nawrodt 05/2010 thermal noise in the monolithic final stage ronny nawrodt matt abernathy, nicola...

19
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond, Daniel Heinert, Jim Hough, Iain Martin, Peter Murray, Stuart Reid, Sheila Rowan, Christian Schwarz, Paul Seidel, Marielle van Veggel GWADW2010 Meeting, Kyoto 19/05/2010 Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena Sonderforschungsbereich Transregio 7 „Gravitationswellenastronomie“ Institute for Gravitational Research, University of Glasgow Einstein Telescope Design Study, WP2 „Suspension“

Upload: emerald-jones

Post on 11-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Thermal noise in the monolithic final stage

Ronny NawrodtMatt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles

Hammond, Daniel Heinert, Jim Hough, Iain Martin, Peter Murray, Stuart Reid, Sheila Rowan, Christian Schwarz, Paul Seidel, Marielle van Veggel

GWADW2010 Meeting, Kyoto 19/05/2010

Institut für Festkörperphysik, Friedrich-Schiller-Universität JenaSonderforschungsbereich Transregio 7 „Gravitationswellenastronomie“

Institute for Gravitational Research, University of GlasgowEinstein Telescope Design Study, WP2 „Suspension“

Page 2: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Overview

• Motivation and demands

• Thermal noise in suspension elements

• 3rd generation detectors

– Cooling issues– Material selection– Thermal noise

• Summary

#2/19GWADW2010 Kyoto/Japan

Page 3: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010 GWADW2010 Kyoto/Japan

Introduction

• sensitivity enhancement by a factor of 10 between 1 Hz and 10 kHz

100

101

102

103

104

10-25

10-24

10-23

10-22

10-21

10-20

10-19

frequency [Hz]

h [1

/ H

z]1st generation2nd generation3rd generation

seismic

suspension

radiation pressurephoton shot noise

thermal noise (test masses)

#3/19[w

ww

.et-

gw

.eu

]

Page 4: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Demands

• support the test mass (proper breaking strength)

• ability to produce (quasi-)monolithic suspension

• „proper“ dynamics (mode frequencies, mode separation, etc.)

• low thermal noise– low mechanical loss– „good“ thermal properties (thermo-elastic noise)

• high thermal conductivity to transport thermal load from test masses into the thermal bath

#4/19GWADW2010 Kyoto/Japan

Page 5: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Material selection

• possible materials are dependent on the test mass material:

– fused silica

– sapphire– silicon

• important „boundary condition“:

– fabrication of suspension elements (cutting, polish, …)– design and shaping of suspension fibre/ribbons

– keep crystalline structure in order to obtain a high thermal conductivity

#5/19GWADW2010 Kyoto/Japan

can be bonded by means of catalysis-hydroxide bonding[e.g. van Veggel 2009, Dari 2010]

Page 6: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Thermal noise in suspension elements

• pendulum mode

• violin mode

#6/19GWADW2010 Kyoto/Japan

24

0

2220

20B4

M

TkS pendulum

n nnn

nnnBvioline

LTkS

42222

22

)(

)()(4

2222 12)(

nM

LLn

2

2

22 n

L

Mgn

with and

[e.g. Saulson 1992]

M

, L, n

L

g20with

Adding internal stiffness of fibre or ribbon leads to more realistic models. [e.g. Gonzalez 2000]

Page 7: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Mechanical loss in suspension elements -1-

#7/19GWADW2010 Kyoto/Japan

[Gretarsson, Harry 1999]

[Cagnoli, Willems 2002]

• mechanical loss of suspension material is a key parameter and can be assumed to consist of 3 contributions:

– bulk loss ,

– surface loss ,

– thermoelastic loss unstressed fibre

fibre under tension

• with a proper choice of it is possible to cancel TE loss in suspension elements

Page 8: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Dilution factor

• The mechanical loss within a fibre contributes inhomogeneously into the thermal noise calculation.

• for pendulum energy is stored in grav. potential (loss free) and the elastic potential of the fibre material (bending!)

• only energy stored in bending is dissipated to a fraction

#8/19GWADW2010 Kyoto/Japan

Most of the bending occurs at the suspension point

 

[e.g. Saulson 1992]

Page 9: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Mechanical loss in suspension elements -2-

#9/19GWADW2010 Kyoto/Japan

100

101

102

103

104

10-12

10-10

10-8

10-6

10-4

10-2

frequency [Hz]

me

cha

nic

al l

oss

Fused Silica Sapphire Silicon

100

101

102

103

104

10-12

10-10

10-8

10-6

10-4

10-2

frequency [Hz]

me

cha

nic

al l

oss

100

101

102

103

104

10-12

10-10

10-8

10-6

10-4

10-2

frequency [Hz]

me

cha

nic

al l

oss

100

101

102

103

104

10-12

10-10

10-8

10-6

10-4

10-2

frequency [Hz]

me

cha

nic

al l

oss

100

101

102

103

104

10-12

10-10

10-8

10-6

10-4

10-2

frequency [Hz]

me

cha

nic

al l

oss

100

101

102

103

104

10-12

10-10

10-8

10-6

10-4

10-2

frequency [Hz]

me

cha

nic

al l

oss

thermoelastic(unstressed)

bulk Brownian surface total

300 K 300 K 300 K

20 K 20 K 20 K

all dia. 1 mm

Page 10: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Surface loss in silicon suspension elements

#10/19GWADW2010 Kyoto/Japan

as = 0.5 pmLow surface loss in silicon (surface lossparameter ~1 order of magnitude lower than fused silica).[see talk by C. Schwarz]

Page 11: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Cancelation of TE loss in silicon

• cancellation of TE noise due to proper strength in fibre not needed (although possible) for crystalline fibres at low temperatures (TE peak shifts towards high frequencies while cooling – reason: large thermal conductivity)

• dY/dT < 0 for silicon compensation

possible for <0 (18-125 K)

#11/19GWADW2010 Kyoto/Japan

0 50 100 150 200 250 300-0.5

0

0.5

1

1.5

2

2.5

3x 10

-6

temperature [K]

the

rma

l exp

an

sio

n c

oe

ffici

en

t [1

/K]

< 0

 

Page 12: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Cooling issues

• residual optical absorption causes heating of the test masses

• heat capacity is very low at cryogenic temperatures (Debye T3 law) small absorption causes large temperature change

• suspension will provide the operational temperature which will also be defined by the mirror material (in case of silicon: <22K)

• suspension will operate in Casimir regime (phonon mean free path is limited by geometry) thinner elements will have smaller thermal conductivity

• thinner elements will have their peak in TE loss at higher frequencies tradeoff between thermal noise and conductivity

#12/19GWADW2010 Kyoto/Japan

 

Page 13: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Multi-stage design -1-

#13/19GWADW2010 Kyoto/Japan

Thermal bath

„Universe“

TM

5 m, 300 Kj = 10-4

j = 10-3

1 m, 300 Kj = 10-6

[Majorana, Ogawa 1997, VIR-0015E-09]

10-2

10-1

100

101

102

10-20

10-18

10-16

10-14

10-12

10-10

frequency [Hz]

the

rma

l no

ise

[m/

Hz]

Page 14: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Multi-stage design -1-

#14/19GWADW2010 Kyoto/Japan

Thermal bath

„Universe“

TM

5 m 300 K, 20 Kj = 10-4

1 m300 K, 20 Kj = 10-6

[Majorana, Ogawa 1997, VIR-0015E-09]

10-2

10-1

100

101

102

10-20

10-18

10-16

10-14

10-12

10-10

frequency [Hz]

the

rma

l no

ise

[m/

Hz]

Page 15: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Multi-stage design -3-

#15/19GWADW2010 Kyoto/Japan

Thermal bath

„Universe“

TM

5 m j = 10-4

1 mj = 10-6

300 K

5 K

20 K

[Majorana, Ogawa 1997, VIR-0015E-09]

10-2

10-1

100

101

102

10-20

10-18

10-16

10-14

10-12

10-10

frequency [Hz]

the

rma

l no

ise

[m/

Hz]

300K, 5K, 20K20K, 20K, 20K

Page 16: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Towards a monolithic design using silicon -1-

• fabrication:

– fabrication of (poly-)crystalline fibres was shown [Pisa group, µ-PD technique]

– possible fabrication of ribbon-like structures (thin flexures for measuring coating thermal noise), limitted to wafer diameter (approx. substrate diameter, ~ dia. 500 mm)

– possible fabrication of long ribbons/fibres from thinner but long single crystal ingots (fabrication + surface quality currently unclear), length up to several meters possible

– use of ribbons might be justified by bonding method to be used for jointing the different parts (natural flat surface for ribbons)

#16/19GWADW2010 Kyoto/Japan

Page 17: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Towards a monolithic design using silicon -2-

• bonding + thermal conductivity:

– silicate bonding possible with promising mechanical properties[talk by S. Reid]

– initial measurements of the thermal conductivity of the bond by colleagues at Florence show a high thermal conductivity

#17/19GWADW2010 Kyoto/Japan

[M. Lorenzini, WP2,3 workshop Jena 03/2010]

Page 18: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Shaping the suspension elements

• Willems et al. 1999 -> TN in non-uniform fibres (neck region)

• shaping allows a further decrease of thermal noise + tayloring the different mode types (pendulum, suspension, bounce, etc.)

#18/19GWADW2010 Kyoto/Japan

[Cumming et al. CQG 26 2009]

Page 19: Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Nawrodt 05/2010

Conclusion

• Summary

– suspension design algorithm developed for AdvDetectors can be applied to 3rd generation as well

– new material properties (cryogenic regime) do not cause problems– multi-stage suspension weak coupling from upper to lower stages

close to resonance– application to possible ET design: see talk tomorrow

• open questions:

– monolithic suspension will be operated in non-thermal equilibrium impact on thermal noise?

– thermal conductivity through bonds needs detailed study– Investigation of direct bonding and lattice mismatch onto thermal

conductivity

#19/19GWADW2010 Kyoto/Japan