n m. markovic - energy.govon pt (covalent interactions) interplay of covalent, electrostatic and...

17
N M. Markovic H. Gasteiger and N. M. Markovic

Upload: others

Post on 13-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

N M. Markovic

H. Gasteiger and N. M. Markovic

Page 2: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

H2 /CO

Cattech 4 (2000) 110

Fuel Cells and Electrocatalysis

HOR/HER : the mother of all electrochemical reactions

CO: a key “test molecule”

ORR/OER: a key for the development of alternative energies

More than just devise for energy conversion - the development of fuel cell catalysts in the last three decades has transformed electrocatalysis from art to science

Page 3: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

MATERIALS-BY-DESIGN (111)

(100)

DESIGN

UHV FTIR SXS

STM/AFM RAMAN HRTEM

–– CHARACTERIZE

CHARACTIZATION METHODS

PHYSICAL CHEMICAL

–– SYNTHESIZE

SYNTHESIS METHODS

METALS

M -OXIDES

OXIDES

Reactants: O2, CH3OH, H2

M+ M+ M+M+

Pt(111)

OH = 0.70.85V

a)

DOUBLE-LAYER-BY-DESIGN

ANIONS

CATIONS

WATER

–– APPLY

Pt/C H2

O2

Fuel Cell Electrolyzer

REAL SYSTEM

Metal-Air Batteries

–– UNDERSTAND

Theory/Modeling Experiment

ACTIVITY, SELECTIVITY AND STABILITY MAPPING CsOH

LiOH KOH

Ru

Pt

Au

3

Single Crystals

Real Nano

Model Nano

Surface Science Approach

Page 4: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

ORR- The reaction pathway

(H2O2)ad H2O

(H2O2)solution

(O2)ad O2

4e-

2e- 2e-

2H+ 2H+

Page 5: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

Pt[111]-Skin

Pt[111]

H

up

d [%

]

60

30

0

60

30

0

O

xd

[%

]

E [V] vs. RHE

0.0 0.2 0.4 0.6 0.8 1.0

i [

A/c

m2]

60

30

0

-60

-30

E [V] vs. RHE

0.0 0.2 0.4 0.6 0.8 1.0

Rela

tive E

xp

an

sion

[%

]

-1.5

-1.0

-0.5

0.0

Pt3Ni(111)

Pt(111)

Atomic layer

1 2 3 4 5 6 7

Pt

[at.

%]

0

20

40

60

80

100

Ni

[at.

%]

100

80

60

20

0

40

a)

b)

c)

a’)

E [V] vs. RHE

0.0 0.2 0.4 0.6 0.8 1.0

i [m

A/c

m2]

-6

-4

-2

0

IIIIII

E [V] vs. RHE0.0 0.2 0.4 0.6 0.8 1.0

H

up

d

[%]

60

30

0

60

30

0

O

xd

[%

]

H2O

2 [

%]

Pt3Ni(111)

Pt(111)

Pt poly

0.1 HClO4

60oC

1600 rpm

0

50

i [

A/c

m2]

60

30

0

-60

-30

E [V] vs. RHE

0.0 0.2 0.4 0.6 0.8 1.0i

[mA

/cm

2]

-6

-4

-2

0

IIIIII

E [V] vs. RHE0.0 0.2 0.4 0.6 0.8 1.0

H

up

d

[%]

60

30

0

60

30

0

O

xd

[%

]

H2O

2 [

%]

Pt3Ni(111)

Pt(111)

Pt poly

0.1 HClO4

60oC

1600 rpm

0

50

i [

A/c

m2]

60

30

0

-60

-30

Potential/V

SXS

Metal Alloys(Pt3M)

[011

]

[01-1]

(110)-(1x1)

p(1x1)

Pt3Ni(110)

(e) Pt3Ni(100)

c(5x1)

(f)

Pt3Ni(111)(d)

[1-1

0]

[001]

E [V] vs. RHE

0.0 0.2 0.4 0.6 0.8 1.0 1.2

i [

A/c

m2]

-20

0

20

0.1M HClO4

(g)

Pt3Ni(111)

Pt(111)

CV

E [V] vs. RHE

0.0 0.2 0.4 0.6 0.8 1.0 1.2

i [

A/c

m2]

-20

0

20

(h)

Pt3Ni(100)

Pt(100)

E [V] vs. RHE

0.0 0.2 0.4 0.6 0.8 1.0 1.2

i [

A/c

m2]

-20

0

20

(i)

Pt3Ni(110)

Pt(110)

AES 3 keV

Auger Electron Energy [eV]

200 400 600 800

dN

(E)/

dE

(arb

. u

nit

s)

Pt 237

Pt390

Pt 158

Ni 848

Ni 783

Ni 716

Pt 251AES 3 keV

Auger Electron Energy [eV]

200 400 600 800

dN

(E)/

dE

(a

rb

. u

nit

s)

Pt 237

Pt390

Pt 158

Ni 848

Ni 783

Ni 716

Pt 251

Pt3Ni(hkl)

AES (a) LEED

E/E0

0.2 0.4 0.6 0.8

Inte

nsi

ty [

arb

. u

nit

s]

Pt 0.71

LEIS

Pt3Ni(hkl)

(b)

Surface composition = 100% Pt

Binding Energy [eV]-8 -6 -4 -2 0

Inte

nsi

ty [

arb

. u

nit

s]

UPS

(111)

(100)

(110)

(c)

Pt3Ni

Tailoring Electronic Properties

i = n F K(1-s) exp(-γGi / RT) Science, 315(2007)493

Page 6: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

Nanosegregated Profile Activity mapping

Nature Materials, 6(2007)241

1st Layer

2nd Layer

3rd Layer

4th Layer

Pt=100 at.%

Pt=48 at.%

Ni=52 at.%

Pt=87 at.%

Ni=13 at.%

Pt=75 at.%

Ni=25 at.%

Pt[111]-Skin surface

Act

ivit

y fo

r O

RR

d-band center [eV]

2.63.03.4

Sp

ecif

ic A

cti

vit

y:

i k @

0.9

V [

mA

/cm

2

real]

0

1

2

3

4

5

Pt3Ti

Pt3V

Pt3Fe

Pt3Co

Pt3Ni

Pt-polyPt-skin surfaces

Pt-skeleton surfaces

Acti

vit

y i

mp

ro

vem

en

t fa

cto

r v

s. P

t-p

oly

1

2

3

d-band center [eV]

2.63.03.4

17

18

19

Target Activity Pt

3Ni(111)

Calculated d-band center [eV]

-3.0 -2.8 -2.6

Calc

ula

ted

acti

vit

y [

10

-2 e

V]

0

2

4

6

Pt

Pt3Ni

Pt3Co

Pt3Fe

Pt3Ti

(b)(a)

3.0 2.8 2.6

Calculated d-band center [eV]

Calc

ula

ted

acti

vit

y [

10

-2eV

]

0

2

4

6

Pt/C

d-band center shift (eV)

- - -

Maximize activity by minimizing surface coverage of spectators

Without compromising activity protect 3d elements by additional Pt layer

Tailoring Activity by Electronic Properties

Guiding Principles:

Page 7: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

9

Colloidal solvo - thermal approach for monodispersed PtM NPs with controlled size and composition

1o Particle size effect applies to Pt-bimetallic NPs Specific Activity increases with particle size: 3 < 4.5 < 6 < 9nm

Mass Activity decreases with particle size Optimal size particle size ~5nm

Efficient surfactant removal

2o Temperature induced segregation in Pt-bimetallic NPs Agglomeration prevented

Optimized annealing temperature 400-500oC

(b)

3o Surface chemistry of homogeneous Pt-bimetallic NPs PtxM(1-x) NPs

Dissolution of non Pt surface atoms leads to Pt-skeleton formation

4o Composition effect in Pt-bimetallic NPs

Pt3M

Optimal composition of Pt-bimetallic NPs is PtM

1 nm

0.22 nm

1 nm1 nm

PtM PtM2 PtM3

Co KαPt Lα

Pt Co

Tailoring Electronic Properties

Page 8: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

8

counts

Position (nm)

43 5210

Ni

Position (nm)

43 5210

Inte

nsit

y (

a.

u.)

Pt

counts

Position (nm)

43 5210

Calculated Profile

Intensity Counts

Inte

nsit

y (

a.

u.)

Position (nm)

43 5210

counts

Position (nm)43 5210

1 nm 1 nm

as-prepared acid leached acid leached/annealed

d

e

a

b

c

counts

Position (nm)

43 5210

Ni

Position (nm)

43 5210

Inte

nsit

y (

a.

u.)

Pt

counts

Position (nm)

43 5210

Calculated Profile

Intensity Counts

Inte

nsit

y (

a.

u.)

Position (nm)

43 5210

counts

Position (nm)43 5210

1 nm 1 nm

as-prepared acid leached acid leached/annealed

d

e

a

b

c

5o Pt-bimetallic catalysts with mutilayered Pt-skin surfaces

RDE after 4K cycles @60oC (0.6-1.05V vs. RHE):

8-fold specific and 10-fold mass activity improvements over Pt/C

0

100

200

300

400

Imp

ro

ve

men

t F

ac

to

r

(v

s.

Pt/C

)

Ma

ss

Ac

tiv

ity

(A

/g) before

after

0

2

4

6

0

10

20

30

40

50

60

Sp

ec

ific

Su

rfa

ce

Are

a (m

2/g

)

before

after

0.0

0.2

0.4

0.6

0.8

1.0

before

Sp

ec

ific

Ac

tiv

ity

(m

A/c

m2)

after

0

2

4

6

Imp

ro

ve

me

nt F

ac

to

r

(vs

. P

t/C

)

Pt/C acid leachedPtNi/C

acid leached/annealedPtNi/C

a

b

c

0

2

4

6

8

10

after before after 0

100

200

300

400

Imp

ro

ve

men

t F

ac

to

r

(v

s.

Pt/C

)

Ma

ss

Ac

tiv

ity

(A

/g) before

after

0

2

4

6

0

10

20

30

40

50

60

Sp

ec

ific

Su

rfa

ce

Are

a (m

2/g

)

before

after

0.0

0.2

0.4

0.6

0.8

1.0

before

Sp

ec

ific

Ac

tiv

ity

(m

A/c

m2)

after

0

2

4

6

Imp

ro

ve

me

nt F

ac

to

r

(vs

. P

t/C

)

Pt/C acid leachedPtNi/C

acid leached/annealedPtNi/C

a

b

c

before 0

4

8

10

14

From Model to Real Catalysts

6o Multimetallic NPs can further improve activity and durability

Au core PtFe shell Pt/C Au/PtFe

before before After 60K cycles After 60K cycles

Nano Letters, 11(2011)919-928

Advanced Functional Materials, 21(2011)147

Page 9: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

Keep electronic properties constant

Maximize activity and selectivity by inert self assembled monolayer

Inert Pt-Calix[4]arene adlayer

Organic

Molecular patterning

Nature Materials, 9, 2010,881

Inorganic

Pt (111)

- O2

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

a)

b)

c)

Pt (111)

- O2

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

Pt (111)

- O2

- SO4 / PO42- 3-

Pt (111)

- O2

- SO4 / PO42- 3-- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

a)

b)

c)

Inert Pt-CNad adlayer

Nature Chemistry 2 (2010) 880

Beyond electronic effects

9

Page 10: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

18

•ORR is strongly inhibited by adsorbed phosphoric acid anions

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2

]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rre

nt

de

ns

ity [

mA

/cm

2]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rre

nt

de

ns

ity [

mA

/cm

2]

-100

-50

0

50

100

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2]

-100

-50

0

50

100

a)

b)

c)

d)

Pt (111) – CN

0.05 M H2SO40.05 M H3PO4

Pt (111)

Pt (111) – CN

Pt (111)

E [V vs. RHE]

E [V vs. RHE]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

III IIIIII III

III IIIIII III

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2

]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rre

nt

de

ns

ity [

mA

/cm

2]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rre

nt

de

ns

ity [

mA

/cm

2]

-100

-50

0

50

100

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2]

-100

-50

0

50

100

a)

b)

c)

d)

Pt (111) – CN

0.05 M H2SO40.05 M H3PO4

Pt (111)

Pt (111) – CN

Pt (111)

E [V vs. RHE]

E [V vs. RHE]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

III IIIIII III

III IIIIII III

III IIIIII III

•CN adlayer selectively blocks adsorption of anions

Pt (111)

- O2

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

a)

b)

c)

Pt (111)

- O2

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

Pt (111)

- O2

- SO4 / PO42- 3-

Pt (111)

- O2

- SO4 / PO42- 3-- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- SO4 / PO42- 3-- SO4 / PO42- 3-

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

Pt (111)

- O2

- CN-

- M+

- M+(H2O)x-OHad

a)

b)

c)

Nature Chemistry 2 (2010) 880

i = n F K (1-s) exp(-γGi / RT)

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

mA

/cm

2]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2

]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2

]

-100

-50

0

50

100

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2]

-100

-50

0

50

100

0.1 M HClO40.1 M KOH

E [V vs. RHE]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

E [V vs. RHE]

E [V vs. RHE] E [V vs. RHE]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

a)

b)

c)

d)

Pt (111) – CN

Pt (111)

Pt (111) – CN

Pt (111)

III IIIIII III

III III III III

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

mA

/cm

2]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2

]

-6

-5

-4

-3

-2

-1

0

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2

]

-100

-50

0

50

100

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8 1.0

Cu

rren

t d

ensi

ty [

A/c

m2]

-100

-50

0

50

100

0.1 M HClO40.1 M KOH

E [V vs. RHE]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

E [V vs. RHE]

E [V vs. RHE] E [V vs. RHE]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

Cu

rre

nt

de

nsit

y [

mA

/cm

2]

a)

b)

c)

d)

Pt (111) – CN

Pt (111)

Pt (111) – CN

Pt (111)

III IIIIII III

III III III III

Selectivity controlled activity

“Big vs. Small”

10

Page 11: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

a) b)

c)

20 nm40 nm

a) b)

c)

20 nm40 nm

Improving stability of cathode catalysts

Nature Materials, 9, 2010,881

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8

Ch

arg

eden

sity

[

C/c

m2]

-5

0

5

10

15

20

25

30

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8

Cu

rren

t d

ensi

ty [

A/c

m2]

-100

-50

0

50

100

a)

b)

Pt (111)Pt (111)-APt (111)-BPt (111)-CPt (111)-D

III III

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8

Ch

arg

eden

sity

[

C/c

m2]

-5

0

5

10

15

20

25

30

E [V vs. RHE]

0.0 0.2 0.4 0.6 0.8

Cu

rren

t d

ensi

ty [

A/c

m2]

-100

-50

0

50

100

a)

b)

Pt (111)Pt (111)-APt (111)-BPt (111)-CPt (111)-D

III III

2% of active sites

Selectivity controlled stability

11

Page 12: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

14

Maintain electronic properties and optimize stability by molecular patterning

Selective anode catalysts for the ORR and HOR are of grate importance for stability of cathode materials in Fuel Cells

17

Tailoring Activity/Stability by Molecular Patterning

Nano

Calix adlayer prevents adsorption of O2 but not H2

Extended

O2 H2

Pt(111)-Calix[4]arene

O2 + 4H+ +4e_ = H2O

H2 = 2H+ + 2e-

Reversible potential (E)

Act

ivit

y

Page 13: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

Three Phase (Nafion) Interface

•What type of interactions are possible at three phase interfaces ?

18

Page 14: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

Sulfonate anions are “specifically” adsorbed on Pt (covalent interactions)

Interplay of Covalent, Electrostatic and Non-covalent Interactions

Non-covalent cation-sulfonate interaction

Pt-beckbone interaction is very week (electrostatic forces)

26

J. Phys. Chem., C. (2010) .

19

Page 15: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

27

The Spring Model

i = n F k (1-anions.) exp(-Gi/RT)

J. Phys. Chem., C. (2010) .

20

Page 16: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

16

Perspectives

Understanding complexity (simplicity) of electrochemical interfaces all the way down to molecular and atomic levels will pave the way to:

16

Real

WATER

CYCLE

CARBON

CYCLE

LITHIUM

CYCLE

ENERGY

Energy

Conversion

Storage Group

&

Dramatic new energy production and storage technologies

Greatly improve our predictions for accelerating and directing chemical transformations

Enable new mitigation strategies for environmental damage

Page 17: N M. Markovic - Energy.govon Pt (covalent interactions) Interplay of Covalent, Electrostatic and Non-covalent Interactions Non-covalent cation-sulfonate interaction Pt-beckbone interaction

Chris Lucas

Jeff Greeley

Dusan Strmcnik,

Chao Wang Dennis van der Vliet

Dusan Tripkovic

Ram Subbaraman

Ken Kodama

Nemanja Danilovic

Masa Uchimura

Donguo Li

Pietro Lopez

Voya Stamenkovic

Gustav Wiberg

K-C Chang