nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * k. goser,...

13
Department of Electronic Engineering Nanoelectronics 15 Atsufumi Hirohata 09:00 (online) & 12:00 (SLB 118 & online) Monday, 8/March/2021 Quick Review over the Last Lecture 1 Fermi-Dirac distribution Bose-Einstein distribution Function Energy dependence Quantum particles Spins Properties At temperature of 0 K, each energy level is occupied by two Fermi particles with opposite spins. ® At very low temperature, large numbers of Bosons fall into the lowest energy state. ®

Upload: others

Post on 06-Jul-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Department of Electronic Engineering

Nanoelectronics15

Atsufumi Hirohata

09:00 (online) & 12:00 (SLB 118 & online) Monday, 8/March/2021

Quick Review over the Last Lecture 1

Fermi-Dirac distribution Bose-Einstein distribution

Function

Energy dependence

Quantum particlesFermions

e.g., electrons, neutrons, protons and quarks

Bosonse.g., photons, Cooper pairs

and cold Rb

Spins 1 / 2 integer

Properties

At temperature of 0 K, each energy level is occupied by two Fermi particles with opposite spins.® Pauli exclusion principle

At very low temperature, large numbers of Bosons fall into the

lowest energy state.® Bose-Einstein condensation

Page 2: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Contents of NanoelectonicsI. Introduction to Nanoelectronics (01)

01 Micro- or nano-electronics ?

II. Electromagnetism (02 & 03)02 Maxwell equations03 Scholar and vector potentials

III. Basics of quantum mechanics (04 ~ 06)04 History of quantum mechanics 105 History of quantum mechanics 206 Schrödinger equation

IV. Applications of quantum mechanics (07, 10, 11, 13 & 14)07 Quantum well10 Harmonic oscillator11 Magnetic spin13 Quantum statistics 114 Quantum statistics 2

V. Nanodevices (08, 09, 12, 15 ~ 18)08 Tunnelling nanodevices09 Nanomeasurements12 Spintronic nanodevices15 Low-dimensional nanodevices

15 Low-Dimensional Nanodevices

• Quantum wells

• Superlattices

• 2-dimensional electron gas

• Quantum nano-wires

• Quantum dots

Page 3: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Schrödinger Equation in a 3D CubeIn a 3D cubic system, Schrödinger equation for an inside particle is written as :

2

2m∂ 2

∂x 2+∂ 2

∂y 2+∂ 2

∂z 2#

$ %

&

' ( ψ x, y,z( ) + E −V( )ψ x, y,z( ) = 0

where a potential is defined as

V =0 inside the box : 0 ≤ x ≤ L,0 ≤ y ≤ L,0 ≤ z ≤ L( )+∞ outside the box : x, y,z < 0, x, y,z > L( )

$ % &

' & L

L

Lx

y

z

By considering the space symmetry, the wavefunction is

ψ r , t( ) =ψ x, t( )ψ y, t( )ψ z, t( )Inside the box, the Schrödinger equation is rewritten as

In order to satisfy this equation, 1D equations need to be solved :

−ℏ!

2𝑚𝜕!

𝜕𝑥!+𝜕!

𝜕𝑦!+𝜕!

𝜕𝑧!𝜓 𝑥, 𝑡 𝜓 𝑦, 𝑡 𝜓 𝑧, 𝑡 = 𝐸𝜓 𝑥, 𝑡 𝜓 𝑦, 𝑡 𝜓 𝑧, 𝑡

−ℏ!

2𝑚1

𝜓 𝑥, 𝑡𝜕!

𝜕𝑥!𝜓 𝑥, 𝑡 +1

𝜓 𝑦, 𝑡𝜕!

𝜕𝑦!𝜓 𝑦, 𝑡 +1

𝜓 𝑧, 𝑡𝜕!

𝜕𝑧!𝜓 𝑧, 𝑡 = 𝐸" +𝐸# +𝐸$

−ℏ!

2𝑚𝜕!

𝜕𝑥!𝜓 𝑥, 𝑡 = 𝐸"𝜓 𝑥, 𝑡

Schrödinger Equation in a 3D Cube (Cont'd)

To solve this 1D Schrödinger equation, − ℏ!

!$%!

%"!𝜓 𝑥, 𝑡 = 𝐸"𝜓 𝑥, 𝑡 ,

we assume the following wavefunction, 𝜓 𝑥, 𝑡 = 𝜙 𝑥 exp −𝑖𝜔𝑡 , and substitute into the above equation :

By dividing both sides with exp −𝑖𝜔𝑡 ,

For 0 ≤ 𝑥 ≤ 𝐿 , a general solution can be defined as

®

At x = 0, the probability of the particle is 0, resulting 𝜙 0 = 0 : B = 0.

Similarly, 𝜙 𝐿 = 0 : 𝑘" =&"'(

𝑛" = 1, 2, 3,⋯

By substituting into the steady-state Schrödinger equation,

−ℏ!

2𝑚𝜕!

𝜕𝑥!𝜙 𝑥 exp −𝑖𝜔𝑡 = 𝐸"𝜙 𝑥 exp −𝑖𝜔𝑡

−ℏ!

2𝑚𝜕!

𝜕𝑥!𝜙 𝑥 = 𝐸"𝜙 𝑥

𝜙 𝑥 = 𝐴sin 𝑘"𝑥 + 𝐵cos 𝑘"𝑥

𝑘" = ±2𝑚𝐸"ℏ

Page 4: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Schrödinger Equation in a 3D Cube (Cont'd)

By normalising 𝜙 𝑥 = 𝐴sin &"'(𝑥 ,

By considering the symmetry, a particle in a 3D cubic system can be described with the wavefunction :

∴ 𝐴 =2𝐿

Hence, the wave function on x is obtained as

𝜙 𝑥 =2𝐿sin 𝑘"𝑥 𝑘" =

2𝑚𝐸"ℏ

𝜓 𝑥, 𝑦, 𝑧 = 𝜓 𝑥, 𝑡 𝜓 𝑦, 𝑡 𝜓 𝑧, 𝑡 =2𝐿

)!sin 𝑘"𝑥 F sin 𝑘*𝑥 F sin 𝑘+𝑥

Here, the energy eigen values are

𝐸 = 𝐸" + 𝐸* + 𝐸+ =ℏ!

2𝑚 𝑘"! + 𝑘*

! + 𝑘+! =

ℏ!

2𝑚𝜋𝐿

!𝑛"! + 𝑛*! + 𝑛+!

(𝑛", 𝑛*, 𝑛+ = 1, 2, 3,⋯ )

Density of States in Low-Dimensions

𝑛"! + 𝑛*! + 𝑛+! =2𝑚ℏ!

𝐿𝜋

!𝐸

The available states can be obtained as

The available states can be approximated by the volume of the Fermi sphere ( x, y, z ≥ 0 ) :

𝑁! =184𝜋3

2𝑚ℏ!

𝐿𝜋

!𝐸

)

=𝐿)

6𝜋!2𝑚ℏ!

,) !𝐸 ,) ! ny

nz

nxx

y

z

nxi nxi+1

nyinyi+1 nzi

nzi+1

By dividing both sides by L3 :

𝑁 𝐸 =16𝜋!

2𝑚ℏ!

,) !𝐸 ,) ! = N

-

.𝐷 𝐸 𝑑𝐸

The density of states can be obtained as :

𝐷 𝐸 =𝑑𝑁𝑑𝐸 =

23𝜋!

2𝑚ℏ!

,) !𝐸 ,/ !

Page 5: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Density of States in Low-Dimensions

D E( )3D ∝ E12

D E( )2D ∝ const.

D E( )1D ∝ E− 12

D (E) 3D

EF

E

D (E) 2D

EF

E

D (E) 1D

EF

E

® Anderson localisation

Dimensions of NanodevicesBy reducing the size of devices,

3D : bulk

* http://www.kawasaki.imr.tohoku.ac.jp/intro/themes/nano.html

2D : quantum well, superlattice, 2D electron gas

1D : quantum nano-wire

0D : quantum dot

Page 6: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Quantum Well

* http://www.intenseco.com/technology/

A layer (thickness < de Broglie wave length) is sandwiched by high potentials :

Superlattice

* http://www.wikipedia.org/

By employing ultrahigh vacuum molecular-beam epitaxy and sputtering growth,periodically alternated layers of several substances can be fabricated :

Page 7: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Quantum Hall EffectFirst experimental observation was performed by Klaus von Klitzing in 1980 :

* http://www.wikipedia.org/

This was theoretically proposed by Tsuneya Ando in 1974 :

*** http://www.stat.phys.titech.ac.jp/ando/** http://qhe.iis.u-tokyo.ac.jp/research7.html

By increasing a magnetic field, the Fermi level in 2DEG changes.

® Observation of the Landau levels.

† http://www.warwick.ac.uk/~phsbm/qhe.htm

Landau LevelsLev D. Landau proposed quantised levels under a strong magnetic field :

* http://www.wikipedia.org/

B = 0

Ener

gy E

B ¹ 0

hwc

Density of states

Landau levels

Non-ideal Landau levels

EF

increasing B

Page 8: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Fractional Quantum Hall EffectIn 1982, the fractional quantum Hall effect was discovered by Robert B. Laughlin, Horst L. Strömer and Daniel C. Tsui :

* http://nobelprize.org/** H. L. Strömer et al., Rev. Mod. Phys. 71, S298 (1999).

Coulomb interaction between electrons > Quantised potential

¬ Improved quality of samples (less impurity)

Quantum Nano-WireBy further reducing another dimension, ballistic transport can be achieved :

* D. D. D. Ma et al., Science 299, 1874 (2003).

Page 9: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Diffusive / Ballistic TransportIn a macroscopic system, electrons are scattered :

When the transport distance is smaller than the mean free path,

L

l

System length (L) > Mean free path (l)

L

l

® Diffusive transport

System length (L) £ Mean free path (l)

® Ballistic transport

Resistance-Measurement ConfigurationsIn a nano-wire device, 4 major configurations are used to measure resistance :

Hall resistance : Bend resistance :

Longitudinal resistance : Transmission resistance :

iV

i

V

V

i

V

i

local 4-terminal method non-local 4-terminal method

Page 10: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Quantum DotBy further reduction in a dimension, well-controlled electron transport is achieved :

* http://www.fkf.mpg.de/metzner/research/qdot/qdot.html

Nanofabrication - Photolithography

Photolithography :

* http://www.wikipedia.org/

Typical wavelength :Hg lamp (g-line: 436 nm and i-line: 365 nm), KrF laser (248 nm) and ArF laser (193 nm)

** http://www.hitequest.com/Kiss/VLSI.htm

Resolution : > 50 nm (KrF / ArF laser)

Photo-resists :negative-type (SAL-601, AZ-PN-100, etc.)positive-type (PMMA, ZEP-520, MMA, etc.)

*** http://www.ece.gatech.edu/research/labs/vc/theory/photolith.html

Typical procedures :

Page 11: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Nanofabrication - Electron-Beam Lithography

Electron-beam lithography :

* http://www.shef.ac.uk/eee/research/ebl/principles.html

Resolution : < 10 nm

Typical procedures :

NanofabricationNano-imprint :

** K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004).* http://www.leb.eei.uni-erlangen.de/reinraumlabor/ausstattung/strukturierung.php?lang=en

Page 12: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Current Process TechnologyFront / back end of line :

* http://www.wikipedia.org/

Next-Generation NanofabricationDevelopment of nanofabrication techniques :

* K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004).

Page 13: nanoelec15 low-dimensional nanodevicesah566/lectures/nanoelec15... · 2021. 1. 15. · * K. Goser, P. Glosekotter and J. Diestuhl, Nanoelectronics and Nanosystems(Springer, Berlin,

Bottom Up TechnologySelf-organisation (self-assembly) without any control :

* http://www.omicron.de/

Pt nano-wires

** http://www.nanomikado.de/projects.html

Polymer