neutrino phenomenology lecture 2: precision physics with neutrinos winter school schladming 2010...

51
Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität Würzburg

Post on 21-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

Neutrino phenomenologyLecture 2: Precision physics with neutrinos

Winter school Schladming 2010“Masses and constants”01.03.2010

Walter WinterUniversität Würzburg

Page 2: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

2

Contents (overall)

Lecture 1:Testing neutrino mass and flavor mixing

Lecture 2:Precision physics with neutrinos

Lecture 3:Aspects of neutrino astrophysics

Page 3: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

3

Contents (lecture 2)

Repetition Matter effects in neutrino oscillations CP violation phenomenology Mass hierarchy measurement Experiments: The near future Experiments for precision.

Example: Neutrino factory

New physics searches (some examples) Summary

Page 4: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

Repetition

… from yesterday

Page 5: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

5

With three flavors: six parameters(three mixing angles, one phase, two mass squared differences)

Established by two flavor subsector measurements In the future: measure unknown 13 and CP, MH

Three flavor oscillation summary

Coupling: 13

Atmosphericoscillations:Amplitude: 23

Frequency: m312

Solaroscillations:Amplitude: 12

Frequency: m212

Suppressed

effect: CP

(Super-K, 1998;Chooz, 1999; SNO 2001+2002; KamLAND 2002)

Page 6: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

6

Global fits

Schwetz, Tortola, Valle, 20081

90%CL, 3

Page 7: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

A new ingredient:Matter effects in neutrino oscillations

Page 8: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

8

Matter effect (MSW) Ordinary matter:

electrons, but no , Coherent forward

scattering in matter: Net effect on electron flavor

Matter effects proportional to electron density ne and baseline

Hamiltonian in matter (matrix form, flavor space):

Y: electron fraction ~ 0.5

(electrons per nucleon)

(Wolfenstein, 1978; Mikheyev, Smirnov, 1985)

Page 9: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

9

Numerical evaluation

Evolution operator method:

H(j) is the Hamiltonian in constant density

Note that in general

Additional information by interference effects compared to pure absorption phenomena

Page 10: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

10

Matter profile of the Earth… as seen by a neutrino

(PR

EM

: Prelim

inary R

eference E

arth M

odel)

Core

Innercore

Page 11: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

11

Two flavor limit (=const.)

Multiplied out, two flavors, global phase substracted:

Compare to vacuum

Idea: write matter Hamiltonian in same form as in vacuum with effective parameters

Page 12: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

12

Parameter mapping

Oscillation probabilities invacuum:matter:

Matter resonance: In this case: - Effective mixing maximal- Effective osc. frequency minimal

~ 4.5 g/cm3 (Earth’s mantle)Solar osc.: E ~ 100 MeV !!!Atm osc.: E ~ 6.5 GeV

Resonance energy:

Page 13: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

13

Mass hierarchy

Matter resonance for

Will be used in the future to determine the mass ordering:

8

8

Normalm31

2 >0Inverted m31

2 <0

Normal Inverted

Neutrinos Resonance Suppression

Antineutrinos Suppression Resonance

Neutrinos/Antineutrinos

Page 14: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

Three flavor effects:CPV phenomenology

Page 15: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

15

Terminology

Any value of CP

(except for 0 and )violates CP

Sensitivity to CPV:Exclude CP-conservingsolutions 0 and for any choiceof the other oscillationparameters in their allowed ranges

Why interesting?Lecture Xing!

Page 16: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

16

Three flavor effects

(Cervera et al. 2000; Freund, Huber, Lindner, 2000; Huber, Winter, 2003; Akhmedov et al, 2004)

Antineutrinos: Magic baseline: Silver: Platinum, T-inv.:

Page 17: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

17

Degeneracies

CP asymmetry

(vacuum) suggests the use of neutrinos and antineutrinos

One discrete deg.remains in (13,)-plane

(Burguet-Castell et al, 2001)Burguet-Castell et al, 2001)

Additional degeneracies: Additional degeneracies: (Barger, Marfatia, Whisnant, 2001)(Barger, Marfatia, Whisnant, 2001) Sign-degeneracy Sign-degeneracy

(Minakata, Nunokawa, 2001)(Minakata, Nunokawa, 2001) Octant degeneracy Octant degeneracy

(Fogli, Lisi, 1996)(Fogli, Lisi, 1996)

Best-fit

Antineutrinos

Iso-probability curves

Neutrinos

Page 18: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

18

Intrinsic vs. extrinsic CPV The dilemma: Strong matter effects (high E, long L),

but Earth matter violates CP Intrinsic CPV (CP) has to be

disentangled from extrinsic CPV (from matter effects)

Example: -transitFake sign-solutioncrosses CP conservingsolution

Typical ways out: T-inverted channel?

(e.g. beta beam+superbeam,platinum channel at NF, NF+SB)

Second (magic) baseline(Huber, Lindner, Winter, hep-ph/0204352)

NuFact, L=3000 km

Fit

True CP (violates

CP maximally)

Degeneracy above 2

(excluded)

True

Critical range

Page 19: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

19

The „magic“ baseline

Page 20: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

20

CP violation discovery … in (true) sin2213 and CP

Sensitive region as a

function of true 13 and CP

CP values now stacked for each 13

Read: If sin2213=10-3, we

expect a discovery for 80% of all values of CP

No CPV discovery ifCP too close to 0 or

No CPV discovery forall values of CP3

~ Cabibbo-angleprecision at 2 BENCHMARK!

Best performanceclose to max.

CPV (CP = /2 or 3/2)

Page 21: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

Mass hierarchy measurement

Page 22: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

22

Motivation

Specific models typically come together with specific MH prediction (e.g. textures are very different)

Good model discriminator(Albright, Chen, hep-ph/0608137)

8

8

Normal Inverted

Page 23: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

23

Magic baseline:Restore two flavor limit ( ~ 1 – A for small 13)

Resonance: 1-A 0 (NH: , IH: anti-)Damping: sign(A)=-1 (NH: anti-, IH: )Energy close to resonance energy helps (~ 7 GeV)

To first approximation: Pe ~ L2 (e.g. at resonance)Baseline length helps (compensates 1/L2 flux drop)

Matter effects

(Cervera et al. 2000; Freund, Huber, Lindner, 2000; Huber, Winter, 2003; Akhmedov et al, 2004)

Page 24: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

24

Baseline dependence

Comparison matter (solid) and vacuum (dashed)

Matter effects (hierarchy dependent) increasewith L

Event rate (, NH) hardly drops with LGo to long L!

(Freund, Lindner, Petcov, Romanino, 1999)

(m212 0)

Eve

nt

rate

s (A

.U.)

Vacuum, NH or IH

NH matter effect

NH matter effect

Peak neutrino energy ~ 14 GeV

Page 25: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

Experiments: The near future

Page 26: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

26

There are three possibilities to artificially produce neutrinos

Beta decay:Example: Nuclear reactors

Pion decay:From accelerators:

Muon decay:Muons produced by pion decays!

Muons,neutrinos

Artificial neutrino sources

Protonen

Target Selection,focusing

Pions

Decaytunnel

Absorber

Neutrinos

Page 27: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

27

New reactor experimentsExamples: Double Chooz, Daya Bay

Identical detectors, L ~ 1.1 km

(Quelle: S. Peeters, NOW 2008)

Page 28: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

28

Idea: The event rate N close to the reactor is high, ~ 1/R2

A few thousand events/day for “small” detector ~ 25 m away from reactor core

Anticipated precision: ~ O(10) kgfor extraction of radioactive material

Spin-off: Nuclear monitoring?(A

dam B

ernstein, LL

NL

)(A

dam B

ernstein, LL

NL

)

Page 29: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

29

Narrow band superbeams

Off-axis technology to suppress backgrounds

Beam spectrum more narrow

Examples:T2KNOA

T2K beamOA 1 degreeOA 2 degreesOA 3 degrees

(hep-ex/0106019)

Page 30: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

30

GLoBES

AEDL„Abstract ExperimentDefinition Language“

Define and modifyexperiments

AEDL files

User InterfaceC library,

reads AEDL files

Functionality forexperiment simulation

Simulation of future experiments

http://www.mpi-hd.mpg.de/lin/globes/

(Huber, Lindner, Winter, 2004; Huber, Kopp, Lindner, Rolinec, Winter, 2007) Application software

linked with user interfaceCalculate sensitivities …

Comes with a 180 pages manual with step-by-step intro!

Page 31: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

31

Calculation of event rates

In practice:Secondary particles

integrated out

Detector response R(E,E´)

E E´

Page 32: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

32

Next generation CPV reach

Includes Double Chooz, Daya Bay, T2K, NOvA

(Huber, Lindner, Schwetz, Winter, arXiv:0907.1896)

90% CL

Page 33: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

Experiments for precisionExample: Neutrino factory

Page 34: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

34

Neutrino factory:International Design Study (IDS-NF)

IDS-NF: Initiative from ~ 2007-

2012 to present a design report, schedule, cost estimate, risk assessment for a neutrino factory

In Europe: Close connection to „Eurous“ proposal within the FP 07

In the US: „Muon collider task force“ISS

(Geer, 1997; de Rujula, Gavela, Hernandez, 1998; Cervera et al, 2000)

Signal prop. sin2213

Contamination

Muons decay in straight sections of a storage ring

Page 35: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

35

IDS-NF baseline setup 1.0 Two decay rings E=25 GeV

5x1020 useful muon decays per baseline(both polarities!)

Two baselines:~4000 + 7500 km

Two MIND, 50kt each

Currently: MECC at shorter baseline (https://www.ids-nf.org/)(https://www.ids-nf.org/)

Page 36: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

36

NF physics potential Excellent 13, MH,

CPV discovery reaches (IDS-NF, 2007)

Robust optimum for ~ 4000 + 7500 km

Optimization even robust under non-standard physics(dashed curves)

(Kopp, Ota, Winter, arXiv:0804.2261; see also: Gandhi, Winter, 2007)

Page 37: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

37

Steve Geer‘s vision

Page 38: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

38

Science fiction or science fact?http://www.fnal.gov/pub/muon_collider/

Page 39: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

New physics searches(some examples, using neutrino factory near detectors)

Page 40: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

40

Effective operator picture if mediators integrated out:

Describes additions to the SM in a gauge-inv. way! Example: TeV-scale new physics

d=6: ~ (100 GeV/1 TeV)2 ~ 10-2 compared to the SMd=8: ~ (100 GeV/1 TeV)4 ~ 10-4 compared to the SM

Interesting dimension six operatorsFermion-mediated Non-unitarity (NU)Scalar or vector mediated Non-standard int. (NSI)

New physics from heavy mediators

mass d=6, 8, 10, ...: NSI, NU, CLFV, …

Page 41: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

41

Example 1:

Non-standard interactions Typically described by effective four

fermion interactions (here with leptons)

May lead to matter NSI (for ==e)

May also lead to source/detector NSI(e.g. NuFact:

s for ==e, =)These source/det.NSI are process-dep.!

Page 42: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

42

Lepton flavor violation… and the story of SU(2) gauge invariance

Strongbounds

e e

e

NSI(FCNC)

e e

e CLFV e

4-NSI(FCNC)

Ex.:

e e

Affects neutrino oscillations in matter (or neutrino production)

Affects environments with high densities (supernovae)

BUT: These phenomena are connected by SU(2) gauge invariance

Difficult to construct large leptonic matter NSI with d=6 operators (Bergmann, Grossman, Pierce, hep-ph/9909390; Antusch, Baumann, Fernandez-Martinez, arXiv:0807.1003; Gavela, Hernandez, Ota, Winter,arXiv:0809.3451)

Need d=8 effective operators, …! Finding a model with large NSI is not trivial!

Page 43: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

43

On current NSI bounds (Source NSI for NuFact)

The bounds for the d=6 (e.g.scalar-mediated) operators are strong (CLFV, Lept. univ., etc.)(Antusch, Baumann, Fernandez-Martinez, arXiv:0807.1003)

The model-independent bounds are much weaker(Biggio, Blennow, Fernandez-Martinez, arXiv:0907.0097)

However: note that here the NSI have to come from d=8 (or loop d=6?) operators ~ (v/)4 ~ 10-4 natural?

„NSI hierarchy problem“?

Page 44: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

44

Source NSI with at a NuFact

Probably most interesting for near detectors: e

s, s (no intrinsic beam BG)

Near detectors measure zero-distance effect ~ |s|2

Helps to resolve correlations

(Tang, Winter, arXiv:0903.3039)

ND5: OPERA-like ND at d=1 km, 90% CL

This correlation is always present if:- NSI from d=6 operators- No CLFV (Gavela et al,arXiv:0809.3451;see also Schwetz, Ohlsson, Zhang, arXiv:0909.0455 for a particular model)

Page 45: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

45

Example 2:

Non-unitarity of mixing matrix Integrating out heavy fermion fields (such as in a type-I TeV

see-saw), one obtains neutrino mass and the d=6 operator (here: fermion singlets)

Re-diagonalizing and re-normalizing the kinetic terms of the neutrinos, one has

This can be described by an effective (non-unitary) mixing matrix with N=(1+) U

Similar effect to NSI, but source, detector, and matter NSI are correlated in a particular, fundamental way (i.e., process-independent)

also: „MUV“

Page 46: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

46

Impact of near detector

Example: (Antusch, Blennow, Fernandez-Martinez, Lopez-Pavon, arXiv:0903.3986)

near detector important to detect zero-distance effect

Curves: 10kt, 1 kt, 100 t, no ND

Page 47: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

47

Example 3:

Search for sterile neutrinos

3+S schemes of neutrinos include (light) sterile states, i.e., neutral fermion states light enough to be produced

The mixing with the active states must be small, the mass squared difference can be very different

The effects on different oscillation channels depend on the model test all possible two-flavor short baseline (SBL) cases, which are standard oscillation-free

Example: e disappearance

Page 48: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

48

SBL e disappearance

Averaging over straight important (dashed versus solid curves)

Location matters: Depends on m2

(Giunti, Laveder, Winter, arXiv:0907.5487)

90% CL, 2 d.o.f.,No systematics,

m=200 kg

Two baseline setup?

d=50 m

d~2 km(as long as possible)

Page 49: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

49

SBL systematics

Systematics similar to reactor experiments:Use two detectors to cancel X-Sec errors

(Giunti, Laveder, Winter, arXiv:0907.5487)

10% shape

error

arXiv:0907.3145

Page 50: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

50

Summary

Matter effects key ingredient to measure the mass orderingHow do neutrinos behave in environments with strongly varying matter density (Sun, Supernovae)?

Man-made terrestrial sources can measure all of the remaining standard neutrino oscillation properties (13, CPV, MH) even for very small 13

Are all parameters best measured using terrestrial sources? Where did the „solar sector“ get its name from?

Some new physics „neutrino properties“ can be tested as wellAre there neutrino properties which are best tested using astrophysical environments?

Lecture 3

Lecture 3

Lecture 3

Page 51: Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” 01.03.2010 Walter Winter Universität

51

Transition amplitude in matrix form:

For instance, in = (1,0,0)T for e

With , we have

or

Matrix form in flavor space