napolitano sample

33
Aircraft Dynamics Marcello R. Napolitano AIRCRAFT DYNAMICS From Modeling to Simulation AIRCRAFT DYNAMICS From Modeling to Simulation AIRCRAFT DYNAMICS From Modeling to Simulation Napolitano www.wiley.com/college/napolitano ISBN 978-0-470-94341-0

Upload: john-wiley-and-sons

Post on 23-Mar-2016

262 views

Category:

Documents


7 download

DESCRIPTION

sample content for email

TRANSCRIPT

Page 1: Napolitano Sample

Aircraft Dynamics

Marcello R. Napoli tano

A I R C R A F T D Y N A M I C S

From Modeling to Simulation

AI

RC

RA

FT

D

YN

AM

IC

SFrom

Modeling to Sim

ulation

A I R C R A F T D Y N A M I C S

From Modeling to Simulation

Na

po

litan

o

www.wiley.com/college/napolitano

ISBN 978-0-470-94341-0

Page 2: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

- A textbook designed to take advantage of the extensive

computational resources commonly available to today‟s students.

…The majority of the textbooks in this discipline were written before

the introduction of Matlab® and Simulink®.

- A textbook designed to help students to be able to extrapolate from

low level formulas, equations, and details to high level

comprehensive views of the main concepts.

- A textbook with emphasis on teaching students the fundamental

skills of „basic modeling‟ of aircraft aerodynamics and dynamics.

- An „instructor friendly‟ textbook featuring: - An extensive variety of Student Sample Problems and Case Studies;

- An extensive variety of Problems;

- A number of sample Matlab ® codes;

- Detailed CAD drawings and geometric data for 25 different aircraft

from different classes;

- Complete aerodynamic, geometric, and flight conditions for 10

different aircraft;

- Approx. 500 Power Point-based instructor notes with instructional

videos

Page 3: Napolitano Sample

Sample figure from Ch. 1 showing the interaction of ALL the aircraft dynamic equations

2 2

X X

Y Y

Z Z

X A T

Y A T

Z A T

XX XZ XZ ZZ YY A T

YY XX ZZ XZ A T

ZZ XZ YY XX XZ A T

m U QW RV mg F F

m V UR PW mg F F

m W PV QU mg F F

P I R I PQ I RQ I I L L

Q I PR I I P R I M M

R I P I PQ I I QR I N N

CLME & CAME

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

P

Q

R

KE

'

'

'

cos cos sin cos cos sin sin sin sin cos sin cos

sin cos cos cos sin sin sin sin cos sin sin cos

sin cos sin cos cos

X U

Y V

Z W

FPE

sin

cos sin

cos cos

X

Y

Z

g g

g g

g g

GE

, ,X Y Zg g g

, ,

, ,

, ,U V W

, ,P Q R

, ,U V W

, , ,

, ,

X Y Z

X Y Z

A A A

T T T

F F F

F F F

, ,

, ,

A A A

T T T

L M N

L M N

', ', 'X Y Z

Page 4: Napolitano Sample

Sample figure from Ch. 1 showing the sequential derivation of ALL the aircraft dynamic equations

'

'' ' '

:

:

A A A T

V V S

A A A T

V V S

d drCLME dV g dV F F dS

dt dt

d drCAME r dV r g dV r F F dS

dt dt

Aero Forces/Moments

Thrust Forces/Moments

Initial Conditions

X Y Z

' '

Pr r r :

:

PA T

A A T

V

dVCLME m mg F F

dt

d drCAME r dV M M

dt dt

, ,

d C CC

dt t

X Y Z X Y Z

X Y Z

:

:

P P A T

A A T

V

CLME m V V mg F F

CAME r r r dV M M

X Y Z

2 2

X X

Y Y

Z Z

X A T

Y A T

Z A T

XX XZ XZ ZZ YY A T

YY XX ZZ XZ A T

ZZ XZ YY XX XZ A T

m U QW RV mg F F

m V UR PW mg F F

m W PV QU mg F F

P I R I PQ I RQ I I L L

Q I PR I I P R I M M

R I P I PQ I I QR I N N

CLME & CAME

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

P

Q

R

'

'

'

c c s c c s s s s c s c

s c c c s s s s c s s c

s c s c c

X U

Y V

Z W

sin

cos sin

cos cos

X

Y

Z

g g

g g

g g

Aircraft trajectory w/r X‟Y‟Z‟

0 .

0 .

P PV V const

const

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

2 2

1 1 1 1

1 1 1 1

sin

cos sin

cos cos

X X

Y Y

Z Z

A T

A T

A T

XZ ZZ YY A T

XX ZZ XZ A T

YY XX XZ A T

m Q W R V mg F F

m U R P W mg F F

m PV Q U mg F F

PQ I R Q I I L L

PR I I P R I M M

PQ I I Q R I N N

CLME & CAME

at steady state

Steady state

conditions

0

k

Steady state conditions

1 - Rectilinear flight

2 - Level turn

3 - Symmetric pull-up

Small perturbation

conditions

20, 0, 0, 0,...

sin , cos 1

up wr pq p

x x x

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1

cos

sin sin cos cos

cos sin sin cos

X X

Y Y

Z Z

A T

A T

A T

XX XZ XZ ZZ YY A T

YY

m u Q w qW R v rV mg f f

m v U r uR Pw pW mg mg f f

m w Pv pV Q u U q mg mg f f

p I r I Pq Q p I R q Q r I I l l

qI P

1 1 1

1 1 1 1

2 2XX ZZ XZ A T

ZZ XZ YY XX XZ A T

r pR I I P p R r I m m

r I p I Pq pQ I I Q r R q I n n

Small perturbations CLME & CAME

..from steady state, wing-level,

rectilinear flight conditions

1 1

1 1 1

1 1

1

1

cos

cos

sin

sin

cos

X X

Y Y

Z Z

A T

A T

A T

XX XZ A T

YY A T

ZZ XZ A T

m u qW mg f f

m v U r pW mg f f

m w U q mg f f

p I r I l l

qI m m

r I p I n n

p

q

r

, ,U V W

, ,P Q R

, , , ,X Y Zg g g

, ,

Page 5: Napolitano Sample

Sample figure from Ch. 3 showing the summary of the PITCHING modeling

1

1 1 1

22 2u q iE H

A m m m m m m E m H

P P P

u c q cm q S c c c c c c c c i

V V V

10mc at steady-state trimmed conditions

1

W

u

AC

m L

xc c

Mach

( ) (1 )( )WB HW H

Hm L CG AC L H AC CG

S dc c x x c x x

S d

( )HE H

iH

Hm L H AC CG E

m E

Sc c x x

S

c

( )i HH H

Hm L H AC CG

Sc c x x

S

Polhamus

formula

(Chapter II)

“Downwash” effect

(Chapter II)

2 2 2

0.5

2 2

2

1 tan2 1 4

1

L

ARc

AR Mach

k Mach

1.19

2

0.254.44 cos 1AR mr

Mach

dK K K Mach

d

Hm mc c

2( ) 2 ( )H HH H H

Hm L AC CG L H AC CG

S dc c x x c x x

S d

q q qW Hm m mc c c

3 2

/4

/4

3 20

/4

/4

tan 3

6cos0

tan3

6cos

q qW W

c

c

m mMach

c

c

AR

AR B Bc c

AR

AR

22

/ 41 cos cB Mach

/ 400

cosqW W

m q L cMachMach

c K c C

2

/ 4

3 2

/ 4

/ 4

0.5 2

2cos

tan1 1

24 6cos 8

W WAC CG AC CG

c

c

c

AR x x x x

CAR

AR

AR

22 ( )q HH H

Hm L H AC CG

Sc c x x

S Leading Edge

of wing MAC

Leading Edge

of tail MAC

Wing+Body

Aerodynamic

Center

Tail

Aerodynamic

Center

Aircraft CG

WBACX

HACX

CGX

Wing MAC

WB

WB

AC

AC

XX

c

CGCG

XX

c

H

H

AC

AC

XX

c

H. Tail

MAC

c

Hc

Leading Edge

of wing MAC

Leading Edge

of tail MAC

Wing+Body

Aerodynamic

Center

Tail

Aerodynamic

Center

Aircraft CG

WBACX

HACX

CGX

Wing MAC

WB

WB

AC

AC

XX

c

CGCG

XX

c

H

H

AC

AC

XX

c

H. Tail

MAC

c

Hc

Page 6: Napolitano Sample

Sample figure from Ch. 4 showing the summary of the ROLLING modeling

1 1 12 2 2p r A R

A l l l l l A l R

P P P

b p b r bl q S b c c c c c c

V V V

0lc

WB H Vl l l lc c c c

#3#1 #2( )( ) ( / )

WB WB WBWB

LE

l l l l Dihedral EffectDihedral Effect Dihedral Effectdue to Sweep Angledue to angle due to High LowWing

c c c c

1 0H WB

H Hl l H

H

S bdc c

d S b

1 1cos sin1

V V V

V VVl Y L V

Z XSdc k c

d S b

l A lc c

l

RME kc

22 2

l l

l A

Left Right

c cc

1 1 1 1cos sin cos sinR R V

VR R R Rl Y L V R R

SZ X Z Xc c c K

b S b

WB H Vl p l p l p l pc c c c

22

1, , 2

2WB W H W pV V

VH Hl p l p l p l p l Y

H

ZS bkc c RDP c c c c

S b b

W Vl r l r l rc c c

1

1

1

0

W

L

l r l r l rl r L W

L WMachC

c c cc c rad

c

1 1 1 1cos sin cos sin2

V V

V V V V

lr Y

X Z Z Xc c

b b

..except for substantial dihedral/anhedral angles for horiz. tail

A

l l lLeft Right

c c c

1

1 1/ 2

/ 4

/ 4

tantan

WB

c

W

l l l l

l L M f W M

L L W WAR

l

l W cZ

W c

c c c cc c K K K

c c

cc

Page 7: Napolitano Sample

Sample figure from Ch. 4 showing the summary of the YAWING modeling

1 1 12 2 2p r A R

A n n n n n A n R

P P P

b p b r bn q S b c c c c c c

V V V

0nc

W B H Vn n n n nc c c c c

57.3 S

B l

B Bn N R

S lc K K

S b

0Hnc

0Wnc

1 1cos sin1

V V V

V VVn Y L V

X ZSdc k c

d S b

1A A An n L lc K c c

1 1cos sinR V

V R Rn L V R R

S X Zc c K

S b

W Vn p n p n pc c c

1

1

0

W

L

n p n p

n p L W

L WMachC

c cc c

c

1 1 1 1cos sin cos sin2

V V

V V V V V

n p Y

X Z Z X Zc c

b b

r r rW Vn n nc c c

1 0

1 0

2

2

r r

W

n n

nr L D

L D

c cc c c

c c

2

1 1

2

cos sin2

V V

V V

nr Y

X Zc c

b

Page 8: Napolitano Sample

Sample figure from Ch. 7 showing the solution of the linearized LONGITUDINAL equations

1 1

1 1

cos

sin

X X

Z Z

A T

A T

YY A T

m u qW mg f f

m w U q mg f f

qI m m

q

1 11

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1

cos 2 2

sin 22 2

2 2

u X Xu E

u q E

u T Tu

D D T T D L D E

P P

P L L L D L L L E

P P P

YY YY m m m m m

P P

u umu mg q S c c c c c c c

V V

u c qcm w V q mg q S c c c c c c c

V V V

u uI I q q S c c c c c c c

V V

1 1

2 2T q Em m m m E

P P

c qcc c c

V V

, , , ,S S SX Y Z X Y Z

11 1, 0S SPU V W

w

q

1 1

,

,P P

q q

w V w V

1 11

1 1

1 1 1 1

1 1 1

1 1

1 1

11

11

1

cos 2 2

sin 22 2

2 2

u X Xu E

u q E

u T T Tu

D D T T D L D E

P P

P P L L L D L L L E

P P P

YY m m m m m m

P P

q S u uu g c c c c c c c

m V V

q S u c qcV V q g c c c c c c c

m V V V

u uI q S c c c c c c c

V V

1 12 2q E

m m m E

P P

c qcc c c

V V

1q

,c S

, YYm I

.aero coef

Longitudinal

Dimensional

Stability

Derivatives

1 1

1

1

cos

sin

u E

E

u E

u T E

P u q P E

u T T q E

u g X X u X X

V g Z u Z Z Z V Z

M M u M M M M M

1 1

1

1

( ) ( ) cos ( ) ( )

( ) ( ) sin ( ) ( )

( ) ( ) ( ) ( )

u E

E

u E

u T E

u P q P E

u T T q E

s X X u s X s g s X s

Z u s s V Z Z s s Z V g s Z s

M M u s M s M M s s s M s M s

t domain s domain

Laplace Transformation

1 1

1

1

( )

cos ( )

( )sin

( )

( )

( )

u

E

E

E

u

u T E

u P q P

E

u T T q

E

u s

s X X X g s X

sZ s V Z Z s Z V g Z

sM

M M M s M M s s M s

s

1

1

1

( )( )

( ) ( )

( )( )

( ) ( )

( )( )

( ) ( )

U

E

E

E

Num su s

s D s

Num ss

s D s

Num ss

s D s

Transfer

Functions

3 2

3 2

2

( )

( )

( )

u u u u uNum s A s B s C s D

Num s A s B s C s D

Num s A s B s C

4 3 2

1 1 1 1 1 1( )D s As B s C s D s E Routh-Hurwitz

Stability Analysis

4 3 2

1 1 1 1 1 1

2 2 2 22 2SP SP PH PHSP n n PH n n

D A s B s C s D s E

s s s s

1

1

1

1

1

1

( )( ) ( ); ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ), ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ), ( ) ( ) ( ) ( )

( ) ( ) ( )

uE

E E

E

E E

E

E E

Num su s u su s s u t L u s

s D s s

Num ss ss s t L s

s D s s

Num ss ss s t L s

s D s s

Short-Period

Approximation ( ) 0u t

1 1

1

1

( )

cos ( )

( )sin

( )

( )

( )

u

E

E

E

u

u T E

u P q P

E

u T T q

E

u s

s X X X g s X

sZ s V Z Z s Z V g Z

sM

M M M s M M s s M s

s

1 1

1

1

( )

cos ( )

( )sin

( )

( )

( )

u

E

E

E

u

u T E

u P q P

E

u T T q

E

u s

s X X X g s X

sZ s V Z Z s Z V g Z

sM

M M M s M M s s M s

s

1 1

( )

( )

( )( ) ( )

( )

E

E

P P E

q

E

s

sV Z V s Zs

s MM s M s s M

s

1

0, 0

sin 0, 0

q

T

Z Z

M

1

q

nSP

P

Z MM

V

1

1

2

q

P

SP

q

P

ZM M

V

Z MM

V

1 1

2 2 22q

q SP nSP nSP

P P

Z MZs M M s M s s

V V

Short-Period Char. Equation

Page 9: Napolitano Sample

Sample figure from Ch. 7 showing the solution of the linearized LAT-DIRECTIONAL equations

, , , ,S S SX Y Z X Y Z11S PU V

1q

,b S

, , ,XX ZZ XZm I I I

.aero coef

Lateral/Directional

Dimensional

Stability

Derivatives

t domain s domain

Laplace Transformation

2 2

2 2

2 2

( ) ( )( ) ( ),

( ) ( ) ( ) ( )

( ) ( )( ) ( ),

( ) ( ) ( ) ( )

( ) ( )( ) ( ),

( ) ( ) ( ) ( )

A R

A R

A R

A R

A R

A R

Num s Num ss s

s D s s D s

Num s Num ss s

s D s s D s

Num s Num ss s

s D s s D s

Transfer

Functions

,

,

,

3 2

2

3 2

( )

( )

( )

A R

A R

A R

Num s s A s B s C s D

Num s s A s B s C

Num s A s B s C s D

4 3 2

2 2 2 2 2 2( )D s s A s B s C s D s E Routh-Hurwitz

Stability Analysis

4 3 2

2 2 2 2 2 2

2 22DR DRDR n n R S

D s A s B s C s D s E

s s s s

1

2

1

2

1

2

( )( ) ( ); ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ), ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ), ( ) ( ) ( ) ( )

( ) ( ) ( )

Num ss ss s t L s

s D s s

Num ss ss s t L s

s D s s

Num ss ss s t L s

s D s s

Rolling

Approximation ( ) ( ) 0t t

Rolling Time Constant

1 1 1

1

1

cos

sin

cos

Y YA T

XX XZ A T

ZZ XZ A T

m v U r pW mg f f

p I r I l l

r I p I n n

p

r

, , , ,B B BXX ZZ XZ XX ZZ XZI I I I I I

1

1 1

1 1

1 1

1

1

1

2 2

2 2

2 2

p r A R

p r A R

p r A R

P Y Y Y Y A Y R

P P

XX XZ l l l l A l R

P P

ZZ XZ n n n n A n R

P P

pb rbm v V r mg q S c c c c c

V V

pb rbI p I r q S b c c c c c

V V

pb rbI r I p q S b c c c c c

V V

2 2

1 1 1

2 2

1 1 1

1 1 1

cos sin sin 2

sin cos sin 2

0.5sin 2 0.5sin 2 cos 2

S B

S B

BS

XX XX

ZZ ZZ

XZXZ

I I

I T I

II

T

1

1

1

1

P

P

P

P

vv V

V

vv V

V

,

,

p p

r r

1 1

1 1

1 1

1 1

1

1

1

2 2

2 2

2 2

p r A R

p r A R

p r A R

P P Y Y Y Y A Y R

P P

XZl l l l A l R

XX XX P P

XZn n n n A n R

ZZ ZZ P P

q S b bV V g c c c c c

m V V

I q S b b bc c c c c

I I V V

I q S b b bc c c c c

I I V V

1 1 A R

A R

A R

P P A R

XZA R

XX

XZA R

ZZ

V V g Y Y Y Y Y

IL L L L L

I

IN N N N N

I

1 11

1

2

( ) cos ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

P p P r

p r

p r

sV Y s sY g s s V Y s Y s

L s s s L s s sI L s L s

N s s sI N s s s N s N s

1 1

1

2

( )

( )

( )

( )

( )

( )

P p P r

p r

p r

s

ssV Y sY g s V YY

sL s s L s sI L L

sNN s sI N s s N s

s

1 1

1

2

( )

( )

( )

( )

( )

( )

A

A

A

AP p P r

p r

A

p r

A

s

ssV Y sY g s V Y Ys

L s s L s sI L Ls

NN s sI N s s N s

s

1 1

1

2

( )

( )

( )

( )

( )

( )

A

A

A

AP p P r

p r

A

p r

A

s

ssV Y sY g s V Y Ys

L s s L s sI L Ls

NN s sI N s s N s

s

2 ( ) ( )( )

( ) ( ) ( )

A

AP

A A P

Ls ss L s L

s s s s L

1R

P

TL

1

2

4

p

xxR

l P

IT

c V S b

Page 10: Napolitano Sample

Sample figure from Ch. 7 showing the concept of SENSITIVITY ANALYSIS

Flight Conditions

1., , , ,Alt Mach q

Aircraft Geometry, , , ,

, , , ,..H

H H

H V AC

c c b b

S S S x

Aircraft Mass and

Inertial Properties

, , , ,XX YY ZZ XZm I I I I

Dimensionless

Stability and

Control Derivatives

0

0

0

, ,..,

, ,..,

, ,..,

, ,.., ,

, ,.., ,

, ,.., ,

E

E

E

p A R

p A R

p A R

D D D

L L L

m m m

l l l l

Y Y Y Y

n n n n

c c c

c c c

c c c

c c c c

c c c c

c c c c

Dimensional Stability and Control Derivatives

(Tables 7.1 & 7.3)

, ,.., , , ,.., , , ,..,

, ,.., , , , ,.., , , , ,.., ,

E E E

A R A R A R

u u u

p p p

X X X Z Z Z M M M

L L L L Y Y Y Y N N N N

Longitudinal and

Lateral Directional

Characteristic

Equations

1 2( ), ( )D s D s

Page 11: Napolitano Sample

Sample figure from Ch. 7 showing the key geometric parameters for SENSITIVITY ANALYSIS

Leading Edge

of wing MAC

Leading Edge

of tail MAC

Wing+Body

Aerodynamic

Center

Tail

Aerodynamic

Center

Aircraft CG

WBACX

HACX

CGX

Wing MAC

CGCG

XX

c

H

H

AC

AC

XX

c

Tail MAC

c

Hc

H

H

AC CG

S

S

x x

CRITICAL PARAMETERS

SX

SVX

SZ

SY

SVZ

VS

b

Vertical Arm of

Vertical Tail

Horizontal Arm of

Vertical Tail

CRITICAL PARAMETERS

VS

S

VS

,S SV VZ X

b b

Aircraft CG

Page 12: Napolitano Sample

Sample figure from Ch. 8 showing the STATE VARIABLE modeling of the aircraft dynamics

Dimensional Longitudinal

Derivatives

Dimensional Lateral

Directional Derivatives

, , ,

, , , ,

, , , , , ,

u E

E

u E

u T

u q

u T T q

X X X X

Z Z Z Z Z

M M M M M M M

, , , ,

, , , ,

, , , ,

E

E

E

u q

u q

u q

X X X X X

Z Z Z Z Z

M M M M M

Dimensional „Primed‟

Longitudinal Derivatives

Dimensional „Primed‟

Lat. Direct. Derivatives

, , , ,

, , , ,

, , , ,

A R

A R

A R

p r

p r

p r

Y Y Y Y Y

L L L L L

N N N N N

, , , , ,

, , , ,

, , , ,

A R

A R

A R

p r

p r

p r

Y Y Y Y Y Y

L L L L L

N N N N N

Dimensional

„Double Primed‟

Long. Derivatives

, , , ,

/

Eu qZ Z Z Z Z

and or others

Long Long Long Long Long

Long Long Long Long Long

x A x B u

y C x D u

Longitudinal SV Model

Dimensional

„Double Primed‟

Lat. Dir. Derivatives

, , , , ,

/

A Rp pY Y Y Y Y Y

and or others

. . . . .

. . . . .

Lat Dir Lat Dir Lat Dir Lat Dir Lat Dir

Lat Dir Lat Dir Lat Dir Lat Dir Lat Dir

x A x B u

y C x D u

Lat. Directional SV Model

. . .

. . . .

00

00

0 0

0 0

Long LongLong Long Long

Lat Dir Lat DirLat Dir Lat Dir Lat Dir

LongLong Long Long Long

Lat DirLat Dir Lat Dir Lat Dir Lat Dir

x Bx A u

x Bx A u

xy C D u

xy C D u

„Total‟ Aircraft SV Model

Page 13: Napolitano Sample

Sample figure from Ch. 9 showing the general architecture of a simulation code

Beaver dynamics

and output equations

16

rb/2V

15

qc/V

14

pb/2V

13

H dot

12

H

11

ye

10

xe

9

phi

8

theta

7

psi

6

r

5

q

4

p

3

beta

2

alpha

1

V

time

To Workspace

In To Workspace Out To Workspace

Mux

Double-click for info!

Mux

click

2x for

info!

Mux

Mux

Mux

Demux

Demux

Demux

Clock

FDC Toolbox

BEAVER, level 1

M.O. Rauw, October 1997

12

wwdot

11

vwdot

10

uwdot

9

ww

8

vw

7

uw

6

pz

5

n

4

deltaf

3

deltar

2

deltaa

1

deltae

xdot

y dl

x

uwind

uprop

uaero

Deflections of

Control Surfaces

Throttle Settings

Atmospheric

Turbulence

(optional)

Motion

Variables

Aircraft Equations of Motion

Pilot Inputs and

External Disturbance Aircraft

Outputs

FDC Toolbox

M.O. Rauw 1997

xdot

x

yhlp

Additional outputs

Aircraft equations

of motion (Beaver)

Wind forces

Gravity forces

Engine group (Beaver)

Aerodynamics

group (Beaver)

(co)sines of

alpha, beta,

psi, theta, phi

Add + sort

forces and

moments

Airdata group

18

yad3

17

yad2

16

yad1

15

yatm

14

Fwind

13

Fgrav

12

FMprop

11

FMaero

10

Cprop

9

Caero

8

yacc

7

ypow

6

yfp

5

ydl

4

yuvw

3

ybvel

2

xdot

1

x

hlpfcn

Gravity

Fwind

FMsort

BEAVER, level 2 (main level)

M.O. Rauw

-K-

-K-3

uwind

2

uprop

1

uaero

Modeling of the

Aerodynamic Forces

and Moments

Modeling of the

Propulsive Forces

and Moments

Modeling of the

Gravity Forces

Modeling of the

Atmospheric Turbulence

Forces

AIRCRAFT

EQUATIONS

OF MOTION

FDC Toolbox

M.O. Rauw 1997

xdot

x

yhlp

Additional outputs

Aircraft equations

of motion (Beaver)

Wind forces

Gravity forces

Engine group (Beaver)

Aerodynamics

group (Beaver)

(co)sines of

alpha, beta,

psi, theta, phi

Add + sort

forces and

moments

Airdata group

18

yad3

17

yad2

16

yad1

15

yatm

14

Fwind

13

Fgrav

12

FMprop

11

FMaero

10

Cprop

9

Caero

8

yacc

7

ypow

6

yfp

5

ydl

4

yuvw

3

ybvel

2

xdot

1

x

hlpfcn

Gravity

Fwind

FMsort

BEAVER, level 2 (main level)

M.O. Rauw

-K-

-K-3

uwind

2

uprop

1

uaero

Modeling of the

Aerodynamic Forces

and Moments

Modeling of the

Propulsive Forces

and Moments

Modeling of the

Gravity Forces

Modeling of the

Atmospheric Turbulence

Forces

AIRCRAFT

EQUATIONS

OF MOTION

Page 14: Napolitano Sample

Sample drawing and tables from Appendix C showing aircraft data for aerodynamic modeling

Page 15: Napolitano Sample

Samples of INSTRUCTOR NOTES from an

extensive set of approx. 500 slides freely available to the instructors !

Page 16: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter IV

21

V

V

LELE

V

V

LELE

V

Leading edge wing line

(right wing wrt. pilot)

Perpendicular to

leading edge wing line

nRV

V

V

V

Parallel to leading

edge wing line

nLV

Parallel to leading

edge wing line

Perpendicular to

leading edge wing line

RIGHT WING wrt. pilotLEFT WING wrt. pilot

V

Leading edge wing line

(right wing wrt. pilot)

Perpendicular to

leading edge wing line

nRV

V

V

V

Parallel to leading

edge wing line

nLV

Parallel to leading

edge wing line

Perpendicular to

leading edge wing line

RIGHT WING wrt. pilotLEFT WING wrt. pilot

(cont.) lc

Conceptual Modeling of

Page 17: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter IV

22

cos

cos

nR

nL

LE

LE

V V

V V

nR nLV V

R LL L

SX

V

RL

Negative rolling moment

#3

0WB

lc

Wing body dihedral effect #3

NOTE: „R‟ indicates

„RIGHT‟ wrt pilot

0

LL

R LL L

SX

V

RL

Negative rolling moment

#3

0WB

lc

Wing body dihedral effect #3

NOTE: „R‟ indicates

„RIGHT‟ wrt pilot

0

LL

R LL L

0WBl

IIIc

(cont.) lc

Conceptual Modeling of

Page 18: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter IV

41

Numerical Examples of lc

(cont.)

McDonnell Douglas F4 Aircraft

(see Student Sample Problem 4.3)

Term Value

[1/rad] % of lc

Wing contribution due to the

geometric dihedral angle

-0.014

16.6

Wing contribution due to the

wing-fuselage position

0.029

-34.4

Wing contribution due to the

sweep angle

-0.045

53.4

Wing contribution due to the

aspect ratio

-0.027

32.1

Wing contribution due to the

twist angle

-0.002

2.6

Body (fuselage) contribution -0.007 8.3

Horizontal tail contribution 0.0118 -14

Vertical tail contribution -0.030 35.6

TOTAL ( lc

) -0.0842 100

Key results - The predominant (53%) POSITIVE contribution to the dihedral

effect comes from the wing sweep angle.

- The second POSITIVE contribution (36%) comes from the vertical

tail.

- The low-wing configuration provides a substantial NEGATIVE

contribution (anhedral).

- UNIQUE FEATURE OF THIS AIRCRAFT: the high geometric

anhedral angle of the horizontal tail provides a substantial

NEGATIVE contribution (anhedral).

Page 19: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter IV

47

nc

Conceptual Modeling of (cont.)

..Starting from: WBnc

SX

SY

V V

VV

0

Vfrom right

of the pilot

SX

SY

V V

VV

0

Vfrom right

of the pilot

SX

SY

V

V

0

Vfrom right

of the pilot

Resultant of the

Lateral Side Force

in front of CG

Resultant of the

Lateral Side Force

behind CG

Moment Arm

in front of CG

Moment Arm

behind CG

Negative

Yawing Moment

Positive

Yawing Moment

SX

SY

V

V

0

Vfrom right

of the pilot

Resultant of the

Lateral Side Force

in front of CG

Resultant of the

Lateral Side Force

behind CG

Moment Arm

in front of CG

Moment Arm

behind CG

Negative

Yawing Moment

Positive

Yawing Moment

SX

SY

V

V

Moment Arm

in front of CG

Moment Arm

behind CG

Negative

Yawing Moment

Positive

Yawing Moment

0WB

nc

SX

SY

V

V

Moment Arm

in front of CG

Moment Arm

behind CG

Negative

Yawing Moment

Positive

Yawing Moment

0WB

nc

0WBnc

For most aircraft

Page 20: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter IV

49

nc

Conceptual Modeling of (cont.)

..next, on: Vnc

SX

SZ

SVXMoment arm

Point of application of the lateral

force on the vertical tail

SX

SZ

SVXMoment arm

Point of application of the lateral

force on the vertical tail

SX

V

Positive yawing moment

0V

nc

0

SVX

Lateral force

SY

SZSX

V

Positive yawing moment

0V

nc

0

SVX

Lateral force

SY

SZ

SX

SY

V V

VV

0

Lateral force on

the vertical tail

SX

SY

V V

VV

0

Lateral force on

the vertical tail

0Vnc

Page 21: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter IV

87

Ranking of Stability Derivatives

Relative

Importance

Ranking

(0 to 10)

Stability

Derivatives

Group #1 10 , , ,L m l nc c c c

Group #2 9 , , ,q p rm m l nc c c c

Group #3 7-8 0,D Dc c

Group #4 6 0 0,L mc c

Group #5 4 ,qL Lc c

Group #6 3 , , , ,r p rY Y p Y n lc c c c c

Group #7 0-1 0, 0,

0, 0, 0

qD D

Y l n

c c

c c c

The stability derivatives in Group #1 and Group #2 have MAJOR

implications on the aircraft static & dynamic stability (as discussed

in chapter VI and VII)

Page 22: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter V

6

Review of Basic Aircraft Performance

Conservation of Linear Momentum Equations (CLMEs) along X and Z:

cos sinT

W dVT D W

g dt

2

sin cosT

W VT L W

g R

Assuming: 0,cos 1,sin 0T T T

sinW dV

T D Wg dt

2

cosW V

L Wg R

At steady state rectilinear conditions: , 0dV

Rdt

sin 0T D W

cos 0L W

with: cos

sin

x V

h V

Page 23: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter V

7

Review of Basic Aircraft Performance :

Power at Level Flight

Level Flight: 0 0T D T D

0L W L W

with: 2 21 1

,2 2

D LD V S c L V S c

2

O

LD D

cc c

AR e where:

Maximum Aerodynamic Efficiency

2

2

1

21

2

LL

DD

V S ccL

ED c

V S c

Definition:

DMax

Max Min L Min

cL DE

D L c

OMax

L DEc c AReGoal: to evaluate:

2

0O

LD

D

L L L L

cc

cd d AR e

d c c d c c

2 2 22

2 2

2

0O OO

L L LLD DD

L L L L

c c ccc cc

AR e AR e AR ed AR e

d c c c c

2

20O O

LD L D

cc c c ARe

ARe

OMaxL DE

c c ARe

O

O

D

D

DMax

L Min

c AR ec

cE

c

AR e

22O O

O O

D D

D D

Min

c c

AR ec AR e c AR e

Page 24: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter V

8

Review of Basic Aircraft Performance :

Power at Level Flight (cont.)

Minimum Aerodynamic Drag

0T D T D

0L W L W

with: 2

2 2

2 2 4 2

1 2 4,

2L L L

W WV S c W c c

V S V S

2 22 2

2 4 2

22

2

1 1 1 4

2 2

1 1 2

2

O O

O

LD D

D Parasite Induced

c WD V S c V S c

AR e AR e V S

WV S c D D

AR e V S

leading to:

Goal: to evaluate: MINIMUMD

V

2 22

2 3

1 1 2 1 40

2 O OD D

dD d W WV S c V S c

dV dV ARe V S ARe V S

2 2

3 4

1 4 1 4O OD D

W WV S c S c

ARe V S ARe V S

24 1 4

Minimum

O

D

D

WV

SARe S c

2 2 1

Minimum

O

DD

WV

S ARe c

4

2 1

Minimum

O

DD

WV

S ARe c

Page 25: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VI

42

Applications of the Trim Diagram

10.3, 2CGx

Page 26: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VI

58

Numerical Example:

2 Engines-Out Condition for Boeing B747

FAA Worst Case Scenario

Loss of 50% of installed

thrust (same side)

1

1 2,4 1,21 1

1

0

1 1

4 4

10.75 0.4

4 2 2

13786 112.7 1,553,682.2

T

T T T

L

N T y T y

b bT

lbs ft

1st step – Analysis of the Yawing Moment 1

1

1

1.76T

EOn

N

c q S b

2nd step – Analysis of the Rolling Moment

1

1

1

111.98

A

T

l EO

AEO

l

Lc

q S b

c

3nd step – …back to the Yawing Moment

4th step – …back to the Rolling Moment

1

1

1

1

1

0.35

A

R

T

n n AEO EO

REO

n

Nc c

q S b

c

1

10.13

R

A

l REO

AEO

l

c

c

1 1 1 112.10

FINAL INITIAL

A A A AEO EO EO EO

Page 27: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VI

27

Pilot elevator doubletPilot elevator doublet

NUMERICAL EXAMPLE:

F-104 Longitudinal Dynamics (Approach Conditions) – (cont.)

poles=roots(den)

poles =

-0.4514 + 1.3967i

-0.4514 - 1.3967i

-0.0205 + 0.1465i

-0.0205 - 0.1465i

“Short Period” response:

- High natural frequency;

- High damping.

“Phugoid” response:

- Low natural frequency;

- Low damping.

“Short Period” response:

- High natural frequency;

- High damping.

“Phugoid” response:

- Low natural frequency;

- Low damping.

“Phugoid” response:

- Low natural frequency;

- Low damping.

“Phugoid” response:

- Low natural frequency;

- Low damping.

“Short Period” response:

- High natural frequency;

- High damping.

“Phugoid” response:

- Low natural frequency;

- Low damping.

“Short Period” response:

- High natural frequency;

- High damping.

“Phugoid” response:

- Low natural frequency;

- Low damping.

“Short Period”:

- high

- highSP

nSP

“Phugoid”:

- high

- highPh

nPh

“Short Period”:

- high

- highSP

nSP

“Phugoid”:

- high

- highPh

nPh

Page 28: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VI

33

SPECIAL CASE:

Short Period Approximation (cont.)

Numerical Example : Cessna 182

Cessna 182 (Altitude=5,000 ft, Mach=0.21)

4 3 2

1 1 1 1 1 1

4 3 2222.05 1985.95 6262.29 329.88 180.58

D A s B s C s D s E

s s s s

FULL-BLOWN Characteristic Equation

-4.4498 + 2.8248i, -4.4498 - 2.8248i

-0.0220 + 0.1697i, -0.0220 - 0.1697i

0.844, 5.27 , 0.129, 0.171sec sec

SP nSP Ph nPh

rad rad with:

SHORT-PERIOD APPROXIMATION Characteristic Equation

1

1 1

2

1

2 464.71 464.71 4.337220.1 2.5428 4.337 19.26

220.1 220.1

SP

q

P q

P P

Z MZD V s s M M s M

V V

s s s

2 2 28.99 28.41 2 SP nSP nSPs s s s

. .0.843, 5.33

secAPPROX APPROXSP nSP

rad

…Approximation error: < 1% !!

Page 29: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VI

67

Rolling Approximation (cont.)

Mc Donnell Douglas F-4 roll response following a +2 deg. aileron deflection

(sec)t

p

( / sec)rad

0.9

. 40,000 .

Mach

Alt ft

deg0.2765 15.84

sec secSS

radp

63% 0.1742sec

SS

radp

. 0.813secRRoll Time Const RTC T

Boeing B747-200 roll response following a +2 deg. aileron deflection

(sec)t

p

( / sec)rad

0.9

. 40,000 .

Mach

Alt ft

deg0.0119 0.682

sec secSS

radp

63% 0.0075sec

SS

radp

. 1.98secRRoll Time Const RTC T

Boeing B747-200 roll response following a +2 deg. aileron deflection

(sec)t

p

( / sec)rad

0.9

. 40,000 .

Mach

Alt ft

deg0.0119 0.682

sec secSS

radp

63% 0.0075sec

SS

radp

. 1.98secRRoll Time Const RTC T

Comparison of Roll Responses between a F4 and a Boeing B747

Page 30: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VIII

8

Transfer Function-Based vs.

State Variable-Based Modeling (cont.)

SUMMARY

Differential Equations (DEs)

“Transfer Functions” Model

11 12 1 1

21 22 2 2

1

1 21

1 2

( ) ( ) ... ( ) ... ( )

( ) ( ) ... ( ) ... ( )

( ) ... ... ... ... ... ...( )

( ) ( ) ... ( ) ... ( )( )

... ... ... ... ... ...

( ) ( ) ... ( ) ... ( )

j m

j m

l x

l xmi i ij im

m x

l l lj lm

G s G s G s G s

G s G s G s G s

Y sG s

G s G s G s G sU s

G s G s G s G s

l xm

DYNAMIC SYSTEM

“State Variable” Model

1 11

1 1 1

n x n n x mn x m xn x

l x n l x ml x n x m x

x A x B u

y C x D u

1( )

( )( )

Y sG s C s I A B D

U s

„s‟ domain„time‟ domain

Differential Equations (DEs)Differential Equations (DEs)

“Transfer Functions” Model

11 12 1 1

21 22 2 2

1

1 21

1 2

( ) ( ) ... ( ) ... ( )

( ) ( ) ... ( ) ... ( )

( ) ... ... ... ... ... ...( )

( ) ( ) ... ( ) ... ( )( )

... ... ... ... ... ...

( ) ( ) ... ( ) ... ( )

j m

j m

l x

l xmi i ij im

m x

l l lj lm

G s G s G s G s

G s G s G s G s

Y sG s

G s G s G s G sU s

G s G s G s G s

l xm

DYNAMIC SYSTEMDYNAMIC SYSTEM

“State Variable” Model

1 11

1 1 1

n x n n x mn x m xn x

l x n l x ml x n x m x

x A x B u

y C x D u

“State Variable” Model

1 11

1 1 1

n x n n x mn x m xn x

l x n l x ml x n x m x

x A x B u

y C x D u

1( )

( )( )

Y sG s C s I A B D

U s

„s‟ domain„time‟ domain

Page 31: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VIII

State Variable Modeling of the

Longitudinal Dynamics

Starting from Chapter VII longitudinal equations:

1 1

1

1

cos

sin

u E

E

u E

u T E

P u q P E

u T T q E

u X X u X g X

V Z u Z Z g Z V Z

M M u M M M M M

Using the relationship: ,q q

1 1

1

1

cos

sin

u E

E

u E

u T E

P u q P E

u T T q E

u X X u X g X

V Z Z u Z g Z V q Z

q M M u M M M M q M

q

NOTE: The 2nd equation is nested within the 3rd equation through the

ALPHA_DOT term. Therefore, neglecting: ( , )uT TM M

1

1 1 1 1 1

1 1 1

1

1

1

cos

sin

sin

u E

E

u T E

q Pu

E

P P P P P

uu

P P P

u X X u X g X

Z V ZZ Z gu q

V Z V Z V Z V Z V Z

Z Z gq M M u M M M

V Z V Z V Z

1

1 1

E

E

q P

q E

P P

Z V ZM M q M M

V Z V Z

q

Page 32: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter VIII

10

State Variable Modeling of the

Longitudinal Dynamics (cont.)

with:

1

1 1 1

1 1

1

1

, , cos , 0,

, , ,

sin,

,

,

u E E

E

E

E E E

u u T q

q Pu

u q

P P P

P P

u u u

q q q

X X X X X X g X X X

Z VZ ZZ Z Z

V Z V Z V Z

ZgZ Z

V Z V Z

M M Z M M M Z M

M M Z M M Z M

M M Z M

Define:

Long Long Long Long Longx A x B u

0 0 1 0 0

Long Long E

u q E

u q E

E

u q E

u u

A Bq q

X X X X u X

Z Z Z Z Z

M M M M q M

STATE EQUATIONS

,T

Long Long Ex u q u

Page 33: Napolitano Sample

“Aircraft Dynamics:

From Modeling to Simulation”

Chapter IX

4

Introduction to the “Flight Dynamics

& Control” (FDC) Toolbox

Matlab®/Simulink®-based flight simulation package freely available on

“www.dutchroll.com”

Beaver dynamics

and output equations

16

rb/2V

15

qc/V

14

pb/2V

13

H dot

12

H

11

ye

10

xe

9

phi

8

theta

7

psi

6

r

5

q

4

p

3

beta

2

alpha

1

V

time

To Workspace

In To Workspace Out To Workspace

Mux

Double-click for info!

Mux

click

2x for

info!

Mux

Mux

Mux

Demux

Demux

Demux

Clock

FDC Toolbox

BEAVER, level 1

M.O. Rauw, October 1997

12

wwdot

11

vwdot

10

uwdot

9

ww

8

vw

7

uw

6

pz

5

n

4

deltaf

3

deltar

2

deltaa

1

deltae

xdot

y dl

x

uwind

uprop

uaero

Deflections of

Control Surfaces

Throttle Settings

Atmospheric

Turbulence

(optional)

Motion

Variables

Aircraft Equations of Motion

Pilot Inputs and

External Disturbance Aircraft

Outputs

Beaver dynamics

and output equations

16

rb/2V

15

qc/V

14

pb/2V

13

H dot

12

H

11

ye

10

xe

9

phi

8

theta

7

psi

6

r

5

q

4

p

3

beta

2

alpha

1

V

time

To Workspace

In To Workspace Out To Workspace

Mux

Double-click for info!

Mux

click

2x for

info!

Mux

Mux

Mux

Demux

Demux

Demux

Clock

FDC Toolbox

BEAVER, level 1

M.O. Rauw, October 1997

12

wwdot

11

vwdot

10

uwdot

9

ww

8

vw

7

uw

6

pz

5

n

4

deltaf

3

deltar

2

deltaa

1

deltae

xdot

y dl

x

uwind

uprop

uaero

Deflections of

Control Surfaces

Throttle Settings

Atmospheric

Turbulence

(optional)

Motion

Variables

Aircraft Equations of Motion

Pilot Inputs and

External Disturbance Aircraft

Outputs

FDC 1st Level

12 inputs (aerodynamic control surfaces, throttle settings,

atmospheric turbulence)

27 outputs (12 aircraft states + 12 derivatives of aircraft states,

3 dimensionless angular velocities)