nanopartikel materi

Upload: rachma-tia

Post on 14-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Nanopartikel materi

    1/36

    1

    IV (5)

    Synthesis of NanoparticlesMethods and Techniques

  • 7/27/2019 Nanopartikel materi

    2/36

  • 7/27/2019 Nanopartikel materi

    3/36

    3

    Using no fuels (one reactant serves as fuel)

    Combustion SynthesisS elf-Propagating High-Temperature S ynthesis (SHS)

    (A) solid solid

    (B) solid liquid

    (C) solid gas

    (D) gas gas

    ceramics, composites, elements,

    intermetallics, polymers.

  • 7/27/2019 Nanopartikel materi

    4/36

  • 7/27/2019 Nanopartikel materi

    5/36

    5

    (B) Particle Formation Processes in a Flame

    SiCl 4(g)H2O, O 2 SiO 2(g)

    AlCl3(g) Al2O 3(g)H2O, O 2

    TiCl4(g)H2O, O 2

    TiO 2(g)

    Condensing species(flame)

    Nucleation Initial Particles

    Initial Particles(flame)

    GrowthProduct Particles

    ReactantsChemical reaction

    (flame)Condensing Species(particle forming species)

  • 7/27/2019 Nanopartikel materi

    6/36

  • 7/27/2019 Nanopartikel materi

    7/36

    7

    Classification of Flame (or flame structures)

    flame

    premixed flame (fuel andoxidizer arepremixed beforefeeding intoburner)

    diffusion flame

    (fuel andoxidizer are fedseparately intoburner)

    parallel flowdiffusion flame

    counter flowdiffusion flame

    F 1

    F 3

    F 2

    F 7

  • 7/27/2019 Nanopartikel materi

    8/36

    8

    Premixed flame characteristics ignition

    Rate of Comb. Rxn = f (T, [F], [O], [inert])

    For ignition

    = ( ,[ ])rxnQ f T radicals

    radicals H, OH, CH, CH2,

    rxn lossQ Q ignition occurs when

  • 7/27/2019 Nanopartikel materi

    9/36

    9

    (a) by increasing temperaturee.g., by using a hot metal stick

    (b) by creating radicalse.g., by UV illmination

    (c) by both increasing temperature and creating radicalse.g., pilot flame (math, lighter, )

    techniques for ignition

  • 7/27/2019 Nanopartikel materi

    10/36

    10

    Extinction

    by decreasing temperature e.g., water spraying, blowing

    by decreasing radical concentration

    e.g., increasing contact surface area with solid.

    F 4

  • 7/27/2019 Nanopartikel materi

    11/36

    11

    Flash Back

    combustion velocity Vcom

    stationary flame

    flash back

    blow off

    Vgas Vcom

    | V com | | V gas |

    Vgas

    Vcom

    F + O

    (stay still) V gas =0

    bot plateflame

  • 7/27/2019 Nanopartikel materi

    12/36

    12

    (D) Rate of fusion of an Agglomerate in a Flame

    1/ 3(1 ) 1dRdt

    R primary particle radius

    number of neighbors

    t time

    surface tension

    viscosity

    Frenkel (1945)

  • 7/27/2019 Nanopartikel materi

    13/36

    13

    f (Temp, mixing with other oxides)strong

    Temp or/and

    mixing of SiO 2 and Al 2O 3

    dR

    dt

    F 7F 14.46F 6F 5F 7.2 F 14.50

  • 7/27/2019 Nanopartikel materi

    14/36

    14

    II. Combustion Synthesis

    Self Propagating High Temperature Synthesis (SHS)

    or Combustion Synthesis

    A. Introduction Characteristics of SHS

    Highly Exothermic Reaction

    High Temperature(2000 -4000K), Visible Radiation,

    and Self-Propagation.

    Rapid, Combustion Velocity 1-10 mm/sec

    Maximum Combustion Temperature

    1 2 3

    4 5

  • 7/27/2019 Nanopartikel materi

    15/36

    15

    Why self-propagating

    (1) large contact surface area between reactant particles(a) compaction of reactants(b) melting and capillary spreading

    (2) high reaction temperature

    (3) small heat losses(heat retained due to compaction of reactants)

    (4) assisted by liquid and/or gas formation

  • 7/27/2019 Nanopartikel materi

    16/36

    16

    (B) Types of SHS Reactions

    (A) Metals

    (a) ( ) 44 g Na SiCl 4l g Si NaCl

    (b) ( ) 55/ 2

    g g Mg NbCl

    ( ) 25/ 2

    l g Nb MgCl

    Examples for Combustion Synsthesis

  • 7/27/2019 Nanopartikel materi

    17/36

    17

    (B) Oxides

    2 3 2 20.5 2 3Y O BaO Cu O 2 3 6 xYBa Cu O

    (C) Carbides

    (a) Ti+C TiC

    (b) N b+(1-x)/2 N 2+ xC NbN 1-xCx

    (c) Si+C SiC

  • 7/27/2019 Nanopartikel materi

    18/36

  • 7/27/2019 Nanopartikel materi

    19/36

  • 7/27/2019 Nanopartikel materi

    20/36

    30

    Typical Solution Methods

    Preparation

    of Solution

    Precipitation

    of SoluteSpecies

    Filtration of

    Precipitates

    Washing Calcination

    Precise control of components, e.g., Ce(NO 3)2 :ZrO(NO 3)=0.75:0.25 for Ce 0.75 Zr 0.25 O 2 powder.

    Complete solution or complete mixing on molecutar level. (otherwise, e.g., singlephase CeO 2 or ZrO 2 will form instead of Ce 0.75 Zr 0.25 O 2)

    *Solution-precipitation method: OK

    *Coprecipitation method: OK

    *Sol-gel method: OK

    *Spoay pyrolysis: OK

    *Freeze drying: OK

    *Solution combustion: OK

  • 7/27/2019 Nanopartikel materi

    21/36

    31

    Precipitation of Solute Species

    Simultaneous precipitation (or simultaneous nucleation or Co-precipitation)of all desired species to form uniform composition, e.g., 0.75Ce+0.25Zr for Ce 0.75 Zr 0.25 O 2

    Uniform and short growth duration to obtain nanoparticales.

    = abrupt (rapid) charge in conditions to bring about precipitation

    = short processing duration

    *Solution-evaporation: too slow

    *Solution-precipitation, coprecipitation: too slow [adjustment of PH by adding

    acids or bases (or addition of precipitation agentes) with mixing is slow andnot uniform)

    *Sol-gel method: OK

    *Spray pyrolysis, freeze drying: OK

    *Solution combustion: OK

  • 7/27/2019 Nanopartikel materi

    22/36

    32

    Abrupt occeurence of ignition, rapid propagation of combustion, shortcombustion duration

    Generation and evolution of large amounts of gases carry away large

    grantities of heat, create pores in the product and causes rapid cooling of the product= shorter the time for growth, generating nano size particleswith large specific surface area.

    High combustion temperature ( 900 ): (1). dry powders; (2). desiredcrystalline structure; (3). high purity (impurities are decomposed andraporiad) (4). does not need filtration, washing and calcination.

    *Microwave-assisted solution combustion synthesis

    same ao solution combustion with even better uniform temperaturedistribution and additional control of temperature

  • 7/27/2019 Nanopartikel materi

    23/36

  • 7/27/2019 Nanopartikel materi

    24/36

    34

    Sol- Gel Auto- Combustion Synthesis Method(Sol gel method + SHS)

    Example ISynthesis of nanocrystalline LaFeO 3 (magnetic materials with

    potential applications in sensors and monitoring)

    Fe(NO 3) 9H 2O

    La(NO3) 6H

    2O

    C6H8O 7 H2Odissol

    d.i.H 2OClear solution

    NH3soln sol130 C

    brown dried gel

    ignition

    combustionLaFeO 3

    Example IISynthesis of NiCuZn Ferrite(Ni0.25Cu0.25Zn0.25Fe2O4, magneticmaterial having potential applications in multilayer chip inductor (MLCI))

    metal nitrates

    citric acid

    disso

    d.i.H 2O

    NH3soln sol130 C

    gelignition

    combustion

    NiCuZn Ferrite

    nanopowder

  • 7/27/2019 Nanopartikel materi

    25/36

    47

    SHS Various Materials ceramics

    intermetallics

    elements

    composites

    polymers

    SHS Commercialization ???

    advantages:

    fast reaction

    low energy consumption

    simple processing

  • 7/27/2019 Nanopartikel materi

    26/36

    48

    Commercialization of SHS Processes

    high values (market prices) of the products

    other synthesis methods: difficult or high

    production costs low prices of the raw materials for the SHS

    Economics

  • 7/27/2019 Nanopartikel materi

    27/36

  • 7/27/2019 Nanopartikel materi

    28/36

    50

    Properties of AlN

    high thermal conductivity

    Al:300,, Si:148, AlN:130 260,SiO 2:1.4, Al 2O 3:20(w/m-k)high electrical resistivity

    (10 13 cm)low thermal expansion coefficient

    Si:4, AlN:4.3, Al 2O 3:7.2, SiO 2 :15(PPM/ )low dieletric constant (8.0 9.0)good mechanical strengthgood corrosion resistancegood thermal-shock resistance

  • 7/27/2019 Nanopartikel materi

    29/36

    51

    Applications of AlNsemiconductor substratesIC packagesIC encapsulantheat sinksthermal greasethermally conductive filler high thermally conductive compositesheat radiation platesSi-Al-O-N compoundsMolten metal crucibles and linersCorrosion resistant parts

  • 7/27/2019 Nanopartikel materi

    30/36

    52

    D-1 Particle Formation Processes in a Flame

    (1) Reactants Chemical reactions

    (flame)

    Condensing Species

    SiCl 4 (g) H2O, O 2

    SiO 2 (g)

    AlCl3(g) Al2O 3 (g)H2O, O 2

    TiCl4(g) H2O, O 2 TiO 2(g)

    (2) Condensing speciesNucleation Initial Particles

    (3) Initial ParticlesGrowth

    Product Particles

  • 7/27/2019 Nanopartikel materi

    31/36

    53

    solution of sodium

    aluminate (NaAlO 2)+ waste

    seedingwith fine

    Al(OH)3particles

    hydrolyzed coolingTempagitation

    aluminum gydroxide

    (precipitated)time

    filtration washing

    Aluminum hydroxide(Al(OH) 3)

    calcination1200

    cooling

    (size, texture, purity)

    40~100 m particles

    size reduction

    1 m or finer

  • 7/27/2019 Nanopartikel materi

    32/36

    54

    2 BaTiO 3 ( )

    Ba+2C 3H7OH B(OC 3H7)2 +H282

    TiCl4+4C

    3H

    7OH+4NH

    3Ti (OC

    3H

    7)

    4+4NH

    4Cl

    C 6H65

    Ti(OC 4H7)4 4C 5H11 OH reflux 24hC4H6

    Ti (OC 5H11)4 4C 3H7OH

    Ba(OC 3H7)2 Ti(OC 5H11)+3H 2O BatiO 3+ BaTiO 3+2C 3H7OH+4C 5H11OH

    (C) Solvent Extraction-Piltration

    to reach supersaturation or to esceed the solubility product

    (D) Sol-Gel Techniques

    (E) solvent combustion

    (F) Hydrothermal Precipitation

  • 7/27/2019 Nanopartikel materi

    33/36

    55

    . Using fuels Flame Synthesis

    (A)Optical fiber

    (B)Diamond film(C)Fine particles

    carbon particles (carbon black)

    oxide ceramic powders(SiO 2, TiO 2, Al 2O3......)

    non-oxide ceramic powders

    (AlN, Si 3N4.............)

    Materials Synthesis by Combustion

  • 7/27/2019 Nanopartikel materi

    34/36

    56

    . Using no fuels (one reactant serves as fuel)

    Combustion Synthesis

    Self-Propagating High-Temperature Synthesis (SHS)

    (A)solid solid(B)solid liquid

    (C)solid gas

    (D)gas gas

    ceramics

    intermetallics

    composites

    polymers

    elements

  • 7/27/2019 Nanopartikel materi

    35/36

    57

    General Scheme for Flame Synthesis of Fine Powders

    flame

    (Chem. rxn,nucleation,

    growth)

    reactants

    (e.g., SiCl 4 or AlCl 3)

    fuel (e.g., H 2 or CH 4)combust gases

    particles

    particles

    collectionproductpowder

    combustgases

    pollution

    control

    exhaustgases

    Oxidizer (e.g., O 2 or air)

  • 7/27/2019 Nanopartikel materi

    36/36

    58

    A. Formation Process of Powder Particles

    reactantsChem. Rxn .

    Particle Forming Species Nucleation

    Nuclei (Initial particles)Growth

    Product Particles

    Particle Forming Species

    (a) Vapor atoms or molecules in gas phase .

    (b) Solute atoms, molecules, or ions in liquid solution; pure melt; atoms, molecules, or ions in a melt solution .

    (c) Solute atoms, molecules, or ions in a solid solution

    (d) Newly formed phase materials.

    Phys. Rxn.