neill's landfield site assessment

26
ENVE580 2015 Fall Special problems Neill’s Landfill Group November 2015

Upload: guillermo-alvarez-cascos-nevado

Post on 12-Apr-2017

46 views

Category:

Documents


2 download

TRANSCRIPT

ENVE580  2015Fall  Special  problems

Neill’s  Landfill  GroupNovember  2015

Neal’s  Landfill

Landfill  located  5.2  mi  from  Bloomington,  In

Assignment  1Surface 18  Acres

Volume 325,000  yd3

Sorption   is  the  main  transfer  mechanism  for  PCB’s

Main exposure  route  is  ingestion

Karst terrain  

Fish  and  fish-­‐feeding  animals could  also  be  affected

Potential  risk to  nearby  residents  usingprivate water  wells

Landfill  workers

Neill’s  Landfill  preview

Assignment  1Neill’s  Landfill  preview

1949-­‐1972

Municipal  wastes

1960-­‐1970

Viacom  Corp.Disposal  of  

electronic  capacitors

1983-­‐1999

Site  Construction

Assignment  1Source,  pathways and  receptors

Assignment  1

Assignment  1Contaminant  levels

Assignment  1Flowchart  for  fate  and  transport

assessments:  AtmosphereEmissions  from  covered   landfill

Atmospheric  exposure  to  Surface  water  (  Richland  Creek)

Atmospheric  exposure  to  nearby  residents

Transfer  of  PCB’s  to  surface  water

Human  Inhalation

Flowchart  for  fate  and  transportassessments:  Groundwater

Assignment  1

Adsorption   to  Surface  solids  wit  OM

Percolation  &  Drainage.  Deep  contamination  of  soil

Resurgence  to  surface  waterWildlife   and  human  

recreational  activities  exposed Private  wells  contamination

Assignment  1Concentration  at  receptors

location.

Landfill  with  cover  ERP  =  (DiCsiAPt^4/3Wi)/L ERP= 0.003566219 g/s

DATA(ERP)  =  Emission  rate  potential  compound  i  g/secCsi  =  Saturated  vapor  concentration  of  compound  i  (g/sec) Cs=PM/RT 1.60E-­‐07 g/cm3Cs=PM/RT 1.602E-­‐07MW= 189 g/mol (based  on  C12H9CL)p= 1.60E-­‐02 mmHg@30C  from  tableR= 62300 mmHg-­‐l/KmolT=   303 K 273+TC

30 CSurface  Area  A  (cm2) 45000 yard2 376257150 cm2Pt=  porosity 0.4 for  clayL=effective  depth  of  soil  cover  (cm)  2  foot  clay  cover 60.96 cmDi  =  Diffisuin  coefficient  of  compund  I  (cm2/sec) Diffusion  Table  (C12H9CL) 0.05571 cm2/SecWi=weight  fraction  of  compound  i  in  the  waste  (g/g) 219000 mg/kg 0.219 2.19E-­‐01 g/g

150x300  yard

Air  Emissions  Plume  ModelAtmospheric  Stability  =  A,  wind  speed  <  2m/s  (worst  case  scenario)σx=σy  = 90mσz  = 90mx=  0.25  mile  =  0.40km  =400mQm=  the  contaminant  mass  volatilization  rate  from  source  (mg/sec)Qm=  0.003g/sec  = 3 mg/sec

C(400m)  =   5.89461E-­‐05 mg/m3

𝐶(𝑥) =𝑄𝑚

πσ𝑦σ𝑧𝑢

Landfill  with  coveremission:0.00356  g/s

Contaminant  Air  concentration  at  400m

C  (400)  =  5.894  E-­‐05  g/s

Assignment  1Concentration  at  receptors

location.

Groundwater  Plume  Model  concentration  at  400  m

2.66  E-­‐10  ppm

Groundwater  Plume  ModelX(distance)=5000  foot  =  1524mK=1x10-­‐7 cm/s n=0.4Assuming  hydraulic  gradient  =0.3m/mV=(Ki)/n= 7.50E-­‐08 cm/sec= 7.50E-­‐10 m/secD=0.1*X=0.1*400= 40 m2/secCo= 9.6ppb  =0.0096ppm 9.60E-­‐03 mg/kg

X(m) time(sec)=X/V Erfc1524 2.03E+12 5.55E-­‐08

C(400m,  2.03E+12)  =  0.0096/2*5.55e-­‐8C(400m,  2.03E+12)  = 2.66E-­‐10 ppm

𝐶(𝑥, 𝑡) = ()*(Erfc(X-­‐Vt)/(2√Dt))

Assignment  2

• 𝐼 = !.!!.!!.!!!! .!!

• I  =  Intake  by  Ingestion   (mg/kg.day)• C  =  Chemical  concentration  (mg/L)• CR  =  Ingestion  rate  (L/day)  • BW  =  Body  weight  (70  kg  for  adult)  • AT  =  Average  time  (day)• EF  =  Exposure  duration   (days/year)• ED  =  average  time  (years)

PCB’s  cause  carcinogenic  &  no  carcinogenic  effects

Assignment  2

• Immune  system,  • Reproductive  system• Nervous  system• Endocrine  system

Assignment  2

Off   site  concentration  -­‐Residents  

CDI(mg/Kg/day) Cancer  HI  =CDI*(SF=2)

Media [PCB's]  ppm  =mg/l Intake  Adult   Intake  Child Adult Child

Resident  wells Non  Detect   0 0 0 0

Surface  water 0.006 1.71E-­‐04 1.14E-­‐05 3.43E-­‐04 2.29E-­‐05

Spring  Water  Surface 0.005 1.43E-­‐04 9.52E-­‐06 2.86E-­‐04 1.90E-­‐05

Total  HI  adult  off  site= 6.29E-­‐04

Total  HI  child  off  site= 4.19E-­‐05

Assignment  2

On-­‐site  concentration  Workers,  Residents

CDI(mg/Kg/day) Cancer  HI  =CDI*(SF=2)

Media [PCB's]  ppm   Intake    Worker   Intake  Child Worker Child

Surface  Soil 219,000

Groundwater 0.0096 2.74E-­‐04 1.83E-­‐05 5.49E-­‐04 3.66E-­‐05

Surface  Water 0.0098 2.80E-­‐04 1.87E-­‐05 5.60E-­‐04 3.73E-­‐05

Total  HI  adult  on  site= 1.11E-­‐03

Total  HI  child  on  site= 7.39E-­‐05

Sampling• Water  well  surveys• Ground  water  dye  

tracer• Sediments  and  soil  

samples  • Air  sampling  • Fish  and  Vegetation  

sampling

Northwest  Spring   System,  groundwater   seepage  includes:  north  spring,   south  spring  and  five  storm  water  overflows   from  the  treatment  plant

Monitoring

• Westinghouse  Spring  Treatment  NPDES  permit  on  July  1,  1988.  This  permit  requires  to  sample  the  spring  treatment  facility  influent  and  effluent  twice  a  month,  and  to  submit  monitoring  reports  once  a  month.

• Sediment  sampling  in  Conard's Branch  and  Richland  Creek  

• Groundwater  monitoring  wells• Fish  and  vegetation  samples    

Remediation  Technologies  

• Surface  capacitors  and  stained  soil  removed• Sediments  removed  in  Conard’s Branch  • Capping  System• Incineration• Spring  treatment  facility  installed,  • Restriction  on  development  on  drinking  water  well

Concentrations  of  the  contaminants  after  site  remediation  

Media On-site PCB’s Concentration Surface Soil 219,000 ppm Groundwater 9.6 ppb Surface Water 9.8 ppb Spring Sediments 1,700 ppm Fish 279 ppm

Media Off-site PCB’s Concentration Resident wells No detected Surface water 6 ppb Spring Water Surface 3-7 ppb Sediments 68 ppb Fish 8 ppm Vegetables 1,100 ppm

 

Risk  After  RemediationCancer  HI  =CDI*(SF=2)

Media [PCB's]  ppm  =mg/l Intake  Adult   Intake  Child Adult ChildResident  wells Non  Detect   0 0 0 0Surface  water 0.006 1.71E-­‐04 1.14E-­‐05 3.43E-­‐04 2.29E-­‐05Spring  Water  Surface 0.005 1.43E-­‐04 9.52E-­‐06 2.86E-­‐04 1.90E-­‐05Sediments 0.068 9.71E-­‐08 9.07E-­‐07 1.94E-­‐07 1.81E-­‐06

Total  HI  Adult  off  site= 6.29E-­‐04Total  HI  Child  off  site  = 4.37E-­‐05

CDI(mg/Kg/day) Cancer  HI  =CDI*(SF=2)Media [PCB's]  ppm   Intake    Worker   Intake  Child Worker ChildSurface  Soil 219,000 3.13E-­‐01 2.92 6.26E-­‐01 5.84E+00Groundwater 0.0096 2.74E-­‐04 1.83E-­‐05 5.49E-­‐04 3.66E-­‐05Surface  Water 0.0098 2.80E-­‐04 1.87E-­‐05 5.60E-­‐04 3.73E-­‐05Spring  Sediments 1,700 2.43E-­‐03 2.27E-­‐02 4.86E-­‐03 4.54E-­‐02

Total  HI    Worker  Onsite  = 6.32E-­‐01Total  HI  Onsite  Child= 5.8854739

Off  site  concentration  -­‐  Residents  

On-­‐site  concentration  Workers,  Residents

CDI(mg/Kg/day)

ProblemsBy-­‐pass  to  the  Spring  Treatment  Facility• Major  Storm  events• Collection  System• Overflows

Improvements• Improvement  of  the  spring  water  collection  system  to  capture  PCB-­‐

contaminated  groundwater  seeps.• Install  a  new  effluent  line  farther  downstream  in  Conard'sBranch  for  

discharging  water  treated  by  the  water  treatment  plant. this  will  prevent  treated  water  from  being  collected  by  the  new  spring  water  collection  system.  

• Implement  a  soil  and  sediment  clenaup for  in-­‐stream  sediments,  bank  soils  and  floodplain  soils  in  Conard'sBranch.

• Implement  institutional  controls  to  prevent  residential  and  commercial  development  for  the  10-­‐acre  landfill  cap  and  prevent  groundwater  use  on  the  site.