multivariate functional data analysis

32
Multivariate Functional Data Analysis O RI R OSEN Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas, USA and W ESLEY T HOMPSON Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Upload: others

Post on 17-Feb-2022

26 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multivariate Functional Data Analysis

Multivariate Functional Data Analysis

ORI ROSEN

Department of Mathematical Sciences, University of Texas at El Paso,

El Paso, Texas, USA

and

WESLEY THOMPSON

Department of Statistics, University of Pittsburgh, Pittsburgh,

Pennsylvania, USA

Page 2: Multivariate Functional Data Analysis

Outline

ā€¢ Motivating example

ā€¢ The model

ā€¢ Estimation

ā€¢ Example

Page 3: Multivariate Functional Data Analysis

Motivating Example

ā€¢ Psychiatric study to compare psychotherapy to pharmacotherapyat the University of Pisa, Italy. Total of 103 acutely depressedsubjects.

ā€¢ Response variables: two subscales of the clinician-administered Hamilton Depression rating Scale.

ā€¢ HRSD-17 ā€“ measures anhedonia, sleep disturbance,agitation, anxiety, weight loss

ā€¢ HRSD-RV ā€“ measures reverse vegetative symptomssuch as weight gain and hyperphagia

ā€¢ Covariates: treatment group, lifetime depression spectrum

Page 4: Multivariate Functional Data Analysis

0 4 8 12 16āˆ’2

āˆ’1

0

1

2

3

4

weeks

stan

dard

ized

scor

e

HRSDāˆ’17

0 4 8 12 16āˆ’2

āˆ’1

0

1

2

3

4

5

weeks

stan

dard

ized

scor

e

HRSDāˆ’RV

Page 5: Multivariate Functional Data Analysis

The Model

yi1(tij) = xxxā€²ijĀµ1Āµ1Āµ1(tij) + zzzā€²ijgi1gi1gi1(tij) + Ī“i1(tij)

yi2(tij) = xxxā€²ijĀµ2Āµ2Āµ2(tij) + zzzā€²ijgi2gi2gi2(tij) + Ī“i2(tij)... = ...

yip(tij) = xxxā€²ijĀµpĀµpĀµp(tij) + zzzā€²ijgipgipgip(tij) + Ī“ip(tij)

Page 6: Multivariate Functional Data Analysis

The Model

yi1(tij) = xxxā€²ijĀµ1Āµ1Āµ1(tij) + zzzā€²ijgi1gi1gi1(tij) + Ī“i1(tij)

yi2(tij) = xxxā€²ijĀµ2Āµ2Āµ2(tij) + zzzā€²ijgi2gi2gi2(tij) + Ī“i2(tij)... = ...

yip(tij) = xxxā€²ijĀµpĀµpĀµp(tij) + zzzā€²ijgipgipgip(tij) + Ī“ip(tij)

ā€¢ ĀµĀµĀµk(t) = (Āµk1(t), . . . , Āµkr(t))ā€² is an r-vector of fixed functions,k = 1, . . . , p

Page 7: Multivariate Functional Data Analysis

The Model

yi1(tij) = xxxā€²ijĀµ1Āµ1Āµ1(tij) + zzzā€²ijgi1gi1gi1(tij) + Ī“i1(tij)

yi2(tij) = xxxā€²ijĀµ2Āµ2Āµ2(tij) + zzzā€²ijgi2gi2gi2(tij) + Ī“i2(tij)... = ...

yip(tij) = xxxā€²ijĀµpĀµpĀµp(tij) + zzzā€²ijgipgipgip(tij) + Ī“ip(tij)

ā€¢ ĀµĀµĀµk(t) = (Āµk1(t), . . . , Āµkr(t))ā€² is an r-vector of fixed functions,k = 1, . . . , p

ā€¢ gggik(t) = (gik1(t), . . . , giks(t))ā€² is an s-vector of randomfunctions, k = 1, . . . , p

Page 8: Multivariate Functional Data Analysis

The Model (Cont.)

yyyi(tij) = XijĀµĀµĀµ(tij) + Zijgigigi(tij) + Ī“Ī“Ī“i(tij) ,

ā€¢ yyyi(tij) = (yi1(tij), . . . , yip(tij))ā€², i = 1, . . . , n, j = 1, . . . ,mi.

Page 9: Multivariate Functional Data Analysis

The Model (Cont.)

yyyi(tij) = XijĀµĀµĀµ(tij) + Zijgigigi(tij) + Ī“Ī“Ī“i(tij) ,

ā€¢ yyyi(tij) = (yi1(tij), . . . , yip(tij))ā€², i = 1, . . . , n, j = 1, . . . ,mi.

ā€¢ ĀµĀµĀµ(t) = (ĀµĀµĀµā€²1(t), . . . , ĀµĀµĀµā€²p(t))

ā€²

Page 10: Multivariate Functional Data Analysis

The Model (Cont.)

yyyi(tij) = XijĀµĀµĀµ(tij) + Zijgigigi(tij) + Ī“Ī“Ī“i(tij) ,

ā€¢ yyyi(tij) = (yi1(tij), . . . , yip(tij))ā€², i = 1, . . . , n, j = 1, . . . ,mi.

ā€¢ ĀµĀµĀµ(t) = (ĀµĀµĀµā€²1(t), . . . , ĀµĀµĀµā€²p(t))

ā€²

ā€¢ gggi(t) = (gggā€²i1(t), . . . , gggā€²ip(t))

ā€²

Page 11: Multivariate Functional Data Analysis

The Model (Cont.)

yyyi(tij) = XijĀµĀµĀµ(tij) + Zijgigigi(tij) + Ī“Ī“Ī“i(tij) ,

ā€¢ yyyi(tij) = (yi1(tij), . . . , yip(tij))ā€², i = 1, . . . , n, j = 1, . . . ,mi.

ā€¢ ĀµĀµĀµ(t) = (ĀµĀµĀµā€²1(t), . . . , ĀµĀµĀµā€²p(t))

ā€²

ā€¢ gggi(t) = (gggā€²i1(t), . . . , gggā€²ip(t))

ā€²

ā€¢ Xij = Ip āŠ— xxxā€²ij, Zij = Ip āŠ— zzzā€²ij.

Page 12: Multivariate Functional Data Analysis

The Model (Cont.)

yyyi(tij) = XijĀµĀµĀµ(tij) + Zijgigigi(tij) + Ī“Ī“Ī“i(tij) ,

ā€¢ yyyi(tij) = (yi1(tij), . . . , yip(tij))ā€², i = 1, . . . , n, j = 1, . . . ,mi.

ā€¢ ĀµĀµĀµ(t) = (ĀµĀµĀµā€²1(t), . . . , ĀµĀµĀµā€²p(t))

ā€²

ā€¢ gggi(t) = (gggā€²i1(t), . . . , gggā€²ip(t))

ā€²

ā€¢ Xij = Ip āŠ— xxxā€²ij, Zij = Ip āŠ— zzzā€²ij.

ā€¢ Ī“Ī“Ī“i(tij) = (Ī“i1(tij), . . . , Ī“ip(tij))ā€²

Page 13: Multivariate Functional Data Analysis

Example

Assume 2 groups of subjects and a bivariate response (p = 2):

xxxij = (xij1, xij2)ā€², where xij1 = 1, xij2 =

1 if treatment0 if control

Page 14: Multivariate Functional Data Analysis

Example

Assume 2 groups of subjects and a bivariate response (p = 2):

xxxij = (xij1, xij2)ā€², where xij1 = 1, xij2 =

1 if treatment0 if control

yi1(tij) = (1 xij2)(Āµ11(tij)Āµ12(tij)

)+ gi1(tij) + Ī“i1(tij)

yi2(tij) = (1 xij2)(Āµ21(tij)Āµ22(tij)

)+ gi2(tij) + Ī“i2(tij)

Page 15: Multivariate Functional Data Analysis

Example

Assume 2 groups of subjects and a bivariate response (p = 2):

xxxij = (xij1, xij2)ā€², where xij1 = 1, xij2 =

1 if treatment0 if control

yi1(tij) = (1 xij2)(Āµ11(tij)Āµ12(tij)

)+ gi1(tij) + Ī“i1(tij)

yi2(tij) = (1 xij2)(Āµ21(tij)Āµ22(tij)

)+ gi2(tij) + Ī“i2(tij)

soyi1(tij) = Āµ11(tij) + xij2 Ā· Āµ12(tij) + gi1(tij) + Ī“i1(tij)

yi2(tij) = Āµ21(tij) + xij2 Ā· Āµ22(tij) + gi2(tij) + Ī“i2(tij)

Page 16: Multivariate Functional Data Analysis

The Error Term

Ī“Ī“Ī“i(t) follows a multivariate Ornstein-Uhlenbeck (O-U) process, i.e.,

dĪ“Ī“Ī“i(t) = āˆ’AĪ“Ī“Ī“i(t) +BdWWW i(t) .

ā€¢ A and B are p Ɨ p matrices of full rank common to all i =1, . . . , n,

ā€¢ WWW i(t) is the p-dimensional Wiener process.

ā€¢ Stationary if the EV of A have positive real parts.

ā€¢ The stationary variance-covariance matrix Ī£ is the solution to

AĪ£ + Ī£Aā€² = BBā€²

Page 17: Multivariate Functional Data Analysis

The Error Term (Cont.)

In the stationary state, for s < t

Cov(Ī“Ī“Ī“i(t), Ī“Ī“Ī“i(s)) = expāˆ’A(tāˆ’ s)Ī£ ,

so A controls how rapidly the influence of time s dies off by time t > s.

Page 18: Multivariate Functional Data Analysis

The Transition Density

Let āˆ†tij = tij āˆ’ ti,jāˆ’1 j = 1, . . . ,mi, ti0 = 0.

The transition density of the O-U process is given by

p(Ī“Ī“Ī“i(tij)|Ī“Ī“Ī“i(ti,jāˆ’1),āˆ†tij) āˆ |Ī©āˆ†tij|āˆ’1/2 exp

āˆ’1

2Ī³Ī³Ī³ā€²tijĪ©

āˆ’1āˆ†tij

Ī³Ī³Ī³tij

,

where

Ī³Ī³Ī³tij = Ī“Ī“Ī“i(tij)āˆ’ exp(āˆ’Aāˆ†tij)Ī“Ī“Ī“i(ti,jāˆ’1)

Ī©āˆ†tij = Ī£āˆ’ exp(āˆ’Aāˆ†tij)Ī£ exp(āˆ’Aā€²āˆ†tij).

Page 19: Multivariate Functional Data Analysis

Nonparametric Function Estimationā€“ Simple Example

200 observations were generated from

yi = sin(3Ļ€xi) + Īµi, , 0 ā‰¤ xi ā‰¤ 1, Īµi āˆ¼ N(0, 0.42)

Model:

yi = Ī²0 + Ī²1xi +30āˆ‘k=1

uk(xi āˆ’ Īŗk)+ + Īµi, Īµi āˆ¼ N(0, Ļƒ2Īµ )

ā€¢ Low rank truncated line basis functions.

ā€¢ Fixed effects: Ī²s and us fixed.

ā€¢ Mixed effects: Ī²s fixed, u1, . . . , u30iidāˆ¼ N(0, Ļƒ2

u).

Page 20: Multivariate Functional Data Analysis

0 0.2 0.4 0.6 0.8 1āˆ’2

āˆ’1

0

1

2

x

yFixed Effects Model

0 0.2 0.4 0.6 0.8 1āˆ’2

āˆ’1

0

1

2

x

y

Mixed Model

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

Page 21: Multivariate Functional Data Analysis

Nonparametric Function Estimation (Cont.)

We estimate

Āµkl(t) and gikm(t), k = 1, . . . , p, l = 1, . . . , r,m = 1, . . . , s, i = 1, . . . , n

by cubic splines using low-rank radial basis functions (French et al.,2001, Ruppert et al., 2003):

Write Āµkl(tij) = Ļ†Ļ†Ļ†ā€²ijĪ²Ī²Ī²kl + ĻˆĻˆĻˆā€²ijvvvkl and gikm(tij) = Ļ†Ļ†Ļ†ā€²ijwwwikm + ĻˆĻˆĻˆā€²ijuuuikm.

Page 22: Multivariate Functional Data Analysis

Nonparametric Function Estimation (Cont.)

We estimate

Āµkl(t) and gikm(t), k = 1, . . . , p, l = 1, . . . , r,m = 1, . . . , s, i = 1, . . . , n

by cubic splines using low-rank radial basis functions (French et al.,2001, Ruppert et al., 2003):

Write Āµkl(tij) = Ļ†Ļ†Ļ†ā€²ijĪ²Ī²Ī²kl + ĻˆĻˆĻˆā€²ijvvvkl and gikm(tij) = Ļ†Ļ†Ļ†ā€²ijwwwikm + ĻˆĻˆĻˆā€²ijuuuikm.

ā€¢ Place K knots Īŗ1, . . . , ĪŗK at sample quantiles of tij.

Page 23: Multivariate Functional Data Analysis

Nonparametric Function Estimation (Cont.)

We estimate

Āµkl(t) and gikm(t), k = 1, . . . , p, l = 1, . . . , r,m = 1, . . . , s, i = 1, . . . , n

by cubic splines using low-rank radial basis functions (French et al.,2001, Ruppert et al., 2003):

Write Āµkl(tij) = Ļ†Ļ†Ļ†ā€²ijĪ²Ī²Ī²kl + ĻˆĻˆĻˆā€²ijvvvkl and gikm(tij) = Ļ†Ļ†Ļ†ā€²ijwwwikm + ĻˆĻˆĻˆā€²ijuuuikm.

ā€¢ Place K knots Īŗ1, . . . , ĪŗK at sample quantiles of tij.

ā€¢ Let Ļ†Ļ†Ļ†ā€²ij = (1 tij), Ī¾Ī¾Ī¾ā€²ij = (|tij āˆ’ Īŗ1|3, . . . , |tij āˆ’ ĪŗK|3),

ā€¢ Compute Ī›K = [|Īŗk āˆ’ Īŗkā€²|3]1ā‰¤k,kā€²ā‰¤K and ĻˆĻˆĻˆā€²ij = Ī¾Ī¾Ī¾ā€²ijĪ›āˆ’1/2K (via

SVD)

Page 24: Multivariate Functional Data Analysis

Prior Distributions

Priors on the basis function coefficients:

1. Flat priors on Ī²Ī²Ī²kl.

2. vvvklindāˆ¼ N(000, Ļƒ2

vklIK)

3. wwwikmindāˆ¼ N(000,diag(Ļƒ2

wkm0, Ļƒ2wkm1

)).

4. uuuikmindāˆ¼ N(000, Ļƒ2

ukmIK).

Priors on the variance components:independent IG(ai, bi), e.g., p(Ļƒ2

vkl) āˆ (Ļƒ2

vkl)āˆ’(a1+1) exp(āˆ’b1/Ļƒ2

vkl)

Page 25: Multivariate Functional Data Analysis

Prior Distributions (Cont.)

Prior on A:

ā€¢ Let A = SĪØSāˆ’1, where

S =

1 s12 s13 . . . s1ps21 1 s23 . . . s2p... ... ... . . . ...sp1 sp2 sp3 . . . 1

and ĪØ = diag(Ļˆ1, . . . , Ļˆp), Ļˆi > 0, i = 1, . . . , p.

ā€¢ sij āˆ¼ N(0, Ļƒ2s), logĻˆi āˆ¼ N(0, Ļƒ2

Ļˆ)

Page 26: Multivariate Functional Data Analysis

Prior Distributions (Cont.)

Prior on C = BBā€²:

ā€¢ Let C = LDLā€² (modified Cholesky factorization), where

L =

1 0 0 . . . 0l21 1 0 . . . 0l31 l32 1 . . . 0... ... ... . . . ...lp1 lp2 lp3 . . . 1

and D = diag(d1, . . . , dp), di > 0, i = 1, . . . , p

ā€¢ lij āˆ¼ N(0, Ļƒ2L), log(di) āˆ¼ N(0, Ļƒ2

D)

Page 27: Multivariate Functional Data Analysis

0 4 8 12 16āˆ’2

āˆ’1

0

1

2

3

4

weeks

stan

dard

ized

scor

e

HRSDāˆ’17

0 4 8 12 16āˆ’2

āˆ’1

0

1

2

3

4

5

weeks

stan

dard

ized

scor

e

HRSDāˆ’RV

Page 28: Multivariate Functional Data Analysis

Exampleā€¢ Psychiatric study to compare psychotherapy to pharmacotherapy

at the University of Pisa, Italy. Total of 103 acutely depressedsubjects.

ā€¢ Response variables: 2 subscales of the clinician-administeredHamilton Depression rating Scale (measured at baseline andweekly):

HRSD-17 (0ā€“31)HRSD-RV (0ā€“13).

Higher values indicate more depressive symptoms.

ā€¢ Covariates:treatment grouplifetime depression spectrum (LDS), assessed at baseline.

Page 29: Multivariate Functional Data Analysis

Example (Cont.)

yyyi(tij) = XijĀµĀµĀµ(tij) + Zijgigigi(tij) + Ī“Ī“Ī“i(tij) ,where Xij = Ip āŠ— xxxā€²ij, Zij = Ip āŠ— zzzā€²ij.

In the example yyyi(tij) = (HRSD-17,HRSD-RV)ā€²

zzzij = 1xxxij = (xij1, xij2, xij3, xij4)ā€²

where xij1 = 1

xij2 =

1 if subject i received psychotherapy0 if subject i received pharmacotherapy,

xij3 = LDS scorexij4 = xij2xij3.

Page 30: Multivariate Functional Data Analysis

0 4 8 12 16āˆ’2

āˆ’1.5

āˆ’1

āˆ’0.5

0

0.5

1

1.5

2

t (weeks)

Intercept

0 4 8 12 16āˆ’1

āˆ’0.5

0

0.5

1

1.5

t (weeks)

Treatment

0 4 8 12 16āˆ’0.05

0

0.05

0.1

0.15

t (weeks)

LDS Score

0 4 8 12 16āˆ’0.15

āˆ’0.1

āˆ’0.05

0

0.05

t (weeks)

Treatment x LDS

HRSDāˆ’17

Page 31: Multivariate Functional Data Analysis

0 4 8 12 16āˆ’2

āˆ’1.5

āˆ’1

āˆ’0.5

0

0.5

1

1.5

2

t (weeks)

Intercept

0 4 8 12 16āˆ’2

āˆ’1.5

āˆ’1

āˆ’0.5

0

0.5

1

1.5

2

t (weeks)

Treatment Group

0 4 8 12 16āˆ’0.05

0

0.05

0.1

0.15

t (weeks)

LDS Score

0 4 8 12 16āˆ’0.15

āˆ’0.1

āˆ’0.05

0

0.05

0.1

t (weeks)

Treament x LDS

HRSDāˆ’RV

Page 32: Multivariate Functional Data Analysis

Conclusions from the Analysisā€¢ Little evidence of a treatment effect

ā€¢ Significant effect of LDS score ā€“ higher LDS predicts worseoutcomes

ā€¢ LDS effect is more pronounced in the middle period of HRSD-17, and towards the end of the 16 weeks for HRSD-RV.

ā€¢ Interaction is significant in the last 8 weeks of HRSD-17, andmarginally significant in the same time period for HRSD-RV.

ā€¢ Interaction effect ā€“ LDS is less predictive of poor response inpsychotherapy group than in pharmacotherapy group.

ā€¢ Univariate fitting ā€“ interaction is not significant; wider pointwisecredible intervals.