neutrino reactions on the deuteron in core-collapse supernovae

43
Neutrino Reactions on the Deuteron in Core-Collapse Supernovae Satoshi Nakamura Osaka University ators: S. Nasu, T. Sato (Osaka U.), K. Sumiyoshi (Numazu Col F. Myhrer, K. Kubodera (U. of South Carol arXiv:1402.0959, PRC 80, 035802 (2009)

Upload: lisle

Post on 23-Feb-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Neutrino Reactions on the Deuteron in Core-Collapse Supernovae . arXiv: 1402.0959, PRC 80, 035802 (2009 ). Satoshi Nakamura Osaka University. Collaborators: S. Nasu , T. Sato (Osaka U.), K. Sumiyoshi (Numazu Coll. Tech.) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Neutrino Reactions on the Deuteron

in Core-Collapse Supernovae

Satoshi NakamuraOsaka University

Collaborators: S. Nasu, T. Sato (Osaka U.), K. Sumiyoshi (Numazu Coll. Tech.) F. Myhrer, K. Kubodera (U. of South Carolina)

arXiv:1402.0959, PRC 80, 035802 (2009)

Page 2: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Neutrino reactions on the deuteron

Important relevance to neutrino physics, astrophysics

• Supernova (n-heating, n-emission)

• n-oscillation experiment @ SNO

• Solar fusion (pp-chain)

Introduction

Page 3: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Calculational method

Well-established method for electroweak processes in few-nucleon systems

AV18, Nijmegen, Bonn, etc.

Page 4: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Contents

• Model for Hew

• n-heating in supernova

• n-emission in supernova

Page 5: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

MODEL

Page 6: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae
Page 7: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Nuclear current

Page 8: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Impulse approximation (IA) current

Page 9: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Exchange axial-vector current

Page 10: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Most recent applications of the model to weak processes

★ Muon capture ( , ) , Marcucci et al., PRC 83 (2011)

[1] [2] Theory MuSun@PSI

[3] Theory

★ pp-fusion ( ) for solar model , Schiavilla et al. PRC 58 (1998)

★ nd-reactions ( , ) for SNO experiment SN et al. PRC 63 (2000) ; NPA707 (2002)

evidence of n-oscillation, solar n problem resolved

[1] Cargnelli et al. (1998)[2] Bardin et al. NPA 453 (1986)[3] Ackerbauer et al. PLB 417 (1998)

Page 11: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

SXN, K. Sumiyoshi, T. Sato, PRC 80, 035802 (2009)

In many simulations, supernova doesn’t explode !

extra assistance needed for re-accelerating shock-wave

★ neutrino absorption on nucleon (main)

★ neutrino scattering or absorption on nuclei (extra agent)

Neutrino-deuteron reaction as heating mechanism in Supernova

Page 12: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae
Page 13: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Abundance of light elements in supernovaSumiyoshi, Röpke, PRC 77, 055804 (2008)

15 M , 150 ms after core bounce

Nuclear statistical equilibrium assumed

cf. Arcones et al. PRC 78, 015806 (2008)

Page 14: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Energy transfer cross section

CC (absorption)

NC (scattering)

Thermal average

Page 15: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Neutrino-deuteron cross sections

Result

Page 16: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Thermal average of energy transfer cross sections

3H (n) : Arcones et al. PRC 78 (2008)4He(n) : Haxton PRL 60 (1998)

_3He (n) : O’conner et al. PRC 78 (2007)4He (n) : Gazit et al. PRL 98 (2007)

Page 17: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Thermal average of energy transfer cross sections

Page 18: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Electron capture on deuteron & NN fusion as neutrino emission mechanism

S. Nasu, SXN, T. Sato, K. Sumiyoshi, F. Myrer, K. Kubodera

arXiv:1402.0959

Page 19: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

n-emission previously considered (A≤2)New agents

Page 20: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Emissivity (Q)

Page 21: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Emissivity (Q)

11 dimensional integral !!

Approximation necessary to evaluate Q

Page 22: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Emissivity (Q)

Approximation !

3 dimensional integral

Page 23: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Previous common approximation to evaluate QNN-brem

• One-pion-exchange potential, Born approximation

Low-energy theorem

• Neglect momentum transfer ( ) also angular correlation between n and n

• Nuclear matrix element long wave length limit

constant

_

Page 24: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Supernova profileSumiyoshi, Röpke, PRC 77, 055804 (2008)

150 ms after core bounceNuclear statistical equilibrium assumed

Page 25: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Result

• Surface region of proto-neutron star

• Inner region of proto-neutron star

Deuteron can be largely modified, or even doesn’t exist

”deuteron” as two-nucleon correlation in matter

More elaborate approach based on thermodynamic Green’s function

(S. Nasu, PhD work in progress)

Page 26: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

electron capture NN fusion

e-p, e+e- : Bruenn, ApJS 58 (1985)NN brem: Friman et al, ApJ 232 (1979)

Q (e- p) > Q(e- d) > Q (NNd)

Deuterons exit at the cost of the proton abundance + s (e- p) > s(e- d)

Effectively reduced ne emissivity less n-flux, n-heating, slower deleptonization & evolution of proto-neutron star

Need careful estimate of light element abundance & emissivity

ne-emissivity

Page 27: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

positron capture NN fusion

ne-emissivity_

Q (e+ n) > Q(e+ d) > Q (NNd)

Page 28: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Change of ne emissivity due to deuteron

Q(N+d) / Q(N)

ne

ne

_

Mass fraction

d

p

Deuterons exit at the cost of the proton abundance + s (e- p) > s(e- d)

Effectively reduced ne emissivity

p (w.o. d fraction)

Page 29: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

ne-emissivity_

(inner region proto-neutron star)

np dne ne can be very important !_

e+e-NN brems

Page 30: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

nm-emissivity

Q (NN brem) ≈ Q (npd)

Whenever NN brem is important, npd can be also important

Possible important role

in proto-neutron star cooling

Page 31: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Meson exchange current effect on Q

Large effect on NN fusion !

Page 32: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Why so large meson exchange current effect ?

★ Higher NN kinetic energy causes large exchange current effect

★ Axial exchange current & higher partial waves are important ; uncertainty

Page 33: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Deuteron breakup (n-heating) & formation (n-emission) in SN

Framework : NN wave functions based on high-precision NN potential + 1 & 2-body nuclear weak currents (tested by data)

n-heating:

Substantial abundance of light elements (NSE model)

for deuteron : much larger than those for 3H, 3He, 4He 25-44% of      for the nucleon

Summary

Page 34: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

n-emission:

New agents other than direct & modified Urca, NN bremsstrahlung

Emissivities Rigorous evaluation of nuclear matrix elements No long wave length limit, no Born approximation

Electron captures effectively reduced ne emissivity

Need careful estimate of light element abundance & emissivity

NN fusions np dnn can be very important for ne & nm emissivites

play a role comparable to NN bremsstrahlung & modified Urca

_ _

Summary

Page 35: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Future work

• Similar calculations of emissivites for modified Urca

NN bremsstrahlung

rigorous few-body calculation is still lacking SN et al. in progress

• Elaborate treatment for nuclear medium effects

Thermodynamic Green’s function approach (S. Nasu, PhD work in progress)

Useful information for supernova and neutron star cooling simulations

Page 36: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Backups

Page 37: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

• Compilation I : Shen EoS, N, 4He, a heavy nucleus

• Compilation II : light elements abundance from Sumiyoshi & Röpke (2008)

Both have the same density, temperature, electron fraction

Emissivites from direct Urca, e+e- annihilation, NN brems compilation I

Emissivites from election captures on d & NN fusion compilation II

Page 38: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Exchange vector current

★ Current conservation for one-pion-exchange potential

★ VND coupling is fitted to np dg data

Page 39: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Comparison with np dg data

Exchange currents contribute about 10 %

Page 40: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Exchange axial charge

Kubodera, Delorme, Rho, PRL 40 (1978)

Soft pion theorem + PCAC

Page 41: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

r(x) [fm-1] const.

Page 42: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae
Page 43: Neutrino Reactions on the Deuteron   in  Core-Collapse Supernovae

Neutrino spectrum