uα,a(Π−1(y))− 1αln(1 + |y|2) + 1

2 ln(4(ρ− β3)

α).

Then wα,a satisfies

∆w + k(|y|)e2w = 0 in R2 (33)

and1

∫R2

k(|y|)e2wdy =2α

(34)

wherek(|y|) := (b2 + |y|2)(1 + |y|2) 2

α−3.

When 12 < α < 2

3 , t k(|y|) satisfies (K1)− (K2) with l = 2α − 2.

By G.-Moradifam (2018), wα,a(y) must be radially symmetricand hence uα,a(y) must be axially symmetric and a1 = a2 = 0.

Page 112: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Difference: Equation on R2

Let b be a positive constant with b2 = ρ+β3ρ−β3

> 1. Set

wα,a(y) := uα,a(Π−1(y))− 1αln(1 + |y|2) + 1

2 ln(4(ρ− β3)

α).

Then wα,a satisfies

∆w + k(|y|)e2w = 0 in R2 (33)

and1

∫R2

k(|y|)e2wdy =2α

(34)

wherek(|y|) := (b2 + |y|2)(1 + |y|2) 2

α−3.

When 12 < α < 2

3 , t k(|y|) satisfies (K1)− (K2) with l = 2α − 2.

By G.-Moradifam (2018), wα,a(y) must be radially symmetricand hence uα,a(y) must be axially symmetric and a1 = a2 = 0.

Page 113: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Difference: Equation on R2

Let b be a positive constant with b2 = ρ+β3ρ−β3

> 1. Set

wα,a(y) := uα,a(Π−1(y))− 1αln(1 + |y|2) + 1

2 ln(4(ρ− β3)

α).

Then wα,a satisfies

∆w + k(|y|)e2w = 0 in R2 (33)

and1

∫R2

k(|y|)e2wdy =2α

(34)

wherek(|y|) := (b2 + |y|2)(1 + |y|2) 2

α−3.

When 12 < α < 2

3 , t k(|y|) satisfies (K1)− (K2) with l = 2α − 2.

By G.-Moradifam (2018), wα,a(y) must be radially symmetricand hence uα,a(y) must be axially symmetric and a1 = a2 = 0.

Page 114: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Estimate of the minimum m(α, a) of Jα on Ma.

TheoremThere hold pointwise in a ∈ [0, 1)

m(α, a) ≥

(

2α− 3) ln(1 − a2), α ∈ (1/2, 2/3),

α(1α− 3

2) ln(1 − a2), α ∈ (2/3, 1).(35)

and

(

2α− 3) ln(1 − a2), α ∈ (2/3, 1),

3α2a (

1α− 3

2)(ln(1 − a2)− 2(ln(1 + a)− a)

), ∀α ∈ (1/2, 1).

(36)

Page 115: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Estimate of the minimum m(α, a) of Jα on Ma.

TheoremThere hold pointwise in a ∈ [0, 1)

m(α, a) ≥

(

2α− 3) ln(1 − a2), α ∈ (1/2, 2/3),

α(1α− 3

2) ln(1 − a2), α ∈ (2/3, 1).(35)

and

(

2α− 3) ln(1 − a2), α ∈ (2/3, 1),

3α2a (

1α− 3

2)(ln(1 − a2)− 2(ln(1 + a)− a)

), ∀α ∈ (1/2, 1).

(36)

Page 116: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Some Technique Questions

1). Should uα,a(y) always be axially symmetric for allα ∈ (1

2 , 1) and a ∈ B1?

2). Is the minimizer uα,a(y) unique determined? In particular,is β uniquely determined? We know that if β is uniquelydetermined by α and a, then the axially symmetric solutionuα,a(y) is unique.3) Fixed α ∈ (1

2 , 1), a ∈ B1, for any givenβ = β3a/|a|, 0 < β3 < 1

1−|a| , ρ = 1 + β3 |a|, there is a uniqueaxially symmetric solution u to (30) with the corresponding wsolving (33) and (34).4) Can we compute or estimate more accurately

m(α, a) := Iα(uα,a)?

Page 117: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Some Technique Questions

1). Should uα,a(y) always be axially symmetric for allα ∈ (1

2 , 1) and a ∈ B1?2). Is the minimizer uα,a(y) unique determined? In particular,is β uniquely determined? We know that if β is uniquelydetermined by α and a, then the axially symmetric solutionuα,a(y) is unique.

3) Fixed α ∈ (12 , 1), a ∈ B1, for any given

β = β3a/|a|, 0 < β3 < 11−|a| , ρ = 1 + β3 |a|, there is a unique

axially symmetric solution u to (30) with the corresponding wsolving (33) and (34).4) Can we compute or estimate more accurately

m(α, a) := Iα(uα,a)?

Page 118: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Some Technique Questions

1). Should uα,a(y) always be axially symmetric for allα ∈ (1

2 , 1) and a ∈ B1?2). Is the minimizer uα,a(y) unique determined? In particular,is β uniquely determined? We know that if β is uniquelydetermined by α and a, then the axially symmetric solutionuα,a(y) is unique.3) Fixed α ∈ (1

2 , 1), a ∈ B1, for any givenβ = β3a/|a|, 0 < β3 < 1

1−|a| , ρ = 1 + β3 |a|, there is a uniqueaxially symmetric solution u to (30) with the corresponding wsolving (33) and (34).

4) Can we compute or estimate more accurately

m(α, a) := Iα(uα,a)?

Page 119: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Some Technique Questions

1). Should uα,a(y) always be axially symmetric for allα ∈ (1

2 , 1) and a ∈ B1?2). Is the minimizer uα,a(y) unique determined? In particular,is β uniquely determined? We know that if β is uniquelydetermined by α and a, then the axially symmetric solutionuα,a(y) is unique.3) Fixed α ∈ (1

2 , 1), a ∈ B1, for any givenβ = β3a/|a|, 0 < β3 < 1

1−|a| , ρ = 1 + β3 |a|, there is a uniqueaxially symmetric solution u to (30) with the corresponding wsolving (33) and (34).4) Can we compute or estimate more accurately

m(α, a) := Iα(uα,a)?

Page 120: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Open Questions

Is there an analogue of Szego Limit Theorem for S2?

What is the right form of Szego Limit Theorem for S2?

Higher Dimensions?

Page 121: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Open Questions

Is there an analogue of Szego Limit Theorem for S2?

What is the right form of Szego Limit Theorem for S2?

Higher Dimensions?

Page 122: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Open Questions

Is there an analogue of Szego Limit Theorem for S2?

What is the right form of Szego Limit Theorem for S2?

Higher Dimensions?

Page 123: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

References

1. Sun-Yung A. Chang and Fengbo Hang. Improvedmoser-trudinger-onofri inequality under constraints. arXivpreprint, 2019.2. Sun-Yung A. Chang and Changfeng Gui, New SharpInequalities on the Sphere Related to Multiple ClassicalInequalities, preprint3. Sun-Yung Alice Chang and Paul C. Yang, PrescribingGaussian curvature on S2, Acta Math., 159(3-4):215Ð259,1987.4. Ulf Grenander and Gabor Szeg. Toeplitz forms and theirapplications. California Mono- graphs in MathematicalSciences. University of California Press, Berkeley-Los Angeles,1958.5. Changfeng Gui, Amir Moradifam, The Sphere CoveringInequality and Its Applications, Inventiones Mathematicae,(2018). https://doi.org/10.1007/s00222-018-0820-2.6. B. Osgood, R. Phillips, and P. Sarnak. Extremals ofdeterminants of Laplacians. J. Funct. Anal., 80(1):148211,1988.7. Harold Widom. On an inequality of Osgood, Phillips andSarnak. Proc. Amer. Math. Soc., 102(3):773774, 1988.

Page 124: New Sharp Inequalities in Analysis and Geometry · 2020. 6. 1. · Changfeng Gui Lebedev-Milin Inequality and Toeplitz Determinants Aubin-Onofri Inequality Sphere Covering Inequality

New SharpInequalities inAnalysis and

Geometry

ChangfengGui

Lebedev-MilinInequality andToeplitzDeterminants

Aubin-OnofriInequality

SphereCoveringInequality

LogrithemicDeterminants

New Inequality

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thank You!