multiple reflection symmetry detection via linear-directional kernel density estimation

33
Introduction Related Work Methodology Results and Discussion Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation M. Elawady 1 , O. Alata 1 , C. Ducottet 1 , C. Barat 1 , P. Colantoni 2 1 Universit´ e de Lyon, CNRS, UMR 5516, Laboratoire Hubert Curien, Universit´ e de Saint- ´ Etienne, Jean-Monnet, F-42000 Saint- ´ Etienne, France 2 Universit´ e Jean Monnet, CIEREC EA n 0 3068, Saint- ´ Etienne, France 17 th International Conference on Computer Analysis of Images and Patterns UMR • CNRS • 5516 • SAINT-ETIENNE M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 1 / 33

Upload: universite-jean-monnet-saint-etienne

Post on 28-Jan-2018

234 views

Category:

Science


0 download

TRANSCRIPT

Page 1: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Multiple Reflection Symmetry Detection viaLinear-Directional Kernel Density Estimation

M. Elawady1, O. Alata1, C. Ducottet1, C. Barat1, P. Colantoni2

1Universite de Lyon, CNRS, UMR 5516, Laboratoire Hubert Curien,Universite de Saint-Etienne, Jean-Monnet, F-42000 Saint-Etienne, France

2Universite Jean Monnet, CIEREC EA n0 3068, Saint-Etienne, France

17th International Conference on Computer Analysis of Images and Patterns

UMR • CNRS • 5516 • SAINT-ETIENNE

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 1 / 33

Page 2: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Table of Contents

1 IntroductionBackgroundApplicationsProblem Definition

2 Related WorkIntensity-based MethodsEdge-based Methods

3 MethodologyMotivationAlgorithm Details

4 Results and Discussion

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 2 / 33

Page 3: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

BackgroundApplicationsProblem Definition

Table of Contents

1 IntroductionBackgroundApplicationsProblem Definition

2 Related WorkIntensity-based MethodsEdge-based Methods

3 MethodologyMotivationAlgorithm Details

4 Results and Discussion

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 3 / 33

Page 4: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

BackgroundApplicationsProblem Definition

Bilateral Symmetry

1Image from book: The Photographer’s Eye by Michael Freeman

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 4 / 33

Page 5: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

BackgroundApplicationsProblem Definition

Bilateral Symmetry in Computer Vision

Medial Image Segmentation [1]

Aerial-based vehicle detection [2]

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 5 / 33

Page 6: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

BackgroundApplicationsProblem Definition

Detection of Global Symmetries

Axis Legend: Strong, Weak

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 6 / 33

Page 7: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Intensity-based MethodsEdge-based Methods

Table of Contents

1 IntroductionBackgroundApplicationsProblem Definition

2 Related WorkIntensity-based MethodsEdge-based Methods

3 MethodologyMotivationAlgorithm Details

4 Results and Discussion

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 7 / 33

Page 8: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Intensity-based MethodsEdge-based Methods

Baseline (Loy 2006) and its Successor (Mo 2011)

The general scheme (Loy and Eklundh 2006 [3]) consists of:

Disadvantages:

Depending mainly on the properties of hand-crafted features (i.e. SIFT).

For example: (smooth objects with noisy background)little feature points =⇒ lost symmetry.

(Mo and Draper 2011 [4]) proposed refinements in the general scheme.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 8 / 33

Page 9: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Intensity-based MethodsEdge-based Methods

First Work (Cic 2014)

Instead of SIFT, the general idea (Cicconet et al. 2014 [5]) is extracting aregular set of wavelet segments with local edge amplitude and orientation.

Disadvantages:

Lacking neighborhood’s information inside the feature representation.

Depending on the scale parameter of the edge detector.

For example: (high texture objects with noisy background)inferior symmetrical info =⇒ incorrect symmetry.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 9 / 33

Page 10: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Intensity-based MethodsEdge-based Methods

State-of-Art (Ela 2016)

(Single Symmetry) Investigating Cicconet’s edge features [5] within Loy’sscheme [3] by adding neighboring-pixel information.

(1) Mul�scale Edge Segment Extrac�on

(2) Triangula�on based on Local Symmetry Weights:

• Geometry Edge Orienta�ons (Cic)• Local Texture Histogram (Loy)

(3) Vo�ng Space for Peak Detec�on with Handling Orienta�on Discon�nuity.

θ

ρ0

π

Legend: Groundtruth, Our2016, Loy2006, Mo2011, Cic2014

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 10 / 33

Page 11: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Table of Contents

1 IntroductionBackgroundApplicationsProblem Definition

2 Related WorkIntensity-based MethodsEdge-based Methods

3 MethodologyMotivationAlgorithm Details

4 Results and Discussion

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 11 / 33

Page 12: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Proposed Idea

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 12 / 33

Page 13: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Symmetry Detection Algorithm: Main Steps

Input Image

d) Symmetry Selection

a) Feature ExtractionScale 1 Scale S

Mag

nit

ud

eO

rien

tati

on

His

togr

am

Point 1 Point 2 Point P

c) Kernel Density Estimator

b) Feature TriangulationEdge Magnitude

Symmetry Coefficient

Neighborhood Texture

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 13 / 33

Page 14: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Multiscale Edge Segment Extraction I

Input Image

Scale 1

Scale 2

Scale S

Orientation 1

Orientation O/2

Orientation O

Amplitude Map

Orientation Map

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 14 / 33

Page 15: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Multiscale Edge Segment Extraction II

A feature point pi and its local edge characteristics (J i , φi ) are extractedwithin each cell using a Morlet wavelet ψk,σ of constant scale σ andvarying orientation {φo , o = 1 . . .O}.

Amplitude Map Orientation Map

MaxAmplitude

CorrespondingOrientation

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 15 / 33

Page 16: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Multiscale Edge Segment Extraction III

Neighboring textural histogram hi of size B:

hi (b) =∑

r∈D(pi )

J rδφb−φr , φb ∈ {bπ

B, b = 0 . . .B − 1, 8 ≤ B ≤ 32} (1)

where hi is l1 normalized and circular shifted respect to the maximummagnitude J i among the neighborhood window D(pi ).

0 36 72 108 1440

0.5

1

1.5

2

2.5

3

3.5

4

4.5#106

Magnitude Histogram

108 144 0 36 720

0.1

0.2

0.3

0.4

0.5

0.6

Histogram Count (hi)

0 36 72 108 1440

500

1000

1500

2000

2500

3000

Frequency Histogram

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 16 / 33

Page 17: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Symmetry Triangulation I

(Textural Information) Symmetry degree of the two regions around i andj can be measured by comparing their corresponding local orientationhistograms hi and hj (reverse histogram of hj). Texture-based symmetrymeasure is given by:

d(i , j) =B∑

b=1

min(hi (b), hj(b)) (2)

108 144 0 36 720

0.1

0.2

0.3

0.4

0.5

0.6

Histogram Count (hp)

72 36 0 144 1080

0.1

0.2

0.3

0.4

0.5

0.6

Histogram Count (hq*)

1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

Histogram Intersection

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 17 / 33

Page 18: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Symmetry Triangulation II

(Edge Information) Semi-dense edge magnitude m(i , j) and mirrorsymmetry coefficient c(i , j) {similar to cosine distance} are defined as [5]:

m(i , j) = J iJ j (3)

c(i , j) = |τ iS(T⊥ij )τ j | (4)

where τ i = [cos(φi ), sin(φi )], and S(.) is a reflection matrix.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 18 / 33

Page 19: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Symmetry Triangulation III

The candidate axis is parametrized by angle θn, and displacement ρn andhas pairwise symmetry weight ωn = ωi,j (i 6= j and σi = σj) is defined as:

ωn = ω(pi , pj) = m(i , j) c(i , j) d(i , j) (5)

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 19 / 33

Page 20: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Kernel Density Estimation I

(Linear: Displacement) Linear kernel density estimator fl(.) is defined as

fl(x ; g) =1

Ng

N∑n=1

G(x − ρn

g) | G(u) =

1

(2π)12

e−12|u|2 (6)

where G(.) is a Gaussian kernel with bandwidth parameter g .

(Directional: Angle) Directional kernel density estimator fd(.) is defined as:

fd(y ; k) =C(k)

N

N∑n=1

L(yTµn; k) | L(x ; k) = ekx , C(k) =1

2πS(0, k)(7)

where L(.) is a von-Mises Fisher kernel with concentration parameter k, and

normalization constant C(k). S(.) is the modified Bessel function of the first

kind.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 20 / 33

Page 21: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Kernel Density Estimation II

Thanks for the linear-directional density estimator fl,d(.) [6]. We define

the extended weighted version fl,d(.) as:

fl,d(x , y ; g , k) =C (k)

Ng

N∑n=1

ωnG (x − ρn

g)L(yTµn; k) (8)

y = [cos(θ), sin(θ)], µn = [cos(θn), sin(θn)]

assuming that linear and directional data are independent resulting dotproduct between accompanying kernels.

B

A2 A1 A3B

B

A2 A1 A3

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 21 / 33

Page 22: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

MotivationAlgorithm Details

Kernel Density Estimation III

B

A2 A1 A3

Input Image

A2

A1

A3

Linear KDE fl (.)

[A1,A2,A3]B B

Directional KDE fd (.)

Edge Magnitude mn(.) Symmetry Coefficient cn(.) Neighborhood Texture dn(.)

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 22 / 33

Page 23: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Table of Contents

1 IntroductionBackgroundApplicationsProblem Definition

2 Related WorkIntensity-based MethodsEdge-based Methods

3 MethodologyMotivationAlgorithm Details

4 Results and Discussion

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 23 / 33

Page 24: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Evaluation Details

Datasets:PSUm dataset: Liu’s vision group proposed a symmetry groundtruth[7, 8] for Flickr images (# images = 142, # symmetries = 479) inECCV2010, CVPR2011 and CVPR2013.

NYm dataset: Cicconet et al. [9] presented a new symmetrydatabase (# images = 63, # symmetries = 188) in 2016.

Evaluation Metrics:True Positive [8]:

ang(SC ,GT ) < 10◦ (9)

dist(CenSC ,CenGT ) < 20%×min(LenSC , LenGT ) (10)

Precision, Recall, and Maximum F1 Score

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 24 / 33

Page 25: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Quantitative Results I

(Precision-Recall Curves)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1Loy2006 (0.29211)Cicconet2014 (0.15883)Elawady2016 (0.27744)Our2017 (0.32828)

PSUm (2010-2013)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1Loy2006 (0.33657)Cicconet2014 (0.2365)Elawady2016 (0.38788)Our2017 (0.43373)

NYm (2016)

X-axis: Recall, Y-axis: Precision

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 25 / 33

Page 26: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Quantitative Results II

(Statistical Comparison)

Max F1 Score and its equivalent Precision and Recall rates

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 26 / 33

Page 27: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Qualitative Results I - PSUmColumns: (1) GT, (2) Our, (3) Ela2016 [10], and (4) Loy2006 [3]

Top 5 detections: red, yellow, green, blue, and magenta.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 27 / 33

Page 28: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Qualitative Results II - NYmColumns: (1) GT, (2) Our, (3) Ela2016 [10], and (4) Loy2006 [3]

Top 5 detections: red, yellow, green, blue, and magenta.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 28 / 33

Page 29: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Conclusion

Summary:1 A weighted joint density estimator is proposed to handle both orientation and

displacement information.

2 A reliable detection framework is developed for global multiple symmetries.

Future work:1 The proposed detection can be improved using a continuous maximal-seeking

technique to avoid over-extended axes.

2 Entropy-based balance measure can be introduced to describe the existence anddegree of global axes inside an image.

3 Possibility of integration within retrieval systems for artistic photographs andpaintings in museums

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 29 / 33

Page 30: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

References I

[1] F. Abdolali, R. A. Zoroofi, Y. Otake, and Y. Sato, “Automatic segmentation ofmaxillofacial cysts in cone beam ct images,” Computers in biology and medicine,vol. 72, pp. 108–119, 2016.

[2] S. Ram and J. J. Rodriguez, “Vehicle detection in aerial images using multiscalestructure enhancement and symmetry,” in Image Processing (ICIP), 2016 IEEEInternational Conference on, pp. 3817–3821, IEEE, 2016.

[3] G. Loy and J.-O. Eklundh, “Detecting symmetry and symmetric constellations offeatures,” in Computer Vision–ECCV 2006, pp. 508–521, Springer, 2006.

[4] Q. Mo and B. Draper, “Detecting bilateral symmetry with feature mirroring,” inCVPR 2011 Workshop on Symmetry Detection from Real World Images, 2011.

[5] M. Cicconet, D. Geiger, K. C. Gunsalus, and M. Werman, “Mirror symmetryhistograms for capturing geometric properties in images,” in Computer Visionand Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 2981–2986,IEEE, 2014.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 30 / 33

Page 31: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

References II

[6] E. Garcıa-Portugues, R. M. Crujeiras, and W. Gonzalez-Manteiga, “Kerneldensity estimation for directional–linear data,” Journal of Multivariate Analysis,vol. 121, pp. 152–175, 2013.

[7] I. Rauschert, K. Brocklehurst, S. Kashyap, J. Liu, and Y. Liu, “First symmetrydetection competition: Summary and results,” tech. rep., Technical ReportCSE11-012, Department of Computer Science and Engineering, ThePennsylvania State University, 2011.

[8] J. Liu, G. Slota, G. Zheng, Z. Wu, M. Park, S. Lee, I. Rauschert, and Y. Liu,“Symmetry detection from realworld images competition 2013: Summary andresults,” in Computer Vision and Pattern Recognition Workshops (CVPRW),2013 IEEE Conference on, pp. 200–205, IEEE, 2013.

[9] M. Cicconet, V. Birodkar, M. Lund, M. Werman, and D. Geiger, “A convolutionalapproach to reflection symmetry,” Pattern Recognition Letters, 2017.

[10] M. Elawady, C. Barat, C. Ducottet, and P. Colantoni, “Global bilateral symmetrydetection using multiscale mirror histograms,” in International Conference onAdvanced Concepts for Intelligent Vision Systems, pp. 14–24, Springer, 2016.

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 31 / 33

Page 32: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Questions?

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 32 / 33

Page 33: Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

IntroductionRelated WorkMethodology

Results and Discussion

Appendix - Why Feature Normalization?

The feature points are normalized with keeping aspect ratio as following:

pi =pi − cW ,H

max(W ,H)(11)

where cW ,H represents the original image center (W2

, H2

).

Without Normalization With Normalization

Voting: unified space and independent parameters

M. Elawady, O. Alata, C. Ducottet, C. Barat, P. Colantoni Hubert Curien Laboratory, Jean Monnet University, France 33 / 33