nc solitons and integrable systems - kyoto u

29
Noncommutative Ward’s Conjecture and Integrable Systems Masashi HAMANAKA Nagoya University, Dept. of Math. (visiting here until December) Relativity Seminar in Oxford on Nov. 14th MH, ``NC Ward's conjecture and integrable systems,’’ NPB741 (2006) 368, [hep-th/0601209] MH, ``Notes on exact multi-soliton solutions of NC integrable hierarchies ,’’ [hep-th/0610006] MH, ``NC Backlund transforms,’’ [hep-th/0ymmnnn] Based on

Upload: others

Post on 21-Dec-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NC Solitons and Integrable Systems - Kyoto U

Noncommutative Ward’s Conjecture and Integrable Systems

Masashi HAMANAKANagoya University, Dept. of Math.

(visiting here until December)Relativity Seminar in Oxford on Nov. 14th

MH, ``NC Ward's conjecture and integrable systems,’’NPB741 (2006) 368, [hep-th/0601209]MH, ``Notes on exact multi-soliton solutions of NC integrable hierarchies ,’’ [hep-th/0610006]MH, ``NC Backlund transforms,’’ [hep-th/0ymmnnn]

Based on

Page 2: NC Solitons and Integrable Systems - Kyoto U

1. Introduction

Successful points in NC theoriesAppearance of new physical objectsDescription of real physicsVarious successful applicationsto D-brane dynamics etc.

NC Solitons play important roles(Integrable!)

Final goal: NC extension of all soliton theories

Page 3: NC Solitons and Integrable Systems - Kyoto U

Integrable equations in diverse dimensions

4 Anti-Self-Dual Yang-Mills eq.(instantons)

2(+1)

Kadomtsev-Petviashvili (KP) eq.Davey-Stewartson (DS) eq. …

3 Bogomol’nyi eq.(monopoles)

1(+1)

KdV eq. Boussinesq eq.NLS eq. Burgers eq.sine-Gordon eq. (affine) Toda field eq. …

µνµν FF ~−=

Dim. of space

NC extension (Successful)

NC extension(Successful)

NC extension(This talk)

NC extension (This talk)

Page 4: NC Solitons and Integrable Systems - Kyoto U

Ward’s conjecture: Many (perhaps all?) integrable equations are reductions of

the ASDYM eqs.R.Ward, Phil.Trans.Roy.Soc.Lond.A315(’85)451

ASDYM eq.

(KP eq.) (DS eq.) Ward’s chiral modelKdV eq. Boussinesq eq.NLS eq. Toda field eq.

sine-Gordon eq. Liouville eq. Painleve eqs. Tops …

Reductions

Almost confirmed by explicit examples !!!

Page 5: NC Solitons and Integrable Systems - Kyoto U

NC Ward’s conjecture: Many (perhaps all?) NC integrable equations are reductions of

the NC ASDYM eqs. cf. [Brain-Hannabuss]MH&K.Toda, PLA316(‘03)77 [hep-th/0211148]

NC ASDYM eq.

Many (perhaps all?)NC integrable eqs.

NC Reductions

Successful

Successful?

Reductions

・Existence of physical pictures ・New physical objects・Application to D-branes・Classfication of NC integ. eqs.

NC Sato’s theory plays important roles in revealing integrableaspects of them

Page 6: NC Solitons and Integrable Systems - Kyoto U

Program of NC extension of soliton theories

(i) Confirmation of NC Ward’s conjecture– NC twistor theory geometrical origin– D-brane interpretations applications to physics

(ii) Completion of NC Sato’s theory– Existence of ``hierarchies’’ various soliton eqs.– Existence of infinite conserved quantities

infinite-dim. hidden symmetry– Construction of multi-soliton solutions– Theory of tau-functions structure of the solution

spaces and the symmetry

(i),(ii) complete understanding of the NC soliton theories

Page 7: NC Solitons and Integrable Systems - Kyoto U

Plan of this talk1. Introduction2. NC ASDYM equations (a master equation)3. NC Ward’s conjecture

--- Reduction of NC ASDYM to KdV, mKdV, Tziteica, …

4. Towards NC Sato’s theory (KP, …)hierarchy, infinite conserved quantities,exact multi-soliton solutions,…

5. Conclusion and Discussion

Page 8: NC Solitons and Integrable Systems - Kyoto U

2. NC ASDYM equationsHere we discuss G=GL(N) (NC) ASDYM eq. from the

viewpoint of linear systems with a spectral parameter .Linear systems (commutative case):

Compatibility condition of the linear system:0],[]),[],([],[],[ ~~

2~~ =+−+= wzwwzzzw DDDDDDDDML ζζ

ζ

⎪⎩

⎪⎨

=−=−====

⇔0],[],[

,0],[,0],[

~~~~

~~~~

wwzzwwzz

wzwz

wzzw

DDDDFFDDFDDF

.0)(,0)(

~

~

=−==−=

ψζψψζψ

wz

zw

DDMDDL

⎟⎟⎠

⎞⎜⎜⎝

−+−+

=⎟⎟⎠

⎞⎜⎜⎝

⎛1032

3210

21

~~

ixxixxixxixx

zwwz

:ASDYM equation

e.g.

]),[:( νµµννµµν AAAAF +∂−∂=

Page 9: NC Solitons and Integrable Systems - Kyoto U

Yang’s form and Yang’s equationASDYM eq. can be rewritten as follows

⎪⎩

⎪⎨

=−=−==∃⇒====∃⇒==

0],[],[0~,0~,~,0],[

0,0,,0],[

~~~~

~~~~~~

wwzzwwzz

wzwzwz

wzwzzw

DDDDFFhDhDhDDFhDhDhDDF

If we define Yang’s matrix:then we obtain from the third eq.:

hhJ 1~: −=

0)()( ~1

~1 =∂∂−∂∂ −− JJJJ wwzz :Yang’s eq.

1~~

1~~

11 ~~,~~,, −−−− =−==−= hhAhhAhhAhhA wwzzwwzz

The solution reproduce the gauge fields asJ

Page 10: NC Solitons and Integrable Systems - Kyoto U

(Q) How we get NC version of the theories?(A) We have only to replace all products of fields in

ordinary commutative gauge theories with star-products:The star product:

hgfhgf ∗∗=∗∗ )()(

)()()(2

)()()(2

exp)(:)()( 2θθθ Oxgxfixgxfxgixfxgxf ji

ij

jiij +∂∂+=⎟

⎠⎞

⎜⎝⎛ ∂∂=∗

rs

ijijjiji ixxxxxx θ=∗−∗=∗ :],[ NC !

Associative

)()()()( xgxfxgxf

A deformed product

∗→

Presence of background magnetic fields

In this way, we get NC-deformed theorieswith infinite derivatives in NC directions. (integrable???)

Page 11: NC Solitons and Integrable Systems - Kyoto U

Here we discuss G=GL(N) NC ASDYM eq. from the viewpoint of linear systems with a spectral parameter .ζ

(All products are star-products.)

Linear systems (NC case):

Compatibility condition of the linear system:0],[)],[],([],[],[ ~~

2~~ =+−+= ∗∗∗∗∗ wzwwzzzw DDDDDDDDML ζζ

⎪⎩

⎪⎨

=−=−====

∗∗

0],[],[,0],[,0],[

~~~~

~~~~

wwzzwwzz

wzwz

wzzw

DDDDFFDDFDDF

.0)(,0)(

~

~

=∗−=∗=∗−=∗

ψζψψζψ

wz

zw

DDMDDL

⎟⎟⎠

⎞⎜⎜⎝

−+−+

=⎟⎟⎠

⎞⎜⎜⎝

⎛1032

3210

21

~~

ixxixxixxixx

zwwz

:NC ASDYM equation

e.g.

)],[:( ∗+∂−∂= νµµννµµν AAAAF

Don’t omit even for G=U(1) ))()1(( ∞≅UUQ

Page 12: NC Solitons and Integrable Systems - Kyoto U

Yang’s form and NC Yang’s equationNC ASDYM eq. can be rewritten as follows

⎪⎩

⎪⎨

=−=−=∗=∗∃⇒===∗=∗∃⇒==

∗∗

0],[],[0~,0~,~,0],[

0,0,,0],[

~~~~

~~~~~~

wwzzwwzz

wzwzwz

wzwzzw

DDDDFFhDhDhDDFhDhDhDDF

If we define Yang’s matrix:then we obtain from the third eq.:

hhJ ∗= −1~:

0)()( ~1

~1 =∂∗∂−∂∗∂ −− JJJJ wwzz :NC Yang’s eq.

1~~

1~~

11 ~~,~~,, −−−− ∗=∗−=∗=∗−= hhAhhAhhAhhA wwzzwwzz

The solution reproduces the gauge fields asJ

(All products are star-products.)

Page 13: NC Solitons and Integrable Systems - Kyoto U

Backlund transformation for NC Yang’s eq.Yang’s J matrix can be decomposed as follows

Then NC Yang’s eq. becomes

The following trf. leaves NC Yang’s eq. as it is:

⎟⎟⎠

⎞⎜⎜⎝

∗∗−∗∗−

=−

ABAABBABAJ ~~~~~1

.0~~~~)()(

,0~~~)~~(~)~~(

,0)~()~(,0)~~()~~(

~~1

~11

~1

~~1

~11

~1

~~~~

=∗∗−∗∗+∗∂∗−∗∂∗

=∗∗−∗∗+∗∗∂−∗∗∂

=∗∗∂−∗∗∂=∗∗∂−∗∗∂

−−−−

−−−−

wwzzwwzz

wwzzwwzz

wwzzwwzz

BABBABAAAAAA

BABBABAAAAAA

ABAABAABAABA

11

~~

~~

~,~,~~,~~,~~,~~

−− ==

∗∗=∂∗∗=∂

∗∗=∂∗∗=∂

AAAA

ABABABAB

ABABABAB

newnew

znew

wwnew

z

znew

wwnew

z

We can generate new solutions from known (trivial) solutions

MH [hep-th/0601209, 0ymmnnn]The book of Mason-Woodhouse

Page 14: NC Solitons and Integrable Systems - Kyoto U

3. NC Ward’s conjecture --- reduction to (1+1)-dim.

From now on, we discuss reductions of NC ASDYM on (2+2)-dimension, including NC KdV, mKdV, Tzitzeica...Reduction steps are as follows:(1) take a simple dimensional reduction

with a gauge fixing.(2) put further reduction condition on gauge field.The reduced eqs. coincides with those obtained in the framework of NC KP and GD hierarchies,which possess infinite conserved quantities andexact multi-soliton solutions. (integrable-like)

Page 15: NC Solitons and Integrable Systems - Kyoto U

Reduction to NC KdV eq. (1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:

),~,(),()~,,~,( wwzxtwwzz +=→

MH, PLB625, 324[hep-th/0507112]

0],[)(

0],[],[)(0],[)(

~~~

~

=+−′

=−+′−′=

∗∗

zwwz

wwzzww

zw

AAAAiii

AAAAAAiiAAi

&

⎟⎟⎠

⎞⎜⎜⎝

⎛=

0100

~zAThe reduced NC ASDYM is:

⎟⎟⎟⎟

⎜⎜⎜⎜

′∗−′′−′′′′′′

′−∗′+′′==⎟⎟

⎞⎜⎜⎝

⎛−∗+′−

=qqqqqqqf

qqqqAOA

qqqqq

A zww

21),,,(

21

,,1

~

We can get NC KdV eq. in such a miracle way ! ,

)(43

41)( uuuuuuiii ′∗+∗′+′′′=⇒ & qu ′= 2 θixt =],[

NOT traceless !

)2()2(,, 0 slglCBA ⎯⎯→⎯∈ →θNote: U(1) part is necessary !

Page 16: NC Solitons and Integrable Systems - Kyoto U

The NC KdV eq. has integrable-like properties:

possesses infinite conserved densities:

has exact N-soliton solutions:

))(2)((43

211 uLresuLresLres nnnn ′◊−′′◊+= −−− θσ

:nr Lres coefficient of inr

x∂ nL: Strachan’s product (commutative and non-associative)◊

)(21

)!12()1()(:)()(

2

0

xgs

xfxgxfs

jiij

s

s

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ ∂∂

+−

=◊ ∑∞

=

rsθ

∑=

−∗∂∂=N

iiixx WWu

1

1)(2

iiii ffWW,1 ),...,(:=

)),((exp),(exp iiii xaxf αξαξ −+= 3),( αααξ txx +=

:quasi-determinant of Wronski matrix

MH, JMP46 (2005) [hep-th/0311206]

Etingof-Gelfand-Retakh,[q-alg/9701008]

MH, [hep-th/0610006]cf. Paniak, [hep-th/0105185]

Explicit!

Explicit!

θixt =],[

Page 17: NC Solitons and Integrable Systems - Kyoto U

Reduction to NC mKdV eq. (1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:

),~,(),()~,,~,( wwzxtwwzz +=→

MH, NPB741, 368[hep-th/0601209]

0],[)(

0],[],[)(0],[)(

~~~

~

=+−′

=−+′−′=

∗∗

zwwz

wwzzww

zw

AAAAiii

AAAAAAiiAAi

&

⎟⎟⎠

⎞⎜⎜⎝

⎛=

0100

~zAThe reduced NC ASDYM is:

⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛−−

=dbc

Aa

Ap

pA zww 0

,000

,0

1~

We get

∗∗ ′−+′′−=′−−′′=

+′−=−′−=

],[41

21

41,],[

41

21

41

,21

21,

21

21

33

22

ppppdppppc

ppbppa

θixt =],[and )(

43

41)( ppppppppiii ′∗∗+∗∗′−′′′=⇒ & NC mKdV !

NOT traceless !

Page 18: NC Solitons and Integrable Systems - Kyoto U

Relation between NC KdV and NC mKdV(1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:

),~,(),()~,,~,( wwzxtwwzz +=→

MH, NPB741, 368[hep-th/0601209]

⎟⎟⎠

⎞⎜⎜⎝

⎛=

0100

~zA

⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛−−

=dbc

Aa

Ap

pA zww 0

,000

,0

1~

⎟⎟⎟⎟

⎜⎜⎜⎜

′∗−′′−′′′′′′

′−∗′+′′==⎟⎟

⎞⎜⎜⎝

⎛−∗+′−

=qqqqqqqf

qqqqAOA

qqqqq

A zww

21),,,(

21

,,1

~NCKdV:

NCmKdV:

Note: There is a residual gauge symmetry:

⎟⎟⎠

⎞⎜⎜⎝

⎛=∂∗+∗∗→ −−

101

,11

βµµµ ggggAgA

The gauge trf. 22, ppqpq −′=′−=β

NC Miura map !

Gauge equivalent

Page 19: NC Solitons and Integrable Systems - Kyoto U

Reduction to NC Tzitzeica eq. Start with NC Yang’s eq.

(1) Take a special reduction condition:

(2) Take a further reduction condition:

MH, NPB741, 368[hep-th/0601209]

We get (a set of) NC Tzitzeica eq.:)1),exp(),(exp()exp( ωωρ −∗= diagg

We get a reduced Yang’s eq.)exp()~,()~exp( wEzzgwEJ +− ∗∗−=

0)()( ~1

~1 =∂∂−∂∂ −− JJJJ wwzz

⎟⎟⎟

⎜⎜⎜

⎛=

⎟⎟⎟

⎜⎜⎜

⎛=

+

010001100

001100010

E

E

0],[)( 1~

1 =∗−∂∗∂ ∗+−

−− gEgEgg zz

0))exp()(exp(),exp()2exp())exp()(exp())exp()(exp(),2exp()exp())exp()(exp())exp()(exp(

~

~

~

=∂∗−∂=∂−−=−∗∗∂+−∂∗∂

−−=∗∗−∂+∂∗−∂

ρρωωωωωωωωωωωω

zzz

zzz

zzz

VV

V

))2exp()exp(( ~0 ωωωθ −−=⎯⎯ →⎯ →

zz

Page 20: NC Solitons and Integrable Systems - Kyoto U

In this way, we can obtain various NC integrable equations from NC ASDYM !!!

NC ASDYM

NC Ward’s chiral

NC (affine) Toda

NC NLS

NC KdV NC sine-Gordon

NC Liouville

NC KPNC DS

NC CBSNC Zakharov

NC mKdV

NC pKdV

Yang’s form

gauge equiv.gauge equiv.

Summarized in MH[hep-th/0601209]

Infinite gauge group

Almost all ?

MH[hep-th/0507112]

NC TzitzeicaNC Boussinesq NC N-wave

Page 21: NC Solitons and Integrable Systems - Kyoto U

4. Towards NC Sato’s TheorySato’s Theory : one of the most beautiful theory of solitons– Based on the exsitence of hierarchies and tau-

functions– Various integrable equations in (1+1)-dim. can be

derived elegantly from (2+1)-dim. KP equation. Sato’s theory reveals essential aspects of solitons:– Construction of exact solutions– Structure of solution spaces– Infinite conserved quantities– Hidden infinite-dim. symmetryLet’s discuss NC extension of Sato’s theory

Page 22: NC Solitons and Integrable Systems - Kyoto U

Derivation of soliton equationsPrepare a Lax operator which is a pseudo-differential operator

Introduce a differential operator

Define NC KP hierarchy:

L+∂+∂+∂+∂= −−− 321 )()(2: xxxx ugufuL

∗=∂∂ ],[ LBxL

mm

0)(: ≥∗∗= LLBm Lijji ixx θ=],[

),,,( 321 Lxxxuu =

Noncommutativityis introduced here:

m times

L+∂∂

+∂∂

+∂∂

34

23

12

xm

xm

xm

u

u

u

L+∂

+∂

+∂

34

23

12

)(

)(

)(

xm

xm

xm

uf

uf

uf

yields NC KP equations andother NC hierarchy eqs.

Find a suitable L which satisfies NC KP hierarchy !solutions of NC KP eq.

Page 23: NC Solitons and Integrable Systems - Kyoto U

Exact N-soliton solutions of the NC KP hierarchy

L+∂+∂=

Φ∂∗Φ=

1

1

2 xx

x

uL

1,11 ),,...,(:++

=ΦNNN fffWf

),(exp),(exp iiii xaxf βξαξ +=

solves the NC KP hierarchy !

quasi-determinantof Wronski matrix

L+++= 33

221),( ααααξ xxxx

Etingof-Gelfand-Retakh,[q-alg/9701008]

),,(detlog2)(2 120

1

1Nx

N

iiixx ffWWWu L∂⎯⎯→⎯∗∂∂= →

=

−∑ θ

iiii ffWW,1 ),...,(:=

⎥⎥⎥⎥

⎢⎢⎢⎢

∂∂∂

∂∂∂=

−−−m

mx

mx

mx

mxxx

m

m

fff

ffffff

fffW

12

11

1

21

21

21 ),,,(

L

MOMM

L

L

L

Wronski matrix:

Page 24: NC Solitons and Integrable Systems - Kyoto U

Quasi-determinantsQuasi-determinants are not just a generalization of commutative determinants, but rather related to inverse matrices. For an n by n matrix and the inverse of X, quasi-determinant of X is directly defined by

Recall that⎟⎟⎠

⎞⎜⎜⎝

⎛ −⎯⎯→⎯=

+→− X

XyX ij

ji

jiijdet

det)1(01 θ

)( ijxX = )( ijyY =

some factor

⎟⎟⎠

⎞⎜⎜⎝

−−−−−−+

==

⇒⎟⎟⎠

⎞⎜⎜⎝

⎛=

−−−−−

−−−−−−−−−

11111

111111111

)()()()(

BCADCABCADBCADBACABCADBAA

XY

DCBA

X

We can also define quasi-determinants recursively

Page 25: NC Solitons and Integrable Systems - Kyoto U

Quasi-determinantsDefined inductively as follows [For a review, see

Gelfand et al.,math.QA/0208146]

′′′

′′′

′′′′′

−′

−=

−=

jijjij

ijiiij

jijjji

ijiiijij

xXxx

xXxxX

,

1

,

1

)(

))((

L

311

231

22323313311

331

32222312

211

221

23333213211

321

332322121111

121

11212222111

12222121

221

21111212211

22121111

)()(

)()(:3

,,

,,:2

:1

xxxxxxxxxxxx

xxxxxxxxxxxxxXn

xxxxXxxxxX

xxxxXxxxxXn

xXn ijij

⋅⋅⋅−⋅−⋅⋅⋅−⋅−

⋅⋅⋅−⋅−⋅⋅⋅−⋅−==

⋅⋅−=⋅⋅−=

⋅⋅−=⋅⋅−==

==

−−−−

−−−−

−−

−−

ijX : the matrix obtained from X deleting i-th row and j-th column

Page 26: NC Solitons and Integrable Systems - Kyoto U

Interpretation of the exact N-soliton solutions

We have found exact N-soliton solutions for the wide class of NC hierarchies.Physical interpretations are non-trivial becausewhen are real, is not in general.However, the solutions could be real in some cases.– (i) 1-soliton solutions are all the same as commutative

ones because of

– (ii) In asymptotic region, configurations of multi-soliton solutions could be real in soliton scatterings and the same as commutative ones.

)(),( xgxf )(*)( xgxf

)()()(*)( vtxgvtxfvtxgvtxf −−=−−

MH [hep-th/0610006]

Page 27: NC Solitons and Integrable Systems - Kyoto U

2-soliton solution of KdVeach packet has the configuration:

22322)( 2,4),4(cosh2 iiiiiiii khkvtkxkku ==−= −

velocity height

Scattering process (commutative case)

The shape and velocityis preserved ! (stable)

The positions are shifted ! (Phase shift)

Page 28: NC Solitons and Integrable Systems - Kyoto U

2-soliton solution of NC KdVeach packet has the configuration:

22322)( 2,4),4(cosh2 iiiiiiii khkvtkxkku ==−= −

velocity height

Scattering process (NC case)

The shape and velocityis preserved ! (stable)

In general, complexUnknown in the middle region

Asymptotically realand the same as commutative configurations

Asymptotically

The positions are shifted ! (Phase shift)

Page 29: NC Solitons and Integrable Systems - Kyoto U

5. Conclusion and Discussion

NC ASDYM

NC Ward’s chiral

NC (affine) Toda

NC NLS

NC KdV NC sine-Gordon

NC Liouville

NC Tzitzeica

NC KPNC DS

NC Boussinesq NC N-wave

NC CBSNC Zakharov

NC mKdV

NC pKdV

Yang’s form

gauge equiv.gauge equiv.

Infinite gauge group

NC twistors and N=2 strings[Brain-Hannabuss]