new developments in circuit complexity from circuit-sat algorithms to circuit lower bounds

49
uib.no U N I V E R S I T Y O F B E R G E N New developments in Circuit Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds Bart M. P. Jansen University of Bergen, Norway March 20th 2014, UiB Algorithms Group Winter School 2014 Algorithms Research Group

Upload: lydia-landry

Post on 30-Dec-2015

29 views

Category:

Documents


2 download

DESCRIPTION

Insert « Academic unit» on every page: 1 Go to the menu «Insert» 2 Choose: Date and time 3 Write the name of your faculty or department in the field «Footer» 4 Choose «Apply to all". New developments in Circuit Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

U N I V E R S I T Y O F B E R G E N

New developments in Circuit ComplexityFrom Circuit-SAT Algorithms to Circuit Lower Bounds

Bart M. P. JansenUniversity of Bergen, Norway

March 20th 2014, UiB Algorithms Group Winter School 2014

Algorithms Research Group

Page 2: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Circuit complexity up to 2010• 1970’s:

– Boolean circuits are combinatorial objects• Possibly easier to understand than Turing machines

– Analyze circuits to separate P from NP?– If P ≠ NP is there a large program that solves SAT instances of size ≤ 106?

• Non-uniform circuit lower bounds exclude this possibility

• Early 1980’s: Parity does not have non-uniform poly-size AC0 circuits– What happens if we give AC0 the parity function for free?– Study AC0 with mod 2 gates of arbitrary fan-in

• Late 1980’s: Majority does not have non-uniform poly-size AC0[2] circuits– What happens if we give an arbitrary constant mod gate for free?

• 1989: Barrington conjectures:– Majority does not have non-uniform poly-size AC0[m] circuits for fixed m

• 1990’s: Prove NEXP does not have non-uniform poly-size AC0[m] circuits?– Open until 2010

Algorithms Research Group

2

Page 3: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

A solution to an embarrassing problem

• STOC 2010, Ryan Williams:– “Improving exhaustive search implies superpolynomial lower bounds”– Improvements over brute force for Circuit-SAT yield superpolynomial

Boolean circuit lower bounds for NEXP

• CCC 2011, Ryan Williams:– “Non-uniform ACC Circuit Lower Bounds”– Improvements over brute force for ACC-Circuit-SAT yield

superpolynomial nonuniform ACC circuit lower bounds for NEXP– Such improvements are possible by exploiting the structure of ACC

• NEXP does not have poly-size non-uniform ACC circuits

Algorithms Research Group

3

Page 4: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Goal of this lecture

• Informally: NEXP ACC⊄

• (More) Formally:There is a language in NEXP that is not decided by a family of constant-depth, polynomial-size circuits using AND/OR/NOT/MOD[m] gates of unbounded fan-in

• (Even more) Formally:∃L NEXP: ∈ ¬ (

∃d,m ∈ , ℕ ∃ polynomial p, ∃ circuit family C1, C2, ... such that:

Cn is a circuit of size ≤ p(n) of depth ≤ d over gateset {AND,OR,NOT,Mod[m]} that decides all n-bit inputs of L)

Algorithms Research Group

4

Page 5: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

NEXP ACC⊄

II. Nontrivial ACC-Circuit-SAT algorithms exist

a. Decomposing ACC circuits using multilinear polynomials

b. Quickly evaluating a multilinear polynomial on many points c. Reducing the number of variables

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Algorithms Research Group

5

Testing poly(n)-size ACC circuits with n inputs for

satisfiability in time

Page 6: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Approaching the problem

• We are proving size lower bounds for non-uniform circuits – You are allowed “infinite time” to design the ideal circuit to solve

n-bit instances– Still, no polynomial-size circuit family will solve all instances

• The lower bound is unconditional– Does not rely on P ≠ NP, ETH, Unique Games, etc.

• Where to start?!– Non-deterministic time hierarchy theorem:

• If , then NTIME[f(n)] NTIME[g(n)]• Unconditionally, strict subset

• Proof by contradiction: assume both [A] NEXP ACC and [B] ⊆nontrivial ACC-Circuit-SAT, then contradict time hierarchy theorem

Algorithms Research Group

6

Page 7: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

Algorithms Research Group

7

(ACC-Circuit-SAT in time ) (NEXP ∧ ACC) ⊆ ⇒

¬ (Non-det. time hierarchy theorem) ⇒⊥

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Page 8: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Contradicting the time hierarchy theorem

• How to speed up all problems in NTIME[]?– Give an improvement for a NEXP-complete problem

• Which problem to pick?– Succinct 3SAT– (It is “very very NEXP-complete”)

• Let TT(C) denote the length- bitstring you get by– evaluating an -input circuit C– on all -bit strings – in lexicographical order

• TT(C)=C(000…000) C(000…001) C(000…010) … C(111…111)

Algorithms Research Group

8

Page 9: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Succinct 3SAT

• Succinct 3SAT is the following problem:– Input: A Boolean circuit – Question: Does TT() encode a satisfiable 3SAT formula?

• Succinct 3SAT is NEXP-complete under poly-time reductions

• A -bit string encodes a formula with variables and clauses– A literal or in a clause is encoded by

• Sign bit for possible negation• -bit binary encoding of variable index

– Encoding length of a clause is • In a -bit string, we can encode clauses• Define remaining clauses to be trivially true

– Given , easy to determine which bits encode ith clause

Algorithms Research Group

9

Page 10: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Ryan’s intuition• If NEXP (and therefore Succinct 3SAT) has small ACC

circuits, then this shows a “weakness” of Succinct 3SAT– A poly(n)-size circuit for the n-bit instances

compresses the yes/no answers to all 2n n-bit instances into poly(n) bits

• This weakness should also be exploitable algorithmically– If NEXP has small ACC circuits, Succinct 3SAT should

be solvable better than brute force, contradicting the time hierarchy theorem

Algorithms Research Group

10

“At this point we have reached a degree of handwaving so exuberant, one may fear we are about to fly away. Surprisingly, this handwaving has a completely formal theorem behind it.”

(Ryan Williams 2011, SIGACT News)

Page 11: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Efficient Cook-Levin for NEXP

• For each L NTIME[], there is a polynomial-time reduction R ∈from L to Succinct 3SAT such that:– Succinct 3SAT

• ( is a yes-instance iff is a circuit where TT(C) encodes a satisfiable 3SAT formula)

– is a circuit with gates– For long enough x, has at most inputs

• Follows from prior work, e.g., Fortnow, Lipton, van Melkebeek, Viglas ’05

Algorithms Research Group

11

Page 12: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Time lower bound for Succinct 3SAT

• Theorem. Succinct 3SAT on a circuit with inputs and size poly() cannot be solved in NTIME[]

• Proof. Suppose this is possible, let L NTIME[]∈

• To decide an n-bit instance of L in NTIME[] :– Compute equivalent Succinct 3SAT instance

• A circuit of size on inputs– Apply hypothetical Succinct 3SAT algorithm to – Runtime is:

• Contradiction to non-det. time hierarchy theorem

Algorithms Research Group

12

Page 13: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

Algorithms Research Group

13

(ACC-Circuit-SAT in time ) (NEXP ∧ ACC) ⊆ ⇒

-input Succinct 3SAT in NTIME[] ⇒

¬ (Non-det. time hierarchy theorem) ⇒⊥

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Page 14: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

Algorithms Research Group

14

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Page 15: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Consequences of NEXP ACC⊆

• Exploit assumption [A]: NEXP ACC⊆

• [A] ⇒ poly-size ACC circuits for Succinct 3SAT– For every , satisfiability of the 3SAT formula encoded by a

bitlength- circuit can be determined by a poly()-size ACC circuit

• Impagliazzo, Kabanets, Wigderson ‘02 boosts this to:

• [A] ⇒ poly-size Boolean circuits encoding satisfying assignments– ∀ Boolean circuits :

formula TT() is satisfiable ⇒ poly()-size circuit encoding satisfying assignment∃

– Assignment setting to satisfies TT(C)

Algorithms Research Group

15

Page 16: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Exploiting small witness circuits

• We are building a nondeterministic algorithm using [A]

• Guess the circuit W encoding the satisfying assignment?– Solve Succinct 3SAT instance as follows:

• Guess a small circuit • Answer yes if TT() satisfies TT()

– Under [A] this is a correct nondeterministic algorithm

• How to verify that TT() satisfies TT()?– If has inputs, writing down the formula of size and

manipulating it requires time, we need

• Use the ACC Circuit SAT algorithm?

Algorithms Research Group

16

Page 17: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

Algorithms Research Group

17

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Page 18: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Checking a guessed assignment using Circuit SAT

Algorithms Research Group

18

• TT(W) satisfies TT(C) impossible to pick such that no literal of the th clause is satisfied by TT(W)

• By making copies of the -input circuit , we can get– an -input, multi-output circuit of poly() size,– on input , circuit outputs the bits of the th clause

Page 19: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Checking a guessed assignment using Circuit SAT

Algorithms Research Group

19

• TT(W) satisfies TT(C) impossible to pick such that no literal of the th clause is satisfied by TT(W)

• Compose with three copies of to obtain circuit – Feed the indices of the variables in clause to a copy of to find the truth value– Clause is satisfied if the sign bit of one of the literals matches the truth value under

Page 20: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Checking a guessed assignment using Circuit SAT

Algorithms Research Group

20

• TT(W) satisfies TT(C) impossible to pick such that no literal of the th clause is satisfied by TT(W)

• Assignment encoded by satisfies formula encoded by iff for all possible clauses

Page 21: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Checking a guessed assignment using Circuit SAT

Algorithms Research Group

21

• TT(W) satisfies TT(C) ¬D is unsatisfiable

• D has inputs: run a circuit SAT algorithm on ¬D to determine whether the guess was correct!– Circuit SAT in time for -input, poly() size circuits would solve -input, poly()-size Succinct 3SAT

instance fast enough to contradict the time hierarchy theorem

Problem: ¬D is not an ACC circuit

(depth may be large)

Solution: Replace W and C’ by

ACC circuits

Page 22: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

Algorithms Research Group

22

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Page 23: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Equivalent ACC circuits for every Boolean circuit

• Assume [A]: NEXP ACC⊆

• Consider the meta-algorithmic Circuit Value problem:– Input: Binary encoding of -input circuit , bitstring – Question: Does output on input ?

• Circuit Value is in P (given the input, simulate the circuit)– So Circuit Value P ( NEXP) has poly-size ACC circuits by [A]∈ ⊆

Algorithms Research Group

23

Binary encoding of a circuit Input

Value of Constant-depth ACC circuit of

size poly()

Page 24: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Equivalent ACC circuits for every Boolean circuit

• Consider an -input poly()-size Boolean circuit – Hardcode into a Circuit Value Decider of size poly()– Yields a poly()-size ACC circuit equivalent to

• Assuming [A], for every Boolean circuit of polynomial size there is an equivalent ACC circuit of polynomial size

Algorithms Research Group

24

Binary encoding of a circuit C Input x’

Page 25: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

• Recall our approach to faster Succinct 3SAT

• Under [A] there are poly-size ACC circuits equivalent to and

• A nondeterministic algorithm can– Guess two small ACC circuits and – Use them instead of and

• Have to ensure that branches with wrong guesses do not accidentally output yes if the answer to Succinct 3SAT is no– Wrongly guessing is not a problem

• Then does not satisfy the formula, we output no– Wrongly guessing is a problem

• If encodes a different formula than C’, TT() might be satisfiable even if TT(C) is not

• We might incorrectly answer yes

• After guessing we should verify that TT() = TT()

Using the existence of small ACC circuits

Algorithms Research Group

25

Page 26: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

Algorithms Research Group

26

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Page 27: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Checking that C’ and are equivalent

• We could make a circuit that tests whether it is possible to satisfy ¬ [ C’(x) ⇔ (x) ]

• Run our Circuit SAT algorithm on it?– It would not be an ACC circuit since it contains

• Solution:– Guess a circuit that gives more information than C’– Makes it easier to verify that it gives the right information

Algorithms Research Group

27

Page 28: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

The Circuit Gate Value Problem

• Input: – Binary encoding of -input circuit – Bitstring – Index of a gate in

• Question: Does gate of evaluate to on input ?

• Circuit Gate Value P∈– Assuming [A] it has polynomial-size ACC circuits

Algorithms Research Group

28

Gate k

Page 29: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

The Circuit Gate Value Problem

Algorithms Research Group

29

• By hardcoding a description of into a Circuit Gate Value Decider, we get a poly-size ACC circuit such that:– = Value of gate when evaluates

• A guessed circuit is correct if and only if:– For all possible inputs , for all gate indices of :

• If is an AND-gate with inputs then • If is an OR-gate with inputs then • If is a NOT-gate with inputs then • If is the th input gate then

• Can we set up an ACC circuit to test this?

May assume that the fan-in of is 2

Page 30: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

An ACC circuit to verify the behavior of a gate

• To verify correctness of an AND-gate with inputs and :– (for all possible inputs )

Algorithms Research Group

30

Page 31: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

An ACC circuit to verify the behavior of a gate

• To verify correctness of an AND-gate with inputs and :– (for all possible )

• Similar constructions for OR, NOT and INPUT gates

• To check consistency of all gates simultaneously, for one input :– Build constant-depth checkers for each gate– Feed them into an AND gate to get circuit

• -input circuit has size poly(), so poly() gates

Algorithms Research Group

31

Page 32: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

An ACC circuit to verify the behavior of a gate

• correctly simulates if and only if is unsatisfiable– Note: is an ACC circuit with inputs and poly() size– The ACC-Circuit-SAT algorithm runs in time

Algorithms Research Group

32

Page 33: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

• Assume: -input, poly()-size ACC-Circuit-SAT in time

• Input: string encoding an -input circuit of size poly()– Construct circuit such that is the ith clause of TT(C)– Guess poly()-size ACC circuits and – Construct the ACC circuit testing if simulates – Call the ACC-Circuit-SAT algorithm on

• If is satisfiable: guess for is incorrect, output no• Else: E simulates gates of C’ so OUT

– Compose 3 copies of with OUT to form D– Call the ACC-Circuit-SAT algorithm on – If is satisfiable: output no

» (W’ is not a satisfying assignment)– Else: output yes ( satisfies TT(C))

-input Succinct 3SAT in NTIME[]

Algorithms Research Group

33

If TT(C) is satisfiable, then encodes a satisfying

assignment in branch

has inputs and size poly(n)Executes in time

𝑊 𝑊 𝑊

In some branch, outputs the value of the th gate of on input

Page 34: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

Algorithms Research Group

34

(ACC-Circuit-SAT in time ) (NEXP ∧ ACC) ⊆ ⇒

-input Succinct 3SAT in NTIME[] ⇒

¬ (Non-det. time hierarchy theorem) ⇒⊥

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Page 35: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

II. Nontrivial ACC-Circuit-SAT algorithms exist

a. Decomposing ACC circuits using multilinear polynomials

b. Quickly evaluating a multilinear polynomial on many points c. Reducing the number of variables

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Algorithms Research Group

35

Page 36: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Nontrivial algorithms for ACC Circuit SAT

• Three different routes1. Coppersmith’s rectangular matrix multiplication algorithm

• (In the conference version)2. Dynamic programming using the zeta transform

• (In the journal version)3. Recursion

• (In the informal article)

• All exploit a structural decomposition of ACC developed in the 90’s– [Yao’90, Beigel&Tarui’94, Allender&Gore’94]

Algorithms Research Group

36

Page 37: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

II. Nontrivial ACC-Circuit-SAT algorithms exist

a. Decomposing ACC circuits using multilinear polynomials

b. Quickly evaluating a multilinear polynomial on many points c. Reducing the number of variables

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Algorithms Research Group

37

Page 38: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Decomposing ACC circuits by polynomials

• Let be an -input circuit of size , depth , with mod[m] gates– Computation C(x1, … , xn) can be simulated by:

• Evaluating a “sparse” multilinear polynomial • Looking up in a sparse 0-1 array A

The decomposition can be obtained algorithmically in time

Algorithms Research Group

38

𝑝 (𝑥1 ,…,𝑥𝑛)=81 𝑥1 𝑥5 𝑥7+24 𝑥2𝑥4𝑥5+5 𝑥1 𝑥6 𝑥8+…+3𝑥1𝑥2𝑥3𝑥4 𝑥5𝑥6𝑥7𝑥8

terms

1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0A=

cells

Reduces ACC Circuit Satisfiability to checking whether there is some point with

Page 39: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

II. Nontrivial ACC-Circuit-SAT algorithms exist

a. Decomposing ACC circuits using multilinear polynomials

b. Quickly evaluating a multilinear polynomial on many points c. Reducing the number of variables

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Algorithms Research Group

39

Page 40: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Quickly evaluating a polynomial

• Why does a decomposition into polynomials help?

• A -term -variate multilinear polynomial can be evaluated– on all points of – in time(assuming constant-time arithmetic)

• We spend poly() amortized time per point– Even though may be – Compare to naïve algorithm

Algorithms Research Group

40

Page 41: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Quickly evaluating a polynomial

• Why does a decomposition into polynomials help?

• A -term -variate multilinear polynomial can be evaluated– on all points of – in time(assuming constant-time arithmetic)

• Decompose into multilinear as follows:

• Then:

– +

• Gives a recursive algorithm

Algorithms Research Group

41

Page 42: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Exploiting fast evaluation of polynomials

• Idea to check satisfiability of an -input ACC circuit :– Compute decomposition – Evaluate on all points x in – Check if some

• To get time, should have variables– But C has inputs!

Algorithms Research Group

42

Page 43: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Outline of the proof

II. Nontrivial ACC-Circuit-SAT algorithms exist

a. Decomposing ACC circuits using multilinear polynomials

b. Quickly evaluating a multilinear polynomial on many points c. Reducing the number of variables

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Algorithms Research Group

43

Page 44: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Reducing the number of variables

• Consider an -input circuit for Circuit Satisfiability of size

• Reduce the number of variables to by a -blowup:– Enumerate all assignments to – Hardcode each assignment into a new copy of – Take the OR of the resulting circuits

• Resulting circuit has size – Depth is increased by one– Result is still an ACC circuit– Satisfiable if and only if C is satisfiable!

Algorithms Research Group

44

Page 45: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

• Testing satisfiability of circuit – variables, size , depth , with mod[] gates

• Pick – ( depends on ,)

1. Compute the -blowup of – Size and depth

2. Compute a decomposition of – Sparse lookup table of a sparse multilinear polynomial

3. Evaluate for all

4. Output yes if and only if for some

A faster algorithm for ACC Circuit SAT

Algorithms Research Group

45

Running time:

Running time:

Page 46: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

What happened?

• Where did the speed-up come from?

• The algorithm to evaluate the polynomial beats brute force when the number of terms is large compared to

• By blowing up the circuit, we increased the size of the circuit– And therefore the number of terms in the polynomial

• This allows the ACC Circuit SAT algorithm to beat brute force

Algorithms Research Group

46

Page 47: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

QED

NEXP ACC⊄

II. Nontrivial ACC-Circuit-SAT algorithms exist

a. Decomposing ACC circuits using multilinear polynomials

b. Quickly evaluating a multilinear polynomial on many points c. Reducing the number of variables

I. Nontrivial ACC-Circuit-SAT algorithms imply NEXP ACC⊄

a. NEXP-completeness of Succinct 3SAT

b. Small witness circuits for Succinct 3SAT

c. Checking an assignment by

analyzing a circuit

d. ACC circuits simulate Boolean circuits

e. Verifying a guessed circuit

Algorithms Research Group

47

Page 48: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

uib.no

Conclusion

• An algorithm for Circuit Satisfiability that is slightly faster than brute force can be turned into a circuit complexity lower bound

• In 2011 this led to a proof that NEXP ACC⊄

• Follow-up work proves size lower bounds for more general circuits– [STOC’14]: ACC with threshold gates at the bottom layer

• There are many other transference theorems on how algorithmic advances imply circuit lower bounds [Oliveira’13]– Derandomization– Learning algorithms– Compression algorithms

• Plenty of algorithmic challenges in circuit complexity!

Algorithms Research Group

48

Page 49: New developments  in  Circuit  Complexity From Circuit-SAT Algorithms to Circuit Lower Bounds

Algorithms Research Group

Thank you!