national institute of materials physics · •l10-multifunctional materials and structures...

35
1 NATIONAL INSTITUTE OF MATERIALS PHYSICS Atomistilor 105 bis Str., 077125 Magurele-Ilfov, P. O. BOX MG-7 tel: +40(0)21 3690185, fax: +40(0)21 3690177, email: [email protected], http://www.infim.ro “De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Upload: others

Post on 02-Aug-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

1

NATIONAL INSTITUTE OF MATERIALS PHYSICS

Atomistilor 105 bis Str., 077125 Magurele-Ilfov, P. O. BOX MG-7

tel: +40(0)21 3690185, fax: +40(0)21 3690177, email: [email protected], http://www.infim.ro

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 2: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

2 “De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

"INCDFM: De la excelenta la

competitivitate in domeniul

materialelor avansate si

nanomaterialelor”

Page 3: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

3

General presentation

Scope Basic and applied research in the field of: condensed matter physics advanced functional materials nanomaterials and nanostructures Educational activities: diplomas master dissertations PhD thesis Services: advanced characterization prototypes consultancy

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 4: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

4

Present organization 5 research laboratories with 9 research teams:

•L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides

•L20-Magnetism and Superconductivity •Electronic Correlations and Magnetism •Superconductivity

•L30-Physics of Condensed Matter at Nanoscale •Si- and Ge –based nanomaterials and nanostructures •Surfaces, interfaces, thin films and single crystals. X-ray / electron spectroscopies and diffraction •Theory

•L40-Optical Processes in Nanostructured Materials •L50-Laboratory of Atomic Structures and Defects in Advanced Materials

2 certified laboratories:

•Laboratory for chemical analysis of advanced materials (MAAS) •Laboratory for testing infrared detectors (INDETIR)

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 5: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

5

Funding Running projects (at the beginning of 2012) - national: 30 projects (about 4,5 million euro for 2012) - international: 20 projects (about 0,5 million euro for 2012) - private sector: 3 contracts (about 20,000 euro) Previous record for projects (2008-present): - national: 200 projects as coordinator or partner - international: 36 projects (20 were bilateral collaborations in the frame of inter- guvernment agreements) - private sector: 27 contracts - EU structural funds 1 project (about 10 million euro between 2009 and 2011) Average funding per year (2008-2011):

some 11 millions euro

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 6: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

6

Human resources Total number of employees : 243 Total number of peoples involved in research activities: 193 (~43 % women), among which: 97 senior researchers (49 rank 1, equivalent prof.) 56 junior and assistant researchers 40 engineers and technicians 15 PhD supervisors Total number of peoples with PhD title: 108 Total number of PhD students: 25 Total number of peoples involved in auxiliary services: 50 Mean age: 44.3 years (in research, 42.6 years)

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 7: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

7

Infrastructure

Some 15 millions euro invested in new equipments: 10 millions from structural funds 3 millions from Capacity type projects (national funds) 2 millions from other projects

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 8: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

8

Clean room

SEM-FIB

X-Ray Diffractometer D8-ADVANCE type-BRUKER (AXS)

Superconducting Quantum Interference Magnetometer (SQUID)

Page 9: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

9

RF-sputtering with in-situ characterization techniques: Auger, ellipsometry PLD with excimer laser

Growth methods: - Wet chemical (sol-gel, solution bath deposition, Langmuir-Blodgett); mechanochemical (high energy ball milling); standard ceramic technology; spark plasma sintering; hot pressing; pulling machines for single crystals growth; hydrothermal and solvothermal growth; electrodeposition; melt spinning; MBE; RF-sputtering, PLD; clean room for nanostructures fabrications (photolithography, electron beam lithography, FIB).

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Scanning electron microscope S3400-N with nanolithography-system

Page 10: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Surface and interface science facility:

Molecular beam epitaxy: 5 evaporators, plasma source, LEED, RHEED, AES, RGA

Scanning tunneling microscopy: STM, STS

Angle- and spin-resolved photoelectron spectroscopy: XPS, ARUPS, SR-PES,

depth profiling, X-ray photoelectron diffraction.

Base pressure: 1-2 x 10-10 mbar

Scientific production: 30-40 papers / year since 2010

Angew. Chem. Int. Ed., J. Amer. Chem. Soc., ChemSusChem, ChemCatChem, J. Catal.,

Green Chemistry (x 2), ACS Adv. Mater. Interf. (x 2), Phys. Chem. Chem. Phys. (x 3)

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 11: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

11

SEM with Cathodoluminiscence

Characterization: -structural: XRD; SEM; Raman; RES; Moessbauer; HRTEM, TEM, SAED; AFM, SPM. -physical properties: magnetism (VSM, MOKE, PPMS, SQUID); optical (luminescence, fluorescence, transmission-absorption-reflectivity, ellipsometry, near field optical microscopy); dielectric; superconducting; semiconductor (Hall); electric-photoelectric; ferroelectric and piezoelectric; trap investigations (DLTS); THz spectroscopy; broad band dielectric spectroscopy; a cluster for surface physics (XPS, SARPES, ARUPS, STM); a XAS spectrometer for EXAFS and XANES studies; etc.

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

FT Raman Spectrophotometer RFS/100S (Bruker)

Vibrating Sample Magnetometer VSM (Cryogenics)

Page 12: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

High Resolution Analytical Transmission Electron Microscopy

JEM ARM 200F microscope Field Emission Gun (FEG) Cs-corrector for STEM mode STEM-HAADF resolution: 0.08 nm EDS Unit: JEOL JED-2300T Gatan Quantum SE Image Filter

Atomic resolution elemental map of SrTiO3 by EELS spectrum imaging Atomic resolution HAADF-STEM image of SrTiO3

HAADF-STEM image of selected area for EELS-SI Atomic resolution elemental map of Sr Atomic resolution elemental map of Ti Atomic resolution elemental map of O RGB composite image

Atomic resolution HAADF-STEM image of Si along [110] Intensity line profile revealing 1.3 A separation of the Si(110) dumbbell

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 13: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

13

Publications NANO

Field: Institutions

POLYTECHN UNIV BUCHAREST

UNIVERSITY BUCHAREST

NAT INST MAT PHYS

IMT BUCHAREST

NAT INST LASER PLASMA RAD PHYS

ROMANIAN ACAD SCIENCES

H H NAT INST PHYS NUCL ENG

Record Count % of 42895 Bar Chart

Data rows displayed

in table

All data rows

362

33.3 %

220

20.3 %

148 13.6 %

109

10.0 %

102

9.4 %

70 6.4 %

26 2.4 %

Field: Institutions Record Count % of 42895 Bar Chart

Data rows displayed

in table

All data rows

( 6015 Institutions value(s) outside display options.)

(32 records(0.075%) do not contain data in the field being analyzed.)

1990-2014, Bucharest, Romania

WITH ONLY~150

RESEARCHERS

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 14: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

14

Articles NANO NIMP Citations NANO NIMP

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 15: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

15

Front covers in international journals

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

The average number of articles published per year: 160 in the last five years

Total impact factor: 240 (2010); 350 (2011);370 (2012); 390 (2013)

Page 16: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

16

International collaborations

-International projects (FP, Euratom, COST, SCOPES, EUROCORE, NATO, etc.)

-Large research infrastructures: partners in two RD projects launched by CERN:

•RD48-Research and development on silicon for future experiments •RD50-Radiation hard semiconductor devices for very high luminosity colliders

Bilateral cooperation with over 60 research institutions and universities from all over the world: Germany, France, UK, the Netherlands, Italy, Norway, Spain, Hungary, Belgium, Poland, Portugal, Greece, Moldavia, Ukraine, Russia, China, Japan, Australia, USA, Brazil, Canada, etc. About 50 % of the published articles are results of international collaborations.

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 17: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Implantation at Elettra on the SuperESCA beamline (Long term project 20130333)

in situ

photoinduced

polarization

switching:

studied for

PZT(001),

PZT(111),

BaTiO3(001),

BaTiO3(111).

Page 18: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

18

Patents and relation with industry

An average of 8 patents and patent requests per year in the last 5

years

Service contracts with some companies:

Turbomecanica Bucuresti

Honeywell Romania

Zentiva Romania

Oerlikon Solar, Switzerland

Other SME from Romania for small service contracts

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 19: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Nanostructures based multifunctional devices chemical or

electrochemical fabrication combined with lithography and

clean room techniques

Nanowire based field effect transistors

“De la excelenta la competitivitate:

tehnologiile generice esentiale”, 2014

Page 20: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

-6.0x10-7

-3.0x10-7

0.0

3.0x10-7

0 1000 2000 3000 4000

5.0x106

1.0x107

1.5x107

0

5 s

15 s

30 s

1 min

10 min

30 min

60 min

Cu

rren

t (

A)

Voltage (V)

Resis

tan

ce

()

Exposure time (s)

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9-8.0x10

-6

-4.0x10-6

0.0

4.0x10-6

8.0x10-6

0 1000 2000 3000 4000

2.7x105

3.6x105

4.5x105

5.4x105

0

5 s

15 s

30 s

1 min

10 min

30 min

60 min

Cu

rren

t (

A)

Voltage (V)

Resis

tan

ce

()

Exposure time (s)

A

B

Nanowire and nanorod based biodetectors

“De la excelenta la competitivitate:

tehnologiile generice esentiale”, 2014

Page 21: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

During the charge-discharge tests,

the following equations can be

taking into account:

Discharge (eq.1)

SWNT-PDPA3n+[PW12O403-]n + 3ne-

SWNT-PDPA + n [PW12O403-]

Charge (eq.2)

SWNT-PDPA + n [PW12O403-]

SWNT-PDPA3n+[PW12O403-]n + 3ne-

Charge (eq.3)

SWNT-PDPA + 3n[HSO4-] SWNT-

PDPA3n+[3(HSO4-)]n + 3ne-

Discharge (eq.4)

SWNT-PDPA3n+[3(HSO4-)]n + 3ne-

SWNT-PDPA + 3n[HSO4] M. Baibarac, I. Baltog, S. Frunza

et al., Diamond &Related

Materials 32, 72, 2013

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

96

100

104

108

112

0 50 100 150 200

160

170

180

190

200

210

0 50 100 150 20060

70

80

90

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5200

250

300

350

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.536

40

44

48

52

56

0 50 100 150 200

20

24

28

32

36

a2

Ca

pa

cit

an

ce

(m

F/c

m2)

Current density (mA cm-2)

PDPA-PW12

SWNTs-PDPA-PW12

Number of cycles

b2

Number of cycles

PDPA-PW12

a3 b

3

Current density (mA cm-2)

SWNTs-PDPA-PW12

Current density (mA cm-2)

SWNTs-PW12a

1

b1

SWNTs-PW12

Number of cycles

SWNTs functionalized with

polydiphenylamine doped

with heteropolyanion as active

material in super-capacitors

“De la excelenta la

competitivitate:

tehnologiile generice

esentiale”, 2014

Page 22: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

22

Metallic micro and nanotubes

Auto-catalytic deposition using the template method

Copper tubes prepared by

electroless deposition in ion

track templates

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 23: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

A. Velea, M. Popescu*, F. Sava, A. Lőrinczi, I. D. Simandan, G. Socol, I. N. Mihailescu, N. Stefan, F. Jipa, M.

Zamfirescu, A. Kiss, and V. Braic

JOURNAL OF APPLIED PHYSICS 112, 033105 (2012)

Nano-lenslet formation in amorphous As2S3 thin films for applications in

planar optoelectronic circuits

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

It has many uses but is commonly found in Shack-Hartmann wavefront sensors and beam

homogenization optics for projection systems.

Page 24: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Graphene/Ir(111), STM with atomic resolution

10 x 10 Ǻ2 20 x 20 Ǻ2

Moiré patterns

CO adsorption on PZT(001) and PZT(111)

interplay between polarization and [CO]

Ferroelectric surfaces:

potential catalysts for automotive industry

30 x 30 Ǻ2 10 x 10 nm2

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 25: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

25

SELF - ASSEMBLED CORE_SHELL COLLOIDAL MAGNETIC NANOPARTICLES

Breakthrough in data storage,

biomedicine, catalysis and nanoelectronics

Principle of the self-assembly Core-shell Ag-Co

nanoparticles Co2(CO)8+2AgClO4 2Ag+Co+8CO+Co(ClO4)2

0 50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

100 150 200 250 300

0.56

0.60

0.64

0.68

M (

em

u x

10

- 4 )

T (°C )

D ecoupling of ZFC and FC

M (

em

u x

10

- 4 )

T (°C)

ZFC

FC

applied field: 0.001 T

0 1 2 3 4 5 6 7

0

4

8

12

0 1 2 3 4 5 6

0

1

2

3

4

M (

emu

/g)

H (T)

75 K

293 K

fit to eq. 4

M (

em

u/g

)

H (T)

4.5 K

10 K

25 K

50 K

75 K

293 K

Tk

HM

Tk

HLMM

B

FMFM

sat

B

SPMSPM

sattot3

APPLICATIONS

Magnetic-conducting bimetallic nanosystems that exhibit GMR effect

Use of patterned substrates with logic capabilities

2D regular arrays of GMR nanosensors on a single chip may be achieved!

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 26: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Exchange spring phenomena

and interlayer magnetic

coupling

H

M

H

R

H

R

H

E

M

H

Magnetoresitive elements (spin valves).

Exchange bias phenomena.

Specific problems: extending the study of interfacial phenomena by neutron

reflectometry in Fe free structures.

“De la excelenta la

competitivitate:

tehnologiile generice

esentiale”, 2014

Page 27: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Materiale magnetice avansate si nanostructuri:

•Nanostructuri si materiale soft si hard-magnetice,

materiale cu memoria formei si nanostructuri cu

anizotropie de forma

•Nanostructuri magneto-functionale (structuri magneto-

conductive tip valve de spin multistrat si filme

nanoglobulare, structuri magneto-strictive, magneto-

electrice, magneto-optice si magneto-calorice

•Nanoparticule dispersate in diverse medii (metalice,

semiconductoare, polimerice, nanoparticule

functionalizate pentru aplicatii bio-medicale

•Materiale cu gradienti compozitionali (bulk si filme-

subtiri) pentru aplicatii speciale (e.g. program Euroatom)

Ta

Si

Cu (20nm)

FeMn(20nm)

FeCo (8nm)

Ta (3nm)

FeCo (8nm)

Cu (8nm)

Ta

Si

Cu (20nm)

IrMn(30nm)

FeCo (8nm)

Ta (3nm)

FeCo (8nm)

Cu (8nm)

-0,04 -0,02 0,00 0,02 0,04

24,59

24,60

( b )

R (

Oh

m)

B ( T )

-0,04 -0,02 0,00 0,02 0,04

-1,0

-0,8

-0,6

-0,4

Ker

r (m

de

g)

B ( T )

( a )

0 500 1000 1500

20

30

40

50

60

kA/m

Tem

pera

ture

(oC

)

Time (sec)

-60000 -40000 -20000 0 20000 40000 60000

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5 Ni52

Co2Ga

26Fe

20

MR T=240K martensita

MR T=340K austenita

MR

(%

)

Magnetic field [Oe]

MR(%)=(R(H)-R(H=0))/R(H=0)

Page 28: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Materiale supraconductoare nanostructurate:

100

102

104

106

0 2 4 6

bcdefghi

20 K

0H(T)

Jc (

A/c

m2)

J. Mater. Sci. 47 (2012) 3828

J Supercond. Nov. Mag. 26 (2013) 1553

Jpn. J. Appl. Phys. 51 (2012) 11PG13

J. Appl. Phys. 110 (2011) 123921

Physica C 477 (2012) 477

Supercond Sci Technol. 23 (2010) 095002

Scripta Mater. 66 (2012) 570

Scripta Mater. 68 (2013) 428

Jpn . J. Appl. Phys. 53 (2014) 05FB22

Mater. Phys. Chem. 146 (2014) 313

Scripta Mater. 82 (2014) 61

Phys Rev. B 85 (2012) 104519

Supercond. Sci .Technol. 26, (2013) 045008

Projects: 7/2012, 138/2012

dc and

Pulsed

current

dc and

pulsed

current

SPS: FCT-5, Germany

b-MgB2 pur sau aditivat cu c-Sb2O3, d-Bi2O3, e-TeO2, f-Te, g-SiC, h-(SiC+Te), i-

Ge2C6H10O7

Mg2Ge

Y123-BZO, small nanorod splay (YBZ0.3)

105

106

107

0 10 20 30 40 50

YBZ0.3YBZND1

T = 70 K

H (kOe)

J cm

(A

/cm

2)

i

YBZND1 cu decorare de nanodots de Ag pe

SrTiO3

Materiale supraconductoare cu densitati de curent critic (Jc) ridicat: MgB2 nanostructurat cu aditivi, obtinut

prin Spark Plasma Sintering (SPS) si filme subtiri tip YBa2Cu3O7 (Y123) cu nanoroduri de BaZrO3 (BZO)

obtinute prin PLD

Page 29: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Noi dezvoltari tehnologice: detectori miniaturizati pentru

masuratori CEMS specifice: CEMS (Conversion Electron Mossbauer Spectroscopy) este o metoda

puternica de obtinere a informatiei in paturi succesive de suprafata, pana la o

adancime de 200 nm, care in cazul folosirii tehnicii de imbogatire a paturii de

interes in izotopul de 57Fe poate atinge o rezolutie de sub 1 nm. Au fost

efectuate dezvoltari tehnologice n scopul obtinerii configuratiei de spin la

suprafata /interfata in prezenta diversilor factori perturbatori, permitand:

•Obtinerea configuratiei de spin in camp magnetic aplicat

•Obtinerea configuratiei de spin in camp electric aplicat

Page 30: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

High Resolution Analytical Transmission Electron Microscopy

STEM-EDS elemental mapping of PZT/CoFe2O4/PZT/SrRuO3 multilayered coating on SrTiO3 substrate: Low-magnification ADF-STEM image; Elemental maps of O, Fe, Ti, Co, Pb, Sr, Ru and Zr.

Characterization of interfaces in advanced materials

Characterization of the interface between PZT and Cu outer electrode HAADF-STEM image of the Cu-PZT interface EELS spectrum imaging of the Cu-PZT interface Cu and Ti elemental maps extracted from the EELS-SI Relative concentration of Cu and O measured close to the Cu-PZT interface. ACS Appl. Mater. Interfaces 6, 2929-2939 (2014)

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 31: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

HOTMAT @ NIMP:

materiale, compozite si tehnologii de prelucrare

avansate bazate pe tehnici de sinterizare asistata

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

traditie & experienta + infrastructura noua + corelare internationala

Domeniu de aplicare :

materiale pentru conditii extreme (radiatie, temperatura, coroziune)

materiale pentru aplicatii legate de energie (e.g. termoelectrice)

materiale pentru dispozitive electronice si senzori

Modalitate:

echipamente de sinterizare asistata: camp electric, presiune uniaxiala, camp de

microunde + aliere mecanica + racire ultrarapida + analize “state of the art”

Utilizare :

rezolvarea unor probleme tipice de sinteza,

realizare de materiale nanostructurate bulk,

reducere timp procesare/nr. pasi intermediari,

combinare si imbinare de materiale greu miscibile si dificil prelucrabile

Page 32: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Exemple :

1. Realizare de materiale cu gradient functional micro si nano-structurate

W-inox FGM

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

W-Eurofer FGM

W-Cu FGM

2. Compozite complexe nano-structurate SiC-metal

formare de

“radacini” in

nm SiC + V

matrice

nm SiC

porozitate << 2%

doar la nivel nm

300% crestere a

cond. Term. la 1000 C

Page 33: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Exemple : 3. Ceramice ultradense

4. Intermetalici nanostructurati

SrZrO3

- electroliti in SOFC

- senzori H2

- dielectrici (high-k gate)

timp proces: 48 h 8 h

densitate: 92% ~100%

nm Ln0.2Ce0.8O2-x (Gd, Sm, Yb)

- SOFC, catalizatori

Skutteruditi dopati PR-M4Sb12

(mat. termoelectrice)

timp proces. 20+ zile 3 zile

fara trat.term. nm

reducere cond. termica

cond. electrica = cu a comp. topiti

crestere Z

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Page 34: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

Exemple : 5. Compozite ceramica - metal si ceramica - ceramica

6. Imbinare metale refractare si compozite multistrat

Protectie

anticoroziva SiC

pentru Al2O3

25 m Cu / 100 m W 9 m Ti / 100 m W

W

Cu

Mo

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014

Cu 55 vol %

Cu-C compozite ca

bariere termice

W ca material structural prin compozite lamelare

Brazare de metale refractare

Protectie

la soc

termic din

W in

compozite

SiC metal

Page 35: National Institute of Materials Physics · •L10-Multifunctional Materials and Structures •Functional nanostructures •Complex Heterostructures and Perovskite Oxides •L20-Magnetism

35

An increased number of articles published in journals with high impact factor An increased attractiveness for young researchers (around 30 new employees in the last 4 years, including from Diaspora)

New opportunities for international collaborations (NIMP had become partner in new FP7, Euratom, EUROCORE, COST, SCOPES, etc. projects); researchers from abroad start to come and work at NIMP (e.g. stages of PhD students from Latvia, France, Turkey, post-docs from UK, India, China) NIMP had become an important player not only at national level, but also at European level

SUMMARY

Impact factor distribution for papers

published by NIMP researchers between

2009 -2013

“De la excelenta la competitivitate: tehnologiile generice esentiale”, 2014