muon experiments in project x - indico.fnal.gov · •µ-e conversion experiment at project x...

58
Muon Experiments in Project X Yoshitaka Kuno Department of Physics Osaka University DOE Briefing November 17th, 2010 1

Upload: others

Post on 19-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Experiments in Project X

Yoshitaka KunoDepartment of PhysicsOsaka University

DOE BriefingNovember 17th, 2010

1

Page 2: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Outline

•Why Intensity Frontier with Muons?•Project X Muon Source: Comparison in the World•Muon Experiments at Project X•Why Charged Lepton Flavor Violation (CLFV) ?•Why μ-e Conversion, not μ→eγ ?•Why 10-18 for µ-e Conversion ?•Planned µ-e Conversion Experiment at Fermilab (Mu2e)•µ-e Conversion Experiment at Project X•Summary

2

Page 3: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Why Intensity Frontierwith Muons ?

3

Page 4: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

10-10sec

10-34sec

102GeV

1016GeV

1019GeV

102sec

1013sec

10-3GeV

10-9GeV

timescale

energy scale

Quantum Gravity Epoch

Superstrings

Electroweak Epoch

Origin of Mass (Higgs Particle)

New Symmetry (Supersymmetry)

Unification Epoch

Unification of Fundamental Forces(GUT)

Origin of Neutrino mass(Right-handed Neutrinos)

Our Existence in the Universe(Leptogenesis)

4

Page 5: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

1016 GeV is important.

10-10sec

10-34sec

102GeV

1016GeV

1019GeV

102sec

1013sec

10-3GeV

10-9GeV

timescale

energy scale

Quantum Gravity Epoch

Superstrings

Electroweak Epoch

Origin of Mass (Higgs Particle)

New Symmetry (Supersymmetry)

Unification Epoch

Unification of Fundamental Forces(GUT)

Origin of Neutrino mass(Right-handed Neutrinos)

Our Existence in the Universe(Leptogenesis)

5

Page 6: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

The Intensity Frontier is.....

• Energy scale reached by the intensity frontier would be much higher than that of accelerators of O(1 TeV) through quantum radiative corrections (renormalization group equation = RGE).

• Effects are small.• Rare process searches• High precision measurements

• High intensity machine is needed.• Indirect searches

Quantum Corrections

∆E ∼ �2∆t

Uncertainty principle

6

Page 7: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Why Muons for the Intensity Frontier ?

Guidelines for Rare Process Searches

(1) Many particles are needed

The muon is the lightest unstable particle and therefore given energy, more muons can be produced.

(2) Theoretical uncertainty should be small.

The muon does not have strong interaction, and therefore the processes with muons are theoretically clean.

7

Page 8: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Project X Muon Source:Comparison

8

Page 9: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Comparison : Muon Beam Sources

beam power time structure muon yield

PSI 1.2 MW DC 108/sec

TRIUMF 75 kW DC 105/sec

MuSIC 400 W DC 107-8/sec

RAL 200 kW pulsed (50 Hz) 2x105/sec

J-PARC (MLF) 1 MW pulsed (25 Hz) 2x107/sec

Project X Muon 1-2 MW DC & pulsed 108-12/sec

9

Page 10: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Comparison : Muon Beam Sources

beam power time structure muon yield

PSI 1.2 MW DC 108/sec

TRIUMF 75 kW DC 105/sec

MuSIC 400 W DC 107-8/sec

RAL 200 kW pulsed (50 Hz) 2x105/sec

J-PARC (MLF) 1 MW pulsed (25 Hz) 2x107/sec

Project X Muon 1-2 MW DC & pulsed 108-12/sec

adjustable10

Page 11: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Comparison : Muon Beam Sources

beam power time structure muon yield

PSI 1.2 MW DC 108/sec

TRIUMF 75 kW DC 105/sec

MuSIC 400 W DC 107-8/sec

RAL 200 kW pulsed (50 Hz) 2x105/sec

J-PARC (MLF) 1 MW pulsed (25 Hz) 2x107/sec

Project X Muon 1-2 MW DC & pulsed 108-12/secCapability of pulsed muon beams would

make “Muons at Project X” unique.

adjustable11

Page 12: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Experimentsat Project X

12

Page 13: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Particle Physics Programs at Project X

Mode BeamCurrent

limitplanned

goalProject X

goal Priority

µ-N→e-N pulsed <10-12 3x10-17 3x10-19

µ+→e+γ DC <1.1x10-12 2x10-13 2x10-14

µ*→e+e+e- DC <10-12 - 1x10-16

µ-e-N→e-e-N DC - 1x10-16

Mu to Mu conv pulsed <8x10-11 <5x10-15

muon EDM pulsed <1.8x10-19 <5x10-25

muon lifetime pulsed 1ppm 0.1ppm

13

Page 14: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Particle Physics Programs at Project X

Mode BeamCurrent

limitplanned

goalProject X

goal Priority

µ-N→e-N pulsed <10-12 3x10-17 3x10-19

µ+→e+γ DC <1.1x10-12 2x10-13 2x10-14

µ*→e+e+e- DC <10-12 - 1x10-16

µ-e-N→e-e-N DC - 1x10-16

Mu to Mu conv pulsed <8x10-11 <5x10-15

muon EDM pulsed <1.8x10-19 <5x10-25

muon lifetime pulsed 1ppm 0.1ppm

14

Page 15: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Particle Physics Programs at Project X

Mode BeamCurrent

limitplanned

goalProject X

goal Priority

µ-N→e-N pulsed <10-12 3x10-17 3x10-19

µ+→e+γ DC <1.1x10-12 2x10-13 2x10-14

µ*→e+e+e- DC <10-12 - 1x10-16

µ-e-N→e-e-N DC - 1x10-16

Mu to Mu conv pulsed <8x10-11 <5x10-15

muon EDM pulsed <1.8x10-19 <5x10-25

muon lifetime pulsed 1ppm 0.1ppmµ-e conversion is a flagship experiment.

15

Page 16: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Why CLFV ?

16

Page 17: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

What is Charged Lepton Flavor Violation ?

Quark mixingobserved

Quarks

17

Page 18: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

What is Charged Lepton Flavor Violation ?

Quark mixingobserved

Quarks

Leptons

荷電レプトン混合現象

Neutrino mixingobserved

18

Page 19: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

What is Charged Lepton Flavor Violation ?

Quark mixingobserved

Quarks

Leptons

荷電レプトン混合現象

Neutrino mixingobserved

Charged lepton mixing not observed.

Nobel Prize-wining class researchCharged Lepton Flavor Violation (CLFV)

19

Page 20: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

cLFV in the SM with massive neutrinos

B(µ→ eγ) =3α

32π

����

l

(VMNS)∗µl(VMNS)el

m2νl

M2W

���2

Note: LFV in SM with massive neutrinos

µ e

γ

ν very tiny!

The SM with neutrino masses predicts small event rates for the LFV.

W

The observation of the LFV will be clearly a discovery of physics beyond the SM with non-zero neutrino masses.

BR(µ→ eγ) ∝ (δm2ν)2 < 10−54

5

BR~O(10-54)

Observation of CLFV would indicate a clear signal of physics beyond the SM with massive neutrinos.

20

Page 21: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Comparison of Sensitivity to New Physics Models (a la Prof. Dr. A. Buras at TUM)

AC RVV2 AKM δLL FBMSSM LHT RS

D0 − D0 ��� � � � � ��� ?

�K � ��� ��� � � �� ���Sψφ ��� ��� ��� � � ��� ���

SφKS ��� �� � ��� ��� � ?

ACP (B → Xsγ) � � � ��� ��� � ?

A7,8(B → K∗µ+µ−) � � � ��� ��� �� ?

A9(B → K∗µ+µ−) � � � � � � ?

B → K(∗)νν � � � � � � �Bs → µ+µ− ��� ��� ��� ��� ��� � �K+ → π+νν � � � � � ��� ���KL → π0νν � � � � � ��� ���µ → eγ ��� ��� ��� ��� ��� ��� ���τ → µγ ��� ��� � ��� ��� ��� ���µ+N → e+N ��� ��� ��� ��� ��� ��� ���

dn ��� ��� ��� �� ��� � ���de ��� ��� �� � ��� � ���(g − 2)µ ��� ��� �� ��� ��� � ?

Table 8: “DNA” of flavour physics effects for the most interesting observables in a selection of SUSYand non-SUSY models ��� signals large effects, �� visible but small effects and � implies thatthe given model does not predict sizable effects in that observable.

• vanishingly small effects (one black star).

This table can be considered as the collection of the DNA’s for various models. These DNA’s

will be modified as new experimental data will be availabe and in certain cases we will be

able to declare certain models to be disfavoured or even ruled out.

In constructing the table we did not take into account possible correlations among the

observables listed there. We have seen that in some models, it is not possible to obtain

large effects simultaneously for certain pairs or sets of observables and consequently future

measurements of a few observables considered in tab. 8 will have an impact on the patterns

shown in this DNA table. It will be interesting to monitor the changes in this table when the

future experiments will provide new results.

65

Different theoretical models

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi, D.M. Straub, . Nucl.Phys.B830:17-94,2010.

21

Page 22: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Comparison of Sensitivity to New Physics Models (a la Prof. Dr. A. Buras)

AC RVV2 AKM δLL FBMSSM LHT RS

D0 − D0 ��� � � � � ��� ?

�K � ��� ��� � � �� ���Sψφ ��� ��� ��� � � ��� ���

SφKS ��� �� � ��� ��� � ?

ACP (B → Xsγ) � � � ��� ��� � ?

A7,8(B → K∗µ+µ−) � � � ��� ��� �� ?

A9(B → K∗µ+µ−) � � � � � � ?

B → K(∗)νν � � � � � � �Bs → µ+µ− ��� ��� ��� ��� ��� � �K+ → π+νν � � � � � ��� ���KL → π0νν � � � � � ��� ���µ → eγ ��� ��� ��� ��� ��� ��� ���τ → µγ ��� ��� � ��� ��� ��� ���µ+N → e+N ��� ��� ��� ��� ��� ��� ���

dn ��� ��� ��� �� ��� � ���de ��� ��� �� � ��� � ���(g − 2)µ ��� ��� �� ��� ��� � ?

Table 8: “DNA” of flavour physics effects for the most interesting observables in a selection of SUSYand non-SUSY models ��� signals large effects, �� visible but small effects and � implies thatthe given model does not predict sizable effects in that observable.

• vanishingly small effects (one black star).

This table can be considered as the collection of the DNA’s for various models. These DNA’s

will be modified as new experimental data will be availabe and in certain cases we will be

able to declare certain models to be disfavoured or even ruled out.

In constructing the table we did not take into account possible correlations among the

observables listed there. We have seen that in some models, it is not possible to obtain

large effects simultaneously for certain pairs or sets of observables and consequently future

measurements of a few observables considered in tab. 8 will have an impact on the patterns

shown in this DNA table. It will be interesting to monitor the changes in this table when the

future experiments will provide new results.

65

Different theoretical models

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi, D.M. Straub, . Nucl.Phys.B830:17-94,2010.

All three stars for µ-e conversion

22

Page 23: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

! anomaly in muon g-2 (?)

Hagiwara et al: hep-ph/0611102

W

νµ

µ

γ

νe

e

µ→ eγ

6

µ+! e

+!

an example diagram

CLFV in SUSY Models

Since neutrinos are mixed & LFC is violated, sleptons can mix.

! anomaly in muon g-2 (?)

Hagiwara et al: hep-ph/0611102

H

νR

The LFV search can study the physics here even if we can not directly produce the heavy particle ( ) at LHC

νµ νe

6

Slepton Mixing

• neutrino interaction violates lepton flavor number conservation to explain neutrino oscillation

SUSY flavor problem

Since sleptons have new source of flavor violation in their mass matrices, lepton flavor violating

phenomena can be generated by SUSY particles.

There is no symmetry to guarantee the small violation, but the LFV in the slepton masses should be small.

BR(µ→ eγ) � 1× 10−11

�150 GeVmSUSY

�4 �tanβ

20

�2 �∆21

3× 10−4

�2

15

•Through quantum corrections (RGE), slepton mixing is sensitive to physics at very high energy scale (such as GUT and neutrino seesaw models).

•In contrast to proton decay (~1M tons) and double beta decays (~0.1-1 ton), CLFV need only 1019-21 muons.

23

Page 24: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

! anomaly in muon g-2 (?)

Hagiwara et al: hep-ph/0611102

W

νµ

µ

γ

νe

e

µ→ eγ

6

µ+! e

+!

an example diagram

CLFV in SUSY Models

Since neutrinos are mixed & LFC is violated, sleptons can mix.

! anomaly in muon g-2 (?)

Hagiwara et al: hep-ph/0611102

H

νR

The LFV search can study the physics here even if we can not directly produce the heavy particle ( ) at LHC

νµ νe

6

Slepton Mixing

• neutrino interaction violates lepton flavor number conservation to explain neutrino oscillation

SUSY flavor problem

Since sleptons have new source of flavor violation in their mass matrices, lepton flavor violating

phenomena can be generated by SUSY particles.

There is no symmetry to guarantee the small violation, but the LFV in the slepton masses should be small.

BR(µ→ eγ) � 1× 10−11

�150 GeVmSUSY

�4 �tanβ

20

�2 �∆21

3× 10−4

�2

15

• neutrino interaction violates lepton flavor number conservation to explain neutrino oscillation

SUSY flavor problem

Since sleptons have new source of flavor violation in their mass matrices, lepton flavor violating

phenomena can be generated by SUSY particles.

There is no symmetry to guarantee the small violation, but the LFV in the slepton masses should be small.

BR(µ→ eγ) � 1× 10−11

�150 GeVmSUSY

�4 �tanβ

20

�2 �∆21

3× 10−4

�2

15

•By using SUSY, CLFV can provide hints of physics at very high energy scale that accelerator cannot directly reach.

•SUSY plays a role of a bridge between physics at high (1016 GeV) and low energy (102 GeV) scales.

24

Page 25: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Why μ-e Conversion,not μ→eγ ?

25

Page 26: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

103

104

10-2

10-1

1 10 102

!

" (

TeV

)B(!# e$)"10

-13

B(!# e$)"10-14

B(!# e conv in 48

Ti)"10-16

B(!# e conv in 48

Ti)"10-18

EXCLUDED

Physics Sensitivity Comparison between μ→eγ and μ-e Conversion

photonic(dipole)

non-photonic

μ→eγ yes (on-shell)

no

μ-e conversion

yes (off-shell)

yes

Photonic (dipole) and non-photonic contributions

more sensitive to new physics

26

Page 27: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Experimental Comparison between μ→eγ and μ-e Conversion

• μ→eγ : • Accidental background is given by (rate)2. • The detector resolutions have to be improved, but difficult.• The ultimate sensitivity would be about 10-14.

• μ-e conversion : • A higher beam intensity can be taken because of no accidentals. • Improvement of a muon beam can be possible.

• high intensity and high purity

background challenge beam intensity

• μ→eγ accidentals detector resolution limited

• μ-e conversion beam beam background no limitation

μ-e conversion might be a next step.

27

Page 28: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Why <10-18 Sensitivityfor µ-e conversion ?

28

Page 29: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

μ-e Conversion : Target dependence

R. Kitano, M. Koike and Y. Okada, Phys. Rev. D66, 096002 (2002)

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

B!N!eN"Z#

/ B!N!eN"Z=$%#

Z

dipole

scalar

vector

normalized at Al

If signal is seen at 10-16,

By changing muon-stopping target materials, effective interaction of new physics can be discriminated.

29

Page 30: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

BR~10-19

BR~10-12

Andre de Gouvea Northwestern

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600

y

x

title10

Now

PRIME

CKMMNS

M1/2(GeV)

B(µTi→ eTi)× 1012 tan β = 10

µ→ e conversion is at least as sensitive as µ→ eγ

SO(10) inspired model.

remember B scales with y2.

B(µ→ eγ) ∝M2R[ln(MPl/MR)]2

[Calibbi, Faccia, Masiero, Vempati, hep-ph/0605139]

October 14, 2009 CLFV

Andre

de

Gouvea

Northw

estern

1e-

07

1e-

06

1e-

05

1e-

04

0.0

01

0.0

1

0.1 1 10

100

100

0

0 2

00 4

00 6

00 8

00 1

000

120

0 1

400

160

0

y

x

title

10

Now

PRIM

E

CKM

MN

S

M1/2(G

eV)

B(µ

Ti→

eTi)×

1012

tan

β=

10

µ→

eco

nver

sion

isat

leas

tas

sens

itiv

eas

µ→

eγ S

O(1

0)in

spir

edm

odel

.

rem

ember

Bsc

ales

wit

hy2.

B(µ→

eγ)∝

M2 R[ln(M

Pl/

MR

)]2

[Calibbi,

Facc

ia,M

asi

ero,Vem

pati

,hep

-ph/0605139]

October

14,2009

CLFV

12010年11月16日火曜日

Andre de Gouvea Northwestern

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600

y

x

title10

Now

PRIME

CKMMNS

M1/2(GeV)

B(µTi→ eTi)× 1012 tan β = 10

µ→ e conversion is at least as sensitive as µ→ eγ

SO(10) inspired model.

remember B scales with y2.

B(µ→ eγ) ∝M2R[ln(MPl/MR)]2

[Calibbi, Faccia, Masiero, Vempati, hep-ph/0605139]

October 14, 2009 CLFV

Andre

de

Gouvea

Northw

estern

1e-

07

1e-

06

1e-

05

1e-

04

0.0

01

0.0

1

0.1 1 10

100

100

0

0 2

00 4

00 6

00 8

00 1

000

120

0 1

400

160

0

yx

title

10

Now

PRIM

E

CKM

MNS

M1/2(G

eV)

B(µ

Ti→

eTi)×

1012

tan

β=

10

µ→

eco

nver

sion

isat

leas

tas

sens

itiv

eas

µ→

eγ S

O(1

0)in

spir

edm

odel

.

rem

ember

Bsc

ales

wit

hy2.

B(µ→

eγ)∝

M2 R[ln(M

Pl/

MR

)]2

[Calibbi,

Facc

ia,M

asi

ero,Vem

pati

,hep

-ph/0605139]

October

14,2009

CLFV

12010年11月16日火曜日

12010年11月16日火曜日

PRISM/Project X

2010年11月16日火曜日

Aiming at Single Event Sensitivity of 2x10-19

BR~10-19 covers the whole SUSY-parameter space for LHC. When SUSY is found at LHC, CLFV should be observed.

Calibbi, Faccia, Masiero, Vempati, hep-ph/0605139]

If signal is not seen at 10-16,

Project X

SUSY predictions

30

Page 31: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Sensitivity of <10-18

mSUGRA with right-handed neutrinos

will be improved by a factor of

10,000.

B(µ! + Al ! e! + Al) < 10!16

µ<0,µ<0,

Bran

ching

Rati

os ( µ→

e ; T

i)

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

Bran

ching

Rati

os ( µ→

e !)

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

0 1.0 2.0 3.00.5 1.5 2.5m" (TeV)

>µ>µµ > ,µ >µ >µ >

LHC

reach

MEG (µ→e!)

This Experiment (µ→e;Al)

Current Exp. Bound on µ→e ; Ti (SINDRUM II)

Mu2e

31

Page 32: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Sensitivity of <10-18

mSUGRA with right-handed neutrinos

will be improved by a factor of

10,000.

B(µ! + Al ! e! + Al) < 10!16

µ<0,µ<0,

Bran

ching

Rati

os ( µ→

e ; T

i)

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

Bran

ching

Rati

os ( µ→

e !)

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

0 1.0 2.0 3.00.5 1.5 2.5m" (TeV)

>µ>µµ > ,µ >µ >µ >

LHC

reach

MEG (µ→e!)

This Experiment (µ→e;Al)

Current Exp. Bound on µ→e ; Ti (SINDRUM II)

will be improved by a factor of

1000,000.

B(µ! + Ti ! e! + Ti) < 10!18

Project X

Mu2e

32

Page 33: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Sensitivity of <10-18

mSUGRA with right-handed neutrinos

will be improved by a factor of

10,000.

B(µ! + Al ! e! + Al) < 10!16

µ<0,µ<0,

Bran

ching

Rati

os ( µ→

e ; T

i)

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

Bran

ching

Rati

os ( µ→

e !)

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

0 1.0 2.0 3.00.5 1.5 2.5m" (TeV)

>µ>µµ > ,µ >µ >µ >

LHC

reach

MEG (µ→e!)

This Experiment (µ→e;Al)

Current Exp. Bound on µ→e ; Ti (SINDRUM II)

will be improved by a factor of

1000,000.

B(µ! + Ti ! e! + Ti) < 10!18

Project X

Mu2e

sensitive to multi TeV energy scale.

33

Page 34: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Planned µ-e conversionExperiment (Mu2e)

34

Page 35: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Mu2e at Fermilab(for single event sensitivity of 3x10-17)

!"#$%&'(#)*+#,-)#($*

."/)01#"'*+#,-)#($*+-,-&'0*,#2*

3#3-)'%3*45#($0*0'"/(67'*,()-*8"#3*1"#$%&'(#)*'/"6-'*'#*$-'-&'#"0*

9-'-&'#"*+#,-)#($*

!"#'#)*./"6-'*

./"6-'*+7(-,$()6*

:%#)*;-/3*<#,,(3/'#"0*

."/&=-"*

</,#"(3-'-"*

!(#)0* >,-&'"#)0*:%#)0*

:%#)**+'#11()6*./"6-'*

:%?-*:%#)*;-/3,()-!:%#)0*/"-*&#,,-&'-$@*'"/)01#"'-$@*/)$**$-'-&'-$*()*0%1-"&#)$%&'()6*0#,-)#($/,*3/6)-'0*

9-,(5-"0*ABAA?C*0'#11-$*3%#)0*1-"*D*E-F*1"#'#)*

!"#'#)*;-/3*

D*

;GC*.*

;GH*.*

;G?*.*;G?BC*.*

;GH*.*

35

Page 36: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Intensity for Mu2e

To achieve a single sensitivity of 10-17, we need

1011 muons/sec (with 107 sec running)

whereas the current highest intensity is 108/sec at PSI.

Pion Capture by Superconducting Solenoid System

Guide !’s until decay to !’s

Suppress high"P particles

•!’s : p!< 75 MeV/c

•e’s : pe < 100 MeV/c

only 20 kW beam power needed

36

Page 37: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Background Rejection Methods for Mu2e

Muon DIO background

low-mass trackers in vacuum & thin target

improveelectron energy resolution

curved solenoids for momentum selection

Muon DIFbackground

eliminate energetic muons (>75 MeV/c)

Beam-related backgrounds

Beam pulsing with separation of 1μsec

measured between beam pulses

proton extinction = #protons between pulses/#protons in a pulse < 10-9

37

Page 38: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

µ-e ConversionExperimentat Project X

38

Page 39: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Intensityfor Sensitivity < 3x10-19 at Project X

To achieve a single sensitivity of 10-19, we need

>1012 muons/sec (with 107 sec running)

whereas the current highest intensity is 108/sec at PSI.

Pion Capture by Superconducting Solenoid System

Guide !’s until decay to !’s

Suppress high"P particles

•!’s : p!< 75 MeV/c

•e’s : pe < 100 MeV/c

39

Page 40: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Intensityfor Sensitivity < 3x10-19 at Project X

To achieve a single sensitivity of 10-19, we need

>1012 muons/sec (with 107 sec running)

whereas the current highest intensity is 108/sec at PSI.

Pion Capture by Superconducting Solenoid System

Guide !’s until decay to !’s

Suppress high"P particles

•!’s : p!< 75 MeV/c

•e’s : pe < 100 MeV/c

Multi MW beam power at Project X

needed

40

Page 41: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Additional Background Rejection Methodsfor Sensitivity < 3x10-19 at Project X

Muon DIObackground

narrow muon beam spread

1/10 thickness muon stopping target

mono-energetic muon beam

Pionbackground

long muon beam-line long solenoid or a muon storage ring

pion free beam

beam handling technique

developed for muon collider and Nufact.

phase rotation

muon beam cooling

oroptions

41

Page 42: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Phase Rotation Option: PRISM/Project X

PRISMbeamline

PRISM-FFAGmuon storage ring

momentum slit

extract kickers

injection kickers

matching section

curved solenoid (short)

SC solenoid /pulsed horns

PRIME detector

42

Page 43: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Beam Cooling Option: Geant4 Simulation of Ionization Cooling

z = 0, Rinner = 7.5 cm

Bz = 10 T

z = 2 m, Rinner = 12 cm

Bz = 4 T

P(3 GeV)

π – µ –

νµ

43

Page 44: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

13

muonic atom becomes shorter as the atomic number increases, from 864 nsec in Al to 79 nsec in Au. In the next-generation experiments like Mu2e and COMET, to remove the prompt beam-related backgrounds, in particular from pions, the time window of measurements starts about 700 nsec after the beam prompt. Therefore, the choice of target materials is currently constrained to light materials. To have a heavy material with a large atomic number, a pion-free beam is needed. And that can be done only at Project-X. 5.1 Sensitivity and Backgrounds

Muon Storage Ring Option!In the case of the muon storage ring proposal, an improvement factor of the signal sensitivity of 100 would come from an increase of the number of muons stopped in the muon-stopping target of a factor of 20, and that of the signal acceptance of more than 5. The latter factor is attributed to the wider time window of measurements (from time zero) and the better momentum acceptance of the measurement, etc. as shown in Table 1.

Table 2 shows a preliminary estimation of a net background event rate, which is about less than 0.1 at a sensitivity of better than 10-18, although detailed simulation are needed.

Table 1. Expected improvement factors for the signal acceptance

Item Improvement factor

Comments

Measurement time window X 2.5 (for Al) No pions in a beam No muon beam stop X 1.7 Narrow beam energy width

Measurement momentum window X1.3 Thinner target thickness Total X 5.6

Table 2. preliminary estimation of background events at a sensitivity of 10-18

Item rate Comments Muon decay in orbit 0.05 350 keV (FWHM) resolution

Radiative muon capture 0.01 Pion related backgrounds ~0 No pions

Muon decay in flight ~0 Momentum cut at extraction Cosmic rays 0.002

Total 0.06

Sensitivity and Backgrounds

2010年11月15日月曜日

Sensitivity and Background (preliminary) at Project X

Sensitivity

Background estimation

• muon beam intensity = 2x1012/sec• detector acceptance = 0.2 • single event sensitivity = 2x10-19

• 90% C.L. upper limit = 5x10-19

44

Page 45: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Particle Physics Programs at Project X

Mode BeamCurrent

limitplanned

goalProject X

goal Priority

µ-N→e-N pulsed <10-12 3x10-17 3x10-19

µ+→e+γ DC <1.1x10-12 2x10-13 2x10-14

µ*→e+e+e- DC <10-12 - 1x10-16

µ-e-N→e-e-N DC - 1x10-16

Mu to Mu conv pulsed <8x10-11 <5x10-15

muon EDM pulsed <1.8x10-19 <5x10-25

muon lifetime pulsed 1ppm 0.1ppm

45

Page 46: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Particle Physics Programs at Project X

Mode BeamCurrent

limitplanned

goalProject X

goal Priority

µ-N→e-N pulsed <10-12 3x10-17 3x10-19

µ+→e+γ DC <1.1x10-12 2x10-13 2x10-14

µ*→e+e+e- DC <10-12 - 1x10-16

µ-e-N→e-e-N DC - 1x10-16

Mu to Mu conv pulsed <8x10-11 <5x10-15

muon EDM pulsed <1.8x10-19 <5x10-25

muon lifetime pulsed 1ppm 0.1ppmRich muon physics programs at Project X

46

Page 47: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Summary

•Physics motivation of CLFV processes would be significant and robust at the LHC era. The CLFV would have sensitivity to study physics at high energy scale, in particular with SUSY,

•Among various muon programs at Project X, μ-e conversion would be a flagship experiment. The aimed single event sensitivity is 2x10-19.

•µ-e conversion experiment needs a pulsed muon beam of 1-2 MW. Project X would provide such a beam, but PSI cannot.

•Muon fundamental physics programs at Project X is rich and would have high discovery potentials.

47

Page 48: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Backup Slides

48

Page 49: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Various Models Predict Charged Lepton Mixing.

49

Page 50: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

! !

!!"#$%&'()*+,-).,&/!*.(+/-

"#$%&'()'*!+%$,%--./0$,&01!12,3-

#4%5(36!7-3'(1%$6!839&)3--2

CLFV Predictions byExtra Dimension Models

50

Page 51: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

! !

!!"#$$%&!'#(()!*+,&%)!-.#$/!01234#$56

"#$%&'!'(!$#)

*+,,-,!#'.(-%!/$00'0!1'(2''%!344!5'678)9!:'65'%',+;!$%<#'0!$%=!.>$0'0

CLFV Predictions by Little Higgs Model (with T parity)

51

Page 52: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

! !

"#$%&&!'()*!+,-!$.&

!"#$%&'"()*$+,-%.)/**/#01)

'")$/20-(/"/1'1

/0*!#1"2-(++2

/334"5+12-36!!72!8,-8(99,+12-3!!!:1(;,;8:18,9!-(4+;1-2!<4=,>,!(1?(-@,94(36!A

.!A

%!A

B

CD(5+2?(-(313!;(E41;(3!"F.&.G!'()*!32!-2!-((H!+2!,334"(!,!9,;?(!84+I2JJK!!

!"#$%&'()*)+(,-./#'-&-0%0(1%/2(345SUSY Leptogenesis with CLFV (1)

52

Page 53: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

! !

µ!"#$%&'"()*%&#+,#!"#!$--

"#$%&'(')*+,!-.*/!0%$'*1%+%,),!"

2-*.!/34566!7%89!'(+!4:6;

<*!-0(=*>.!%--%&',?!@!:6!"#

A'B$)&(0C!-0(=*>.!%--%&',?!@!5$:6!"%

A%#'.%/%C!-0(=*>.!%--%&',?!@!5$:6!&'

<('>.(0!.%1)*+!-*.!/:?

<*'%!'D('!)+!E%.)=)+1!'D),!.%,>0'!F%!D(=%!(,,>/%E!'D%!F*.,'!&(,%!

,&%+(.)*!-*.!'D%!E%'%&')*+!*-!µ!G!%!-0(=*>.!=)*0(')*+?!!@H$(.)'B!&*+,%.=%EI

!!J+)=%.,(0!,*-'!'%./,!('!'D%!&>'H*--!,&(0%I

!!K>L(F(!'%#'>.%,!'D('!/)+)/)M%!'D%!-0(=*>.!=)*0(')*+?"2K(

"

!K

(;!E)(1*+(0I"

!!N0,*9!)'!),!>+0)L%0B!'D('!O:!,('>.('%,!'D%!0*F%.!P*>+E!2'D),!.%Q>).%,!*$')/(0!RS!$D(,%,;I

)

%!"#!$%#%&'()!*+,-!('&$%&!&'.%/!%01%,.%2

SUSY Leptogenesis with CLFV (2)

53

Page 54: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

SUSY Predictions for cLFV

SU(5) SUSY GUT SUSY Seesaw Model

MEG

PRISM

mu2e, COMET,super-MEG

PRISM

MEG

mu2e, COMET,super-MEG

Theoretical predictions are just below the present experimental bound.

54

Page 55: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Minimal SUSY Scenario m2

l=

!

m211m

212m

213

m221m

222m

223

m231m

232m

233

"

slepton mass matrix

∆m2ij �= 0 @ Weak energy scale (100 GeV)

∆m2ij = 0 @ Planck energy scale

New physics at high energy scale would introduce off-diagonal mass matrix elements,

resulting in slepton mixing.

neutrino seesaw mechanism (~1015GeV)

grand unification (GUT) (~1016GeV)

cLFV have potential to study physics at very high energy scale like 1016 GeV.

55

Page 56: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

cLFV History

10- 1 4

10- 1 2

10- 1 0

10- 8

10- 6

10- 4

10- 2

1940 1950 1960 1970 1980 1990 2000

Upper limits of Branching Ratio

Y e a r

KL0 → µe

K+ →πµe

µA→eA

µ→ eee

µ→ eγ

Pontecorvo in 1947

First cLFV search

56

Page 57: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

Muon Decay In Orbit (DIO) in a Muonic Atom

•Normal muon decay has an endpoint of 52.8 MeV, whereas the end point of muon decay in orbit comes to the signal region.

•good resolution of electron energy (momentum) is needed.

•150 keV energy resolution of electron detection is sufficient for <10-18 sensitivity.

NuFact03@Colombia University2003/6/6

Expected background source - Muon Decay in Orbit -Expected background source - Muon Decay in Orbit -

Muon decay in orbit (!(Eµe-Ee)5)

! Ee > 103.9 MeV! "Ee = 350 keV

! NBG ~ 0.05 @ R=10-18

present limit

MECO goal

PRIME goal

signal

• reduce the detector hit rateInstantaneous rate : 1010muon/pulse

• precise measurement of the electron energy

Background Rate commentMuon decay in orbit 0.05 energy reso 350keV(FWHM)Radiative muon capture 0.01 end point energy for Ti=89.7MeVRadiative pion capture 0.03 long flight length in FFAG, 2 kickerPion decay in flight 0.008 long flight length in FFAG, 2 kickerBeam electron negligible kinematically not allowedMuon decay in flight negligible kinematically not allowedAntiproton negligible absorber at FFAG entranceCosmic-ray < 10^-7 events low duty factorTotal 0.10

10-16 goal

10-18 goal

! (!E)5

57

Page 58: Muon Experiments in Project X - indico.fnal.gov · •µ-e Conversion Experiment at Project X •Summary 2. Why Intensity Frontier with Muons ? 3. 10-10sec 10-34sec 102GeV 1016GeV

COMET at J-PARC(for single event sensitivity of 3x10-17)

StoppingTarget

ProductionTarget

58