neutrino%flavour%models% and%impact%on%lfv · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 ev2 m2 atm...

79
Neutrino Flavour Models and Impact on LFV Luca Merlo 26.06.2012, WHAT IS ʋ? INVISIBLES12 and Alexei Smirnov Fest

Upload: others

Post on 18-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

Neutrino  Flavour  Models  and  Impact  on  LFV

Luca  Merlo

26.06.2012,  WHAT  IS  ʋ?  INVISIBLES12  and  Alexei  Smirnov  Fest

Page 2: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

2

News  on  neutrino  mixingsImpact  on  neutrino  flavour  models  (discrete  symmetries)  

Implica;ons  for  LFV  transi;ons   in  supersymmetric  models  

and  correla;on  with  the  muon  g-­‐2  discrepancy

Digression:  a  couple  of  alterna;ve  aDempts

Outline

based  on:   Altarelli,  Feruglio,  LM  &  Stamou,  arXiv:1205.4670Altarelli,  Feruglio  &  LM,  arXiv:1205.5133Bazzocchi  &  LM,  arXiv:1205.5135

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

based  on:   Alonso,  Gavela,  D.Hernandez  &  LM,  arXiv:1206.3167Altarelli,  Feruglio,  Masina  &  LM,  to  appear

Page 3: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

3

�m2

sol

= (7.54+0.26�0.22)⇥ 10�5 eV2

�m2

atm

= (2.43+0.07�0.09)[2.42

+0.07�0.10]⇥ 10�3 eV2

sin2 ✓12

= 0.307+0.018�0.016

sin2 ✓23

= 0.398+0.030�0.026[0.408

+0.035�0.030]

sin2 ✓13

= 0.0245+0.0034�0.0031[0.0246

+0.0034�0.0031]

� = ⇡(0.89+0.29�0.44)[0.90

+0.32�0.43]

✓13

Very  recent  global  fit:    Fogli  et  al.  1205.5254    (see  also                                                                                                )[Tortola  et  al.  1205.4018]

Recent  Results  of  Global  Fits

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talks  by  Walter  &  Wang  &  Schwetz]

(Only  3  ac;ve  neutrinos...)

Page 4: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

4

In  the  past:large  atmospheric  angleonly  upper  bound  on  the  reactor  angle

sin2 ✓23 =1

2

sin2 ✓13 = 0

mu-­‐tau  symmetry

Neutrino  Mass  PaZerns

This  suggests  a  fundamental  structure  of  nature!

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 5: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

4

sin2 ✓23 =1

2sin2 ✓13 = 0 sin2 ✓12 =

1

3✓12 = 35.26�

TRI-­‐BIMAXIMAL  (TB) [Harrison,  Perkins  &  ScoD  2002;  Zhi-­‐Zhong  Xing  2002]

In  the  past:large  atmospheric  angleonly  upper  bound  on  the  reactor  angle

sin2 ✓23 =1

2

sin2 ✓13 = 0

mu-­‐tau  symmetry

1�3�

2

5 +p5

1

3sin2 ✓120

TBGR

3�

1

2

Neutrino  Mass  PaZerns

This  suggests  a  fundamental  structure  of  nature!

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 6: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

4

sin2 ✓23 =1

2sin2 ✓13 = 0 tan ✓12 =

1

� ⌘ 1 +p5

2

✓12 = 31.72�[Kajiyama,  Raidal  &  Strumia  2007]GOLDEN  RATIO  (GR)

sin2 ✓23 =1

2sin2 ✓13 = 0 sin2 ✓12 =

1

3✓12 = 35.26�

TRI-­‐BIMAXIMAL  (TB) [Harrison,  Perkins  &  ScoD  2002;  Zhi-­‐Zhong  Xing  2002]

In  the  past:large  atmospheric  angleonly  upper  bound  on  the  reactor  angle

sin2 ✓23 =1

2

sin2 ✓13 = 0

mu-­‐tau  symmetry

1�3�

2

5 +p5

1

3sin2 ✓120

TBGR

3�

1

2

Neutrino  Mass  PaZerns

This  suggests  a  fundamental  structure  of  nature!

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 7: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

5

sin2 ✓23 =1

2sin2 ✓13 = 0 sin2 ✓12 =

1

2✓12 = 45�

[Vissani  1997;  Barger  et  al.  1998]BIMAXIMAL  (BM)

1

2

BM

2

5 +p5

1

3sin2 ✓120

TBGR

1�3� 3�

Neutrino  Mass  PaZerns

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 8: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

5

sin2 ✓23 =1

2sin2 ✓13 = 0 sin2 ✓12 =

1

2✓12 = 45�

[Vissani  1997;  Barger  et  al.  1998]BIMAXIMAL  (BM)

✓Exp

12 ⇡ ✓BM

12 � �

⇡/4 ⇡ ✓12 + �Maybe  related  to  the  Quark-­‐Lepton  Complementarity:[Smirnov;  Raidal;  Minakata  &  Smirnov  2004]

[Altarelli,  Feruglio  and  LM  2009,  Adelhart,  Bazzocchi  and  LM  2010,  Meloni  2011]

1

2

BM

2

5 +p5

1

3sin2 ✓120

TBGR

1�3� 3�

Neutrino  Mass  PaZerns

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 9: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

6

sin2 ✓13 = 0.0245+0.0034�0.0031[0.0246

+0.0034�0.0031]

sin2 ✓13BM

0TB GR

1�3� 3�

0.05

Need  of  Correc`ons!!

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 10: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

6

sin2 ✓13 = 0.0245+0.0034�0.0031[0.0246

+0.0034�0.0031]

sin2 ✓13BM

0TB GR

1�3� 3�

0.05

Need  of  Correc`ons!!

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Are  these  predic6ve  pa8erns  completely  ruled  out?

Page 11: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

6

me = m(0)e + �me m⌫ = m(0)

⌫ + �m⌫

Such  correc;ons  can  arise  from  the  charged  lepton  and/or  from  the  neutrino  sectors:

sin2 ✓13 = 0.0245+0.0034�0.0031[0.0246

+0.0034�0.0031]

sin2 ✓13BM

0TB GR

1�3� 3�

0.05

Need  of  Correc`ons!!

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Are  these  predic6ve  pa8erns  completely  ruled  out?

Page 12: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

6

me = m(0)e + �me m⌫ = m(0)

⌫ + �m⌫

mdiage = m(0)

e

mdiag⌫ = �UT

⌫ U0T⌫ m⌫ U

0⌫ �U⌫

U0⌫ = {UTB , UGR, UBM}mdiag

⌫ = U0T⌫ m(0)

⌫ U0⌫

(mdiage )2 = �U†

e m†e me �Ue

�U =

0

@1 c12 ⇠ c13 ⇠

�c⇤12 ⇠ 1 c23 ⇠�c⇤13 ⇠ �c⇤23 ⇠ 1

1

A

Such  correc;ons  can  arise  from  the  charged  lepton  and/or  from  the  neutrino  sectors:

in  the  basis  in  which  the  LO  masses  sa;sfy  to  

then  the  NLO  correc;ons  are  encoded  in  

sin2 ✓13 = 0.0245+0.0034�0.0031[0.0246

+0.0034�0.0031]

sin2 ✓13BM

0TB GR

1�3� 3�

0.05

Need  of  Correc`ons!!

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Are  these  predic6ve  pa8erns  completely  ruled  out?

Page 13: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

7

ce12 ⇡ ce23 ⇡ ce13 c⌫12 ⇡ c⌫23 ⇡ c⌫13

In  typical  TB  (GR)  models,  the  correc;ons  are  democra;c  in  all  the  angles:  

⇠e ⇡ ⇠⌫ ⌘ ⇠

A4:  Altarelli  &  Feruglio  2005T’:    Feruglio,  Hagedorn,  LM  &  Lin  2007S4:    Bazzocchi,  LM  &  Morisi  2009

Typical  Tri-­‐Bimaximal

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 14: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

7

ce12 ⇡ ce23 ⇡ ce13 c⌫12 ⇡ c⌫23 ⇡ c⌫13

In  typical  TB  (GR)  models,  the  correc;ons  are  democra;c  in  all  the  angles:  

⇠e ⇡ ⇠⌫ ⌘ ⇠

⇠ ' 0.075

To  maximize   the   success   rate   for  all   the   three  mixing   angles   inside  the  3        :

A4:  Altarelli  &  Feruglio  2005T’:    Feruglio,  Hagedorn,  LM  &  Lin  2007S4:    Bazzocchi,  LM  &  Morisi  2009

Typical  Tri-­‐Bimaximal

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 15: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV 8

Page 16: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

9

ce12 ⇡ ce23 ⇡ ce13⇠⌫ � ⇠e

c⌫12 = c⌫23 = 0 c⌫13 6= 0

In  special  TB  models,  the  correc;ons  are  specific  in  certain  flavour  direc;ons:  

A4:  Lin  2009

Special  Tri-­‐Bimaximal

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 17: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

9

ce12 ⇡ ce23 ⇡ ce13⇠⌫ � ⇠e

c⌫12 = c⌫23 = 0 c⌫13 6= 0

In  special  TB  models,  the  correc;ons  are  specific  in  certain  flavour  direc;ons:  

A4:  Lin  2009

Special  Tri-­‐Bimaximal

⇠⌫

⇠⌫ ' 0.18

To   maximize   the   success  rate  for  all   the  three  mixing  angles  inside  the  3        :

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 18: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV 10

Page 19: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

sin

2 ✓23 =

1

2

+

1p2

sin ✓13 cos �CP

contours  of  constant   sin2 ✓231�

1�

2�

3�

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[General  context:              D.  Hernandez  &  Smirnov  2012]

neglec;ng  the  subleading  correc;ons:

10

Page 20: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

11

⇠⌫ ⌧ ⇠e

c⌫12 ⇡ c⌫23 ⇡ c⌫13

ce12, ce13 6= 0 ce13 = 0

Also  in  BM  models,  the  correc;ons  are  specific  in  certain  flavour  direc;ons:  S4:    Altarelli,  Feruglio  and  LM  2009                Adelhart,  Bazzocchi  and  LM  2010

Bimaximal

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 21: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

11

⇠⌫ ⌧ ⇠e

c⌫12 ⇡ c⌫23 ⇡ c⌫13

ce12, ce13 6= 0 ce13 = 0

Also  in  BM  models,  the  correc;ons  are  specific  in  certain  flavour  direc;ons:  

⇠e ' 0.17

To   maximize   the   success  rate  for  all   the  three  mixing  angles  inside  the  3        :

S4:    Altarelli,  Feruglio  and  LM  2009                Adelhart,  Bazzocchi  and  LM  2010

(Similar   results   for   the  self-­‐complementarity  when   the  correc;ons   come   from   the  neutrino   sector   instead   of  the  charged  lepton  sector.)[Bazzocchi  &  LM,  arXiv:1205.5135]

Bimaximal

⇠e

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 22: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV 12

Page 23: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

sin

2 ✓12 =

1

2

+ sin ✓13 cos �CP

contours  of  constant   sin2 ✓233�

1�

2�1�

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

neglec;ng  the  subleading  correc;ons:

12

Page 24: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

13

Which  is  the  meaning  of            ?  

How  can  we  achieve  these  flavour  structures?

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 25: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

14

Basic  Points  on  Model  Building

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talk  by  King;    Alterna;ve  way:  talk  by  Ma]

Page 26: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

14

Flavour  Symmetries  to  introduce  these  flavour  structures

Basic  Points  on  Model  Building

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talk  by  King;    Alterna;ve  way:  talk  by  Ma]

Page 27: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

14

Flavour  Symmetries  to  introduce  these  flavour  structures

Flavour  Symmetries  cannot  be  exact:  the  Yukawas  do  not  show  any  symmetry

Basic  Points  on  Model  Building

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talk  by  King;    Alterna;ve  way:  talk  by  Ma]

Page 28: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

14

Flavour  Symmetries  to  introduce  these  flavour  structures

Flavour  Symmetries  cannot  be  exact:  the  Yukawas  do  not  show  any  symmetryStar;ng  from  a  Yukawa  Lagrangian  invariant  under  a  Flavour  Symmetry,  masses  and  

mixings  arise  only  through  a  symmetry  breaking  mechanism:

   where                  are  new  heavy  scalar  fields,  singlets  under  SM,  called  flavons'

LY =(Ye['n])ij

⇤nf

eci H† `j +

(Y⌫ ['m])ij⇤mf

(`i H⇤)(H† `j)

2⇤L

Basic  Points  on  Model  Building

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talk  by  King;    Alterna;ve  way:  talk  by  Ma]

Page 29: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

14

Flavour  Symmetries  to  introduce  these  flavour  structures

Flavour  Symmetries  cannot  be  exact:  the  Yukawas  do  not  show  any  symmetryStar;ng  from  a  Yukawa  Lagrangian  invariant  under  a  Flavour  Symmetry,  masses  and  

mixings  arise  only  through  a  symmetry  breaking  mechanism:

   where                  are  new  heavy  scalar  fields,  singlets  under  SM,  called  flavons

Suitable  Spontaneous  Symmetry  Breaking

'

LY =(Ye['n])ij

⇤nf

eci H† `j +

(Y⌫ ['m])ij⇤mf

(`i H⇤)(H† `j)

2⇤L

' ! h'i

h'e,⌫i⇤f

⇡ ⇠e,⌫

Basic  Points  on  Model  Building

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talk  by  King;    Alterna;ve  way:  talk  by  Ma]

Page 30: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

14

Flavour  Symmetries  to  introduce  these  flavour  structures

Flavour  Symmetries  cannot  be  exact:  the  Yukawas  do  not  show  any  symmetryStar;ng  from  a  Yukawa  Lagrangian  invariant  under  a  Flavour  Symmetry,  masses  and  

mixings  arise  only  through  a  symmetry  breaking  mechanism:

   where                  are  new  heavy  scalar  fields,  singlets  under  SM,  called  flavons

Suitable  Spontaneous  Symmetry  Breaking

At  LO  the  PMNS  can  take  one  of  the  previous  predic;ve  paDerns

'

LY =(Ye['n])ij

⇤nf

eci H† `j +

(Y⌫ ['m])ij⇤mf

(`i H⇤)(H† `j)

2⇤L

' ! h'i

h'e,⌫i⇤f

⇡ ⇠e,⌫

Basic  Points  on  Model  Building

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talk  by  King;    Alterna;ve  way:  talk  by  Ma]

Page 31: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

14

Flavour  Symmetries  to  introduce  these  flavour  structures

Flavour  Symmetries  cannot  be  exact:  the  Yukawas  do  not  show  any  symmetryStar;ng  from  a  Yukawa  Lagrangian  invariant  under  a  Flavour  Symmetry,  masses  and  

mixings  arise  only  through  a  symmetry  breaking  mechanism:

   where                  are  new  heavy  scalar  fields,  singlets  under  SM,  called  flavons

Suitable  Spontaneous  Symmetry  Breaking

At  LO  the  PMNS  can  take  one  of  the  previous  predic;ve  paDerns

At  NLO,  some  correc;ons  arise  and  they  are  propor;onal  to  the  VEV  of  the  flavons:  

larger  is  the  VEV  and  larger  are  the  correc;ons

'

LY =(Ye['n])ij

⇤nf

eci H† `j +

(Y⌫ ['m])ij⇤mf

(`i H⇤)(H† `j)

2⇤L

' ! h'i

h'e,⌫i⇤f

⇡ ⇠e,⌫

Basic  Points  on  Model  Building

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Talk  by  King;    Alterna;ve  way:  talk  by  Ma]

Page 32: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

15

Are  there  consequences  of  so  large            ?⇠

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 33: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

16

mSUSY ⇡ (1÷ 10)TeV ⇤SUSY

(g-­‐2)µ  discrepancydark  maDergauge  coupling  unifica;onhierarchy  problem

Low  Energy  Observables:

ν masses ν oscilla;ons

GUTsflavour  symmetriesνc

superheavy  gauge  bosons

⇤fh'i EnergyMGUTe.w.  scale0

'The  Flavour  symmetry  at  the  high-­‐scale  affects  the  low-­‐energy  observables  indirectly:

the  flavons            do  not  lead  to  direct  contribu;ons  (suppressed  by  the  heavy  mass)the  son-­‐SUSY  breaking  parameters  are  governed  by  the  flavour  symmetry  and  its  

breaking  mechanism

Impact  on  LFV

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 34: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

16

mSUSY ⇡ (1÷ 10)TeV ⇤SUSY

(g-­‐2)µ  discrepancydark  maDergauge  coupling  unifica;onhierarchy  problem

Low  Energy  Observables:

ν masses ν oscilla;ons

GUTsflavour  symmetriesνc

superheavy  gauge  bosons

⇤fh'i EnergyMGUTe.w.  scale0

'The  Flavour  symmetry  at  the  high-­‐scale  affects  the  low-­‐energy  observables  indirectly:

the  flavons            do  not  lead  to  direct  contribu;ons  (suppressed  by  the  heavy  mass)the  son-­‐SUSY  breaking  parameters  are  governed  by  the  flavour  symmetry  and  its  

breaking  mechanism

non-­‐universal  boundary  condi;ons  for  the  son  terms

different  results  w.r.t.  CMSSM  scenario

Impact  on  LFV

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 35: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

17

BR(µ ! e�) < 2.4⇥ 10�12 @95%C.L.

µ ! e�

     BR(µ ! e�)

We  focus  on  the  radia;ve  decay                                    :

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 36: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

17

BR(µ ! e�) < 2.4⇥ 10�12 @95%C.L.

µ ! e�

Rij =48⇡3↵em

G2Fm

4SUSY

���AijL

���2+

���AijR

���2�

     BR(µ ! e�)

We  focus  on  the  radia;ve  decay                                    :

The  normalized  BR  is  defined  by:

AijL = aLL (�ij)LL + aRL

mSUSY

mi(�ij)RL

AijR = aRR (�ij)RR + aLR

mSUSY

mi(�ij)LR

MI

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 37: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

17

BR(µ ! e�) < 2.4⇥ 10�12 @95%C.L.

µ ! e�

Rij =48⇡3↵em

G2Fm

4SUSY

���AijL

���2+

���AijR

���2�

     BR(µ ! e�)

We  focus  on  the  radia;ve  decay                                    :

The  normalized  BR  is  defined  by:

AijL = aLL (�ij)LL + aRL

mSUSY

mi(�ij)RL

AijR = aRR (�ij)RR + aLR

mSUSY

mi(�ij)LR

MI

aCC0The                            are  loop  factors  of  the  SUSY  parameters:                  

aLL = {2, 27}

aRR = {�1.9,�0.6}

aRL = aLR = 0.3

tan� = {2, 25}

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 38: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

18

(�ij)CC0

(�ij)CC0 =

�m2

CC0

�ij

m2SUSY

The                                          depend  on  the  son  parameters:

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 39: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

18

(�ij)CC0

(�ij)CC0 =

�m2

CC0

�ij

m2SUSY

�Lm ��e ec

m2eLL m2

eLR

m2eRL m2

eRR

!✓eec

◆+ ⌫m2

⌫LL ⌫

The                                          depend  on  the  son  parameters:

where  the  son  masses  are  defined  by

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 40: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

18

(�ij)CC0

(�ij)CC0 =

�m2

CC0

�ij

m2SUSY

�Lm ��e ec

m2eLL m2

eLR

m2eRL m2

eRR

!✓eec

◆+ ⌫m2

⌫LL ⌫

The                                          depend  on  the  son  parameters:

where  the  son  masses  are  defined  by

m2(e,⌫)LL m2

eRR

m2eLR = (m2

eRL)†

                                         and                                      are  hermi;an  matrices  from  the  Kähler  poten;al

                                                                           from  the  superpoten;al

generated   from   the   SUSY   Lagrangian   analy;cally   con;nuing   all   the   coupling  constants  into  superspace.

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 41: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

18

(�ij)CC0

(�ij)CC0 =

�m2

CC0

�ij

m2SUSY

�Lm ��e ec

m2eLL m2

eLR

m2eRL m2

eRR

!✓eec

◆+ ⌫m2

⌫LL ⌫

The                                          depend  on  the  son  parameters:

where  the  son  masses  are  defined  by

m2(e,⌫)LL m2

eRR

m2eLR = (m2

eRL)†

                                         and                                      are  hermi;an  matrices  from  the  Kähler  poten;al

                                                                           from  the  superpoten;al

generated   from   the   SUSY   Lagrangian   analy;cally   con;nuing   all   the   coupling  constants  into  superspace.

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

The  MI  of  these  mass  matrices  are  governed  by   ⇠

Page 42: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

19

Typical  TB  (GR)  models

Special  TB  models

BM  models

SR ⇠ 12%

⇠ ' 0.075

SR ⇠ 64%

⇠⌫ ' 0.18

SR ⇠ 3.4%

⇠e ' 0.17

Rij =48⇡3↵em

G2Fm

4SUSY

|aLL + aRL|2 O�⇠4�

Rµe ⇡ R⌧e ⇡ R⌧µ

Rij =48⇡3↵em

G2Fm

4SUSY

|aLL + aRL|2 O�⇠⌫4

Rµe ⇡ R⌧e ⇡ R⌧µ

Rij =48⇡3↵em

G2Fm

4SUSY

|aLL + aRL|2 ⇥(O �

⇠e2�

ij = 21, 31

O �⇠e4

�ij = 32

Rµe ⇡ R⌧e � R⌧µ

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 43: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

20

�0 ⇡ 156 GeV

�± ⇡ 306 GeV

           &  m0 = 200 GeV

M1/2 . 400 GeV

˜L ⇡ [230, 500] GeV

˜R ⇡ [160, 350] GeV

BR(µ ! e�) < 2.4⇥ 10�12

tan� = 15Typical  TB

BMSpecial  TB

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 44: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

21

�aµ

⌘ aexpµ

� aSM

µ

= 302(88)⇥ 10�11

m0, M1/2 2 [200, 5000]GeV

tan� 2 [2, 15]

BR(µ ! e�) < 2.4⇥ 10�12

           &  BR(µ ! e�) (g � 2)µ

Typical  TB

Special  TB BM

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 45: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 46: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 47: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

LFV  analysis  gives  strong  constraints

No  possibility  to  sa;sfy                                                      and  BR(µ ! e�) �aµ

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 48: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

LFV  analysis  gives  strong  constraints

No  possibility  to  sa;sfy                                                      and  

Are  TB,  GR  &  BM  the  flavour  structure  of  nature?  or  only  accidents?  

BR(µ ! e�) �aµ

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 49: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

LFV  analysis  gives  strong  constraints

No  possibility  to  sa;sfy                                                      and  

Are  TB,  GR  &  BM  the  flavour  structure  of  nature?  or  only  accidents?  

The  new  data  on                have  put  severe  doubts  on  their  naturalness:✓13

BR(µ ! e�) �aµ

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 50: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

LFV  analysis  gives  strong  constraints

No  possibility  to  sa;sfy                                                      and  

Are  TB,  GR  &  BM  the  flavour  structure  of  nature?  or  only  accidents?  

The  new  data  on                have  put  severe  doubts  on  their  naturalness:

-­‐ All  need  large  correc;ons  in  their  simplest  versions

-­‐ The  special  TB  (the  most  successful)  needs  dynamical  tricks

✓13

BR(µ ! e�) �aµ

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 51: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

LFV  analysis  gives  strong  constraints

No  possibility  to  sa;sfy                                                      and  

Are  TB,  GR  &  BM  the  flavour  structure  of  nature?  or  only  accidents?  

The  new  data  on                have  put  severe  doubts  on  their  naturalness:

-­‐ All  need  large  correc;ons  in  their  simplest  versions

-­‐ The  special  TB  (the  most  successful)  needs  dynamical  tricks

-­‐ Alterna;ves:        Other  paDerns?  

✓13

BR(µ ! e�) �aµ

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Toorop,  Feruglio,  Hagedorn  2011  (1°&2°);  ecc...]

Page 52: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

22

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

LFV  analysis  gives  strong  constraints

No  possibility  to  sa;sfy                                                      and  

Are  TB,  GR  &  BM  the  flavour  structure  of  nature?  or  only  accidents?  

The  new  data  on                have  put  severe  doubts  on  their  naturalness:

-­‐ All  need  large  correc;ons  in  their  simplest  versions

-­‐ The  special  TB  (the  most  successful)  needs  dynamical  tricks

-­‐ Alterna;ves:        Other  paDerns?  

Anarchy?  Something  in  between?  

✓13

BR(µ ! e�) �aµ

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Toorop,  Feruglio,  Hagedorn  2011  (1°&2°);  ecc...]

Page 53: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

23

Are  these  paDerns  only  numerical  accidents?    If  Yes  what?  Anarchy

Anarchy?

0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.01 0.1 1.0.00

0.01

0.02

0.03

0.04

0.05

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

0.05

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

d

-1.0 -0.5 0.0 0.5 1.00.00

0.02

0.04

0.06

0.08

0.10

Sind

0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.01 0.1 1.0.00

0.01

0.02

0.03

0.04

0.05

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

0.05

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

d

-1.0 -0.5 0.0 0.5 1.00.00

0.02

0.04

0.06

0.08

0.10

Sind

0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.01 0.1 1.0.00

0.01

0.02

0.03

0.04

0.05

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

0.05

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

d

-1.0 -0.5 0.0 0.5 1.00.00

0.02

0.04

0.06

0.08

0.10

Sind

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.01 0.1 1.0.00

0.01

0.02

0.03

0.04

0.05

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

0.05

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

d

-1.0 -0.5 0.0 0.5 1.00.00

0.02

0.04

0.06

0.08

0.10

Sind

[Hall,  Murayama  &  Weiner  1999;    de  Gouvea  &  Murayama  2012]

Page 54: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

24Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

SU(5)⇥ U(1)Consider  a  simple  U(1)  as  flavour  symmetry,  in  a  SU(5)  inspired  context: 10 = (5, 3, 0) 5 = (2, 1, 0)

Anarchy?:  BeZer  Hierarchy![Altarelli,  Feruglio,  Masina  &  LM  to  appear]

1.¥10-81.¥10-71.¥10-60.000010.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.02

0.04

0.06

J

-150 -100 -50 0 50 100 1500.00

0.01

0.02

0.03

0.04

d

1.¥10-81.¥10-71.¥10-60.000010.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.02

0.04

0.06

J

-150 -100 -50 0 50 100 1500.00

0.01

0.02

0.03

0.04

d

1.¥10-81.¥10-71.¥10-60.000010.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.02

0.04

0.06

J

-150 -100 -50 0 50 100 1500.00

0.01

0.02

0.03

0.04

d

1.¥10-81.¥10-71.¥10-60.000010.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

0.06

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.02

0.04

0.06

J

-150 -100 -50 0 50 100 1500.00

0.01

0.02

0.03

0.04

d

Page 55: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

25

10 = (5, 3, 0) 5 = (2, 0, 0) 1 = (1,�1, 0)

SU(5)⇥ U(1)Consider  a  simple  U(1)  as  flavour  symmetry,  in  a  SU(5)  inspired  context:

Anarchy?:  BeZer  Hierarchy![Altarelli,  Feruglio  &  Masina  2002;  Altarelli,  Feruglio,  Masina  &  LM  to  appear]

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035d

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035d

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035d

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

r

0.001 0.01 0.1 1.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

sin q13

0.0001 0.01 1. 100. 10 000.0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

tan2q12

0.0001 0.01 1. 100. 10 000.0.00

0.01

0.02

0.03

0.04

0.05

tan2q23

1.¥10-6 0.00001 0.0001 0.001 0.01 0.10.00

0.01

0.02

0.03

0.04

J

-150 -100 -50 0 50 100 1500.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035d

Page 56: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

26

Discrete  symmetries  can  accommodate  neutrino  mixing  paDerns  and  

TB,  GR  &  BM  can  s;ll  be  taken  as  star;ng  point

LFV  analysis  gives  strong  constraints

No  possibility  to  sa;sfy                                                      and  

Are  TB,  GR  &  BM  the  flavour  structure  of  nature?  or  only  accidents?  

The  new  data  on                have  put  severe  doubts  on  their  naturalness:

-­‐ All  need  large  correc;ons  in  their  simplest  versions

-­‐ The  special  TB  (most  successful)  needs  dynamical  tricks

-­‐ Alterna;ves:        Other  paDerns?  

Anarchy?  Something  in  between?  

New  correla;ons?

✓13

BR(µ ! e�) �aµ

Intermediate  Conclusions

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

[Toorop,  Feruglio,  Hagedorn  2011  (1°&2°);ecc...]

Page 57: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

The   minimisa`on   of   the   scalar   poten`al,   that   explains   the   VEV   of   the   flavons   in   a  par;cularly  predic;ve  MLFV  scenario  (2  RH  neutrinos),   links  the  neutrino  spectrum,  the  mixing  angles  and    the  Majorana  phase:  main  responsible  Majorana  Nature

[Alonso,  Gavela,  D.Hernandez  &  LM  1206.3167]

[Gavela,  Hambye,  D.Hernandez  &  P.Hernandez  2009]

New  Correla`ons?

Page 58: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

The   minimisa`on   of   the   scalar   poten`al,   that   explains   the   VEV   of   the   flavons   in   a  par;cularly  predic;ve  MLFV  scenario  (2  RH  neutrinos),   links  the  neutrino  spectrum,  the  mixing  angles  and    the  Majorana  phase:  main  responsible  Majorana  Nature

[Alonso,  Gavela,  D.Hernandez  &  LM  1206.3167]

Gfl ⇠ SU(3)`L ⇥ SU(3)ER ⇥O(2)N

�Lmass = `L�YEER + `L�Y⌫(N1, N2)T + ⇤(N1N

c1 +N2N

c2 ) + h.c.

YE ⇠ ( 3 , 3 , 1) Y⌫ ⇠ ( 3 , 1 , 2)promo;ng

[Gavela,  Hambye,  D.Hernandez  &  P.Hernandez  2009]

New  Correla`ons?

Page 59: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

The   minimisa`on   of   the   scalar   poten`al,   that   explains   the   VEV   of   the   flavons   in   a  par;cularly  predic;ve  MLFV  scenario  (2  RH  neutrinos),   links  the  neutrino  spectrum,  the  mixing  angles  and    the  Majorana  phase:  main  responsible  Majorana  Nature

[Alonso,  Gavela,  D.Hernandez  &  LM  1206.3167]

Gfl ⇠ SU(3)`L ⇥ SU(3)ER ⇥O(2)N

�Lmass = `L�YEER + `L�Y⌫(N1, N2)T + ⇤(N1N

c1 +N2N

c2 ) + h.c.

YE ⇠ ( 3 , 3 , 1) Y⌫ ⇠ ( 3 , 1 , 2)promo;ng

(y2 � y02)pm⌫2m⌫1 sin 2✓ cos 2↵ = 0

tg2✓ = sin 2↵y2 � y02

y2 + y022

pm⌫2m⌫1

m⌫2 �m⌫1

The  scalar  poten;al  is  extremized  when:  

[Gavela,  Hambye,  D.Hernandez  &  P.Hernandez  2009]

New  Correla`ons?

Page 60: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

The   minimisa`on   of   the   scalar   poten`al,   that   explains   the   VEV   of   the   flavons   in   a  par;cularly  predic;ve  MLFV  scenario  (2  RH  neutrinos),   links  the  neutrino  spectrum,  the  mixing  angles  and    the  Majorana  phase:  main  responsible  Majorana  Nature

[Alonso,  Gavela,  D.Hernandez  &  LM  1206.3167]

Gfl ⇠ SU(3)`L ⇥ SU(3)ER ⇥O(2)N

�Lmass = `L�YEER + `L�Y⌫(N1, N2)T + ⇤(N1N

c1 +N2N

c2 ) + h.c.

YE ⇠ ( 3 , 3 , 1) Y⌫ ⇠ ( 3 , 1 , 2)promo;ng

(y2 � y02)pm⌫2m⌫1 sin 2✓ cos 2↵ = 0

tg2✓ = sin 2↵y2 � y02

y2 + y022

pm⌫2m⌫1

m⌫2 �m⌫1

The  scalar  poten;al  is  extremized  when:  

2  family  case:  

↵ = ±⇡/4

✓12 large  m⌫2 ⇡ m⌫1

[Gavela,  Hambye,  D.Hernandez  &  P.Hernandez  2009]

New  Correla`ons?

Page 61: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

The   minimisa`on   of   the   scalar   poten`al,   that   explains   the   VEV   of   the   flavons   in   a  par;cularly  predic;ve  MLFV  scenario  (2  RH  neutrinos),   links  the  neutrino  spectrum,  the  mixing  angles  and    the  Majorana  phase:  main  responsible  Majorana  Nature

[Alonso,  Gavela,  D.Hernandez  &  LM  1206.3167]

Gfl ⇠ SU(3)`L ⇥ SU(3)ER ⇥O(2)N

�Lmass = `L�YEER + `L�Y⌫(N1, N2)T + ⇤(N1N

c1 +N2N

c2 ) + h.c.

YE ⇠ ( 3 , 3 , 1) Y⌫ ⇠ ( 3 , 1 , 2)promo;ng

(y2 � y02)pm⌫2m⌫1 sin 2✓ cos 2↵ = 0

tg2✓ = sin 2↵y2 � y02

y2 + y022

pm⌫2m⌫1

m⌫2 �m⌫1

The  scalar  poten;al  is  extremized  when:  

2  family  case:  

↵ = ±⇡/4

✓12 large  m⌫2 ⇡ m⌫1

3  family  case:  

↵ = ±⇡/4

m⌫2 ⇡ m⌫1IH: ✓12

large,  but  nega;ve  

[Gavela,  Hambye,  D.Hernandez  &  P.Hernandez  2009]

New  Correla`ons?

Page 62: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

The   minimisa`on   of   the   scalar   poten`al,   that   explains   the   VEV   of   the   flavons   in   a  par;cularly  predic;ve  MLFV  scenario  (2  RH  neutrinos),   links  the  neutrino  spectrum,  the  mixing  angles  and    the  Majorana  phase:  main  responsible  Majorana  Nature

[Alonso,  Gavela,  D.Hernandez  &  LM  1206.3167]

Gfl ⇠ SU(3)`L ⇥ SU(3)ER ⇥O(2)N

�Lmass = `L�YEER + `L�Y⌫(N1, N2)T + ⇤(N1N

c1 +N2N

c2 ) + h.c.

YE ⇠ ( 3 , 3 , 1) Y⌫ ⇠ ( 3 , 1 , 2)promo;ng

(y2 � y02)pm⌫2m⌫1 sin 2✓ cos 2↵ = 0

tg2✓ = sin 2↵y2 � y02

y2 + y022

pm⌫2m⌫1

m⌫2 �m⌫1

The  scalar  poten;al  is  extremized  when:  

2  family  case:  

↵ = ±⇡/4

✓12 large  m⌫2 ⇡ m⌫1

3  family  case:  

↵ = ±⇡/4

m⌫2 ⇡ m⌫1IH: ✓12

large,  but  nega;ve  

[Gavela,  Hambye,  D.Hernandez  &  P.Hernandez  2009]

New  Correla`ons?

work  in  progress

Page 63: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

Thanks  for  your  aZen`on

Page 64: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

Backup  Slides

29

Page 65: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

30

Typical  Tri-­‐Bimaximal

sin2 ✓23 =1

2+Re(ce23) ⇠ +

1p3

⇣Re(c⌫13)�

p2Re(c⌫23)

⌘⇠

sin2 ✓12 =1

3� 2

3Re(ce12 + ce13) ⇠ +

2p2

3Re(c⌫12) ⇠

sin ✓13 =1

6

���3p2 (ce12 � ce13) + 2

p3⇣p

2 c⌫13 + c⌫23

⌘��� ⇠

ce12 ⇡ ce23 ⇡ ce13

c⌫12 ⇡ c⌫23 ⇡ c⌫13⇠e ⇡ ⇠⌫ ⌘ ⇠

Page 66: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

31

Special  Tri-­‐Bimaximal

ce12 ⇡ ce23 ⇡ ce13⇠⌫ � ⇠e

c⌫12 = c⌫23 = 0 c⌫13 6= 0

�CP ⇡ arg c⌫13

sin ✓13 =

�����

r2

3

c⌫13 ⇠⌫+

ce12 � ce13p2

⇠e

�����

sin

2 ✓12 =

1

3

+

2

9

|c⌫13 ⇠⌫ |2 �2

3

Re(ce12 + ce13) ⇠e2

sin

2 ✓23 =

1

2

+

1p3

|c⌫13 ⇠⌫ | cos �CP +Re(ce23) ⇠e2

Page 67: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

32

Bimaximal

⇠⌫ ⌧ ⇠e

c⌫12 ⇡ c⌫23 ⇡ c⌫13

ce12, ce13 6= 0 ce13 = 0

�CP = ⇡ + arg (ce12 � ce13)

sin ✓13 =1p2|ce12 � ce13| ⇠e

sin2 ✓12 =1

2� 1p

2Re(ce12 + ce13) ⇠

e

sin2 ✓23 =1

2

Page 68: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

33

M

TB⌫ =

0

@x y y

y z x+ y � z

y x+ y � z z

1

A mu-­‐tau  symmagic  sym

sin2 ✓TB12 = 1/3

sin2 ✓TB23 = 1/2

sin ✓TB13 = 0

UTB =

0

@

p2/3 1/

p3 0

�1/p6 1/

p3 �1/

p2

�1/p6 1/

p3 +1/

p2

1

A

[A4:   Adhikary;   Altarelli;   Aris;zabal  Sierra;   Babu;   Bazzocchi;   Bertuzzo;   Di  Bari;   Branco;   Brahmachari;   Chen;  Choubey;   Ciafaloni;   Csaki;   Delaunay;   Felipe;   Feruglio;   Frampton;   Frigerio;   Ghosal;   Grimus;   Grojean;  Grossmann;  Hagedorn;  He;  Hirsch;  Honda;  Joshipura;  Kaneko;  Keum;  King;  Koide;  Kuhbock;  Lavoura;  Lin;  Ma;  Machado;  Malinsky;  Matsuzaki;  de  Medeiros  Varzielas;  Meloni;  LM;  Mitra;  Molinaro;  Morisi;  Nardi;  Parida;  Paris;  Petcov;  Pleitez;  Picariello;  Rajasekaran;    Riazzudin,  Romao;   Serodio;  Skadhauge;  Tanimoto;  Torrente-­‐Lujan;  Urbano;  Valle;  Villanova  del  Moral;  Volkas;  Yin;  Zee;  ...;

S4,  T’,  Δ(3n2):  de  Adelhart  Toorop;  Altarelli,  Bazzocchi;  Chen;  Ding;  Hagedorn;  Feruglio;  Frampton;  Kephart;  King;   Lam;   Lin;   Luhn;   Ma;   Mahanthappa;   Matsuzaki;   de   Medeiros   Varzielas;   LM;   Morisi;   Nasri;  Ramond;  Ross;  

                   ...]

Discrete  Symmetries:

In  the  basis  of  diagonal  charged  leptons:

Typical  Tri-­‐Bimaximal

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 69: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

34

h'`ih'⌫i

Gf

= A4 ⇥Gaux

G` = Z3 G⌫ = Z2

Mdiage MTB

A4   is   the   group   of   even   permuta;ons   of   4   objects   isomorphic   to   the  group   of   the   rota;ons   which   leave   a   regular   tetrahedron   invariant  (Subgroup  of  SO(3)).It  has  12  elements  and  4  representa;ons:  3,  1,  1’,  1’’

me ⌧ mµ ⌧ m⌧

-­‐  keeps  separated  the  two  sectors-­‐  explains  the  hierarchy

U = U †eU⌫ = UTB

[Altarelli  &  Feruglio  2005]

The  Altarelli-­‐Feruglio  Model

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 70: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

35

M⌫ =

0

B@a+ 2

3b � b3 � b

3

� b3

23b a� b

3

� b3 a� b

323b

1

CA v2u

Me = diag(ye t2, yµ t, y⌧ ) vd u

me

mµ=

m⌧= t ⇡ 0.05

Mdiag⌫ = v2udiag(a+ b, a, �a+ b)

r ⌘ �m2sol

�m2atm

⇡ 1

35

h'T i⇤

= (u, 0, 0)

h'Si⇤

= cb(u, u, u)

h⇠i⇤

= cau

h✓i⇤

= t

vacuum  alignment:

we = ye�2

�3ec (⇤T ⌅)hd + yµ

�2µc (⇤T ⌅)

0 hd + y�1

�⇥ c (⇤T ⌅)

00 hd

w� = xa�

hu⇤hu⇤

�L+ xb

✓⇥S

hu⇤hu⇤

�L

◆�/⇤

Expansion  in

[Altarelli  &  Feruglio  2005] MaDer  fields Higgs Flavons

The  Altarelli-­‐Feruglio  Model

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 71: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

36

�m2

eLL

�ij' � 1

8⇡2

�3m2

0 +A20

�X

k

(

ˆY †⌫ )ik log

✓⇤

Mk

◆(

ˆY⌫)kj

Y⌫ = k U† + ...

m⌫ =v2

2Y T⌫ M�1Y⌫

M�1 =2

|k|2v2mdiag⌫

�m2

eLL

�ij' � |k|2

8⇡2

�3m2

0 +A20

� Ui2 log

m2

m1U⇤j2 + Ui3 log

m3

m1U⇤j3

�+ ...

⇢(g) Y †⌫ Y⌫ ⇢(g)† = Y †

⌫ Y⌫ !⇥⇢(g), Y †

⌫ Y⌫

⇤= 0 ! Y †

⌫ Y⌫ / 1 ! Y⌫ is unitary

With  RH  NeutrinoWhen  RH  neutrinos  are  present  in  the  spectrum,  their  RGE  are  important:

If  the  RH  neutrinos  transform  as  3dim  irreducible  representa;ons  then

Wri;ng  the  usual  type  I  See-­‐Saw  rela;on:

Very  predic`ve  rela`on:  it  only  depends  on  the  LO  mixing  paZern  and  neutrino  spectrum  Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 72: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

37

�m2

eLL

�µe

/ 1

3

log

✓m2

m1

�m2

eLL

�⌧e

/ 1

3

log

✓m2

m1

�m2

eLL

�⌧µ

/ 1

3

log

✓m2

m1

◆� 1

2

log

✓m3

m1

�m2

eLL

�µe

/ � 1p10

log

✓m2

m1

�m2

eLL

�⌧e

/ � 1p10

log

✓m2

m1

�m2

eLL

�⌧µ

/ 5 +

p5

20

log

✓m2

m1

◆� 1

2

log

✓m3

m1

�m2

eLL

�µe

/ 1

4

r3

2

log

✓m2

m1

�m2

eLL

�⌧e

/ 1

4

r3

2

log

✓m2

m1

�m2

eLL

�⌧µ

/ 3

8

log

✓m2

m1

◆� 1

2

log

✓m3

m1

TB  paZern

GR  paZern

BM  paZern

Expressing  all  the  neutrino  masses  in  terms  of  the  lightest  one,  these  quan;;es  depend  on  only  1  parameter

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 73: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

38

To  get  EDM,  MDM  and  the  LFV  transi;ons  we  should  calculate  diagrams  as:        

A  Good  analy;cal  approach  is  the  Mass  Inser;on  approxima;on:

Mass  Inser`on  Approxima`on

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 74: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

39

(�ij)CC0

(�ij)CC0 =

�m2

CC0

�ij

m2SUSY

�Lm ��e ec

m2eLL m2

eLR

m2eRL m2

eRR

!✓eec

◆+ ⌫m2

⌫LL ⌫

L �Z

d

2✓ ye e

c`hd !

Zd

2✓

�ye + xe m0 ✓

2�e

c`hd

L �Z

d2✓ d2✓ ¯ !Z

d2✓ d2✓�1 + km2

0 ✓2✓2

�¯

The                                          depend  on  the  son  parameters:

where  the  son  masses  are  defined  by

m2(e,⌫)LL m2

eRR

m2eLR = (m2

eRL)†

                                         and                                      are  hermi;an  matrices  from  the  Kähler  poten;al

                                                                           from  the  superpoten;al

generated   from   the  SUSY  Lagrangian   analy;cally   con;nuing   all   the  couplings  constants  into  superspace:

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 75: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

40

(m2eLL)K =

0

@1 O(⇠n) O(⇠n)

O(⇠n) 1 O(⇠n)O(⇠n) O(⇠n) 1

1

Am20

Ye =

0

@ye ye O(⇠n) ye O(⇠n)

yµ O(⇠n) yµ yµ O(⇠n)y⌧ O(⇠n) y⌧ O(⇠n) y⌧

1

A

m2eRL =

0

@ye ye O(⇠n) ye O(⇠n)

yµ O(⇠n) yµ yµ O(⇠n)y⌧ O(⇠n) y⌧ O(⇠n) y⌧

1

A m0 vd

L �Z

d2✓�Ye +Ae m0✓

2�ij

eci `j hd

L �Z

d2✓ d2✓�1 + km2

0 ✓2✓2� ¯ + ¯ 'n

⇤nf

!The  flavour  is  encoded  into  the  soh  masses:  

Non-­‐canonical  kine;c  terms

same  flavour  structure  but  different  coefficients  Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 76: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

41

m2R(mW ) ' m2

R(⇤f ) + 1.5M21 (⇤f )

Mi(mW ) ' ↵i(mW )

↵i(⇤f )Mi(⇤f )

↵i(⇤f ) =1

25

|µ|2 ' 1 + 0.5 tan2 �

tan2 � � 1m2

0 +0.5 + 3.5 tan2 �

tan2 � � 1M2

1/2 �1

2m2

Z

Mi(⇤f ) ⌘ M1/2

Many  parameters:                                                                                                      

All  of  them  are  not  independent:                                                                                                            

SUGRA  context:

M1,M2, µ, tan�,m2L,m

2R, A0

m2L(mW ) ' m2

L(⇤f ) + 0.5M22 (⇤f ) + 0.04M2

1 (⇤f )

SUSY  Parameters

m2L(⇤f ) = m2

R(⇤f ) = A0 ⌘ m0

tan� ⇡ 100 ⌘ y⌧

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 77: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

42

           &  m0 = 5000 GeV

BR(µ ! e�) < 2.4⇥ 10�12

tan� = 15

Special  TB

Typical  TB

BM

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Page 78: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

43

Anarchy  vs.  Hierarchy?

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

H

Amt

Aâ10

Non-SeeSaw

0.1 0.2 0.3 0.4 0.5 0.60.000

0.005

0.010

0.015

l

100âP

HAAmt

Amt

A

SeeSaw

0.1 0.2 0.3 0.4 0.5 0.60.000

0.002

0.004

0.006

0.008

0.010

l

100âP

Page 79: Neutrino%Flavour%Models% and%Impact%on%LFV · 3 m2 sol =(7.54 +0.26 0.22) ⇥ 10 5 eV2 m2 atm =(2.43 +0.07 0.09)[2.42 +0.07 0.10] ⇥ 10 3 eV2 sin2 12 =0.307 +0.018 0.016 sin2 23

44

Scalar  Poten`al

Luca  Merlo,  Neutrino  Flavour  Models  and  Impact  on  LFV

Tr⇣YEY†

E

⌘Tr

�Y⌫Y†

�det (YE)

Tr⇣YEY†

E

⌘2Tr

⇣YEY†

EY⌫Y†⌫

Tr�Y⌫Y†

�2Tr

�Y⌫�2Y†

�2

V =� µ2 ·X2 +�X2

�†�X2 + (µD det (YE) + h.c.)+

+ �E Tr⇣YEY†

E

⌘2+ gTr

⇣YEY†

EY⌫Y†⌫

⌘+

+ hTr�Y⌫Y†

�2+ h0 Tr

�Y⌫�2Y†

�2

gTr⇣

YEY†EY⌫Y†

/gn

(m2e +m2

µ)(y2+ y02)(m⌫2 +m⌫1)+

+ (m2µ �m2

e)

h

(m⌫2 �m⌫1)(y2+ y02) cos 2✓+

+ (y2 � y02)2pm⌫2m⌫1 sin 2↵ sin 2✓

io

operators:

scalar  poten;al:

the  mixingterm  for  2  family  case: