multi-chromatic analysis of insar data: validation … · 2017. 11. 29. · fringe – esa esrin,...

44
FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 1 MULTI-CHROMATIC ANALYSIS OF INSAR DATA: VALIDATION AND POTENTIAL Fabio Bovenga, Vito Martino Giacovazzo, Alberto Refice, Nicola Veneziani, Raffaele Vitulli (ESA ESTEC) [email protected]

Upload: others

Post on 05-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 1

    MULTI-CHROMATIC ANALYSIS OF INSAR DATA: VALIDATION AND POTENTIAL

    Fabio Bovenga, Vito Martino Giacovazzo, Alberto Refice, Nicola Veneziani, Raffaele Vitulli (ESA ESTEC)

    [email protected]

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 2

    Contents

    • Multi Chromatic Analysis (MCA) background

    • Implementation aspects.

    • First validation on airborne and spaceborne SAR sensors.

    • Comments and conclusions.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 3

    InSAR principles

    MR

    tM

    ϑ

    ⊥B

    ||B

    Swath

    Gruond range

    tS

    SR

    sB

    H

    Topography Atmosphere Deformation

    cdefAtmc frxRrxRRyxHB

    cfrxR

    crx ⋅⎥

    ⎤⎢⎣

    ⎡∆+∆+−=⋅∆⋅−=Φ ⊥ ),(),(

    sin),(4),(4),(

    0 θππ

    SM RRR −=∆

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 4

    InSAR principles

    ),(2),(),( rxkrxrx W ⋅+Φ=Φ π

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 5

    Original idea

    • Madsen and Zebker:

    – φabs is used to compute the K2π necessary to recover the absolute phase

    – Averaging is required to keep the noise low and attenuate effect of factor f0 / (f+-f-)

    ( ) diffabs fff φφ

    −+ −= 0

    ( ) ddiff tff ⋅−⋅=−= −+−+ πφφφ 2

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 6

    Multi-Chromatic Approach (MCA) principles

    • MCA of InSAR processing involves the computation of a set of several equal-resolution interferograms from SAR sub-look images of bandwidth Bp centred at different carrier frequencies fi :

    • Only wrapped phase values are known:

    iic fRcfR

    c⋅∆−=Φ→⋅∆−=Φ ππ 44

    ]2/ , 2/[ iiiiici BfBfdfff +−∈+=

    ),(),(2),(),(2),(),( rxrxkrxrxkrxrx iWi

    Wii Φ+⋅−=Φ→⋅+Φ=Φ ππ

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 7

    Multi-Chromatic Approach (MCA) principles

    iiWi frxCrxCfrxRc

    rxkrx ⋅+=⋅∆⋅−⋅−=Φ ),(),(),(4),(2),( 10ππ

    Height mesurement

    ),(4

    ),( 1 rxCcrxR ⋅−=∆π

    Absolute phase measurement /Finges classification

    π2),(),( 0 rxCrxk −=

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 8

    Multi-Chromatic Approach (MCA) principles

    • The basic MCA algorithm, for the height measurement, consists ofperforming standard InSAR processing on sub-band signals, followed by a point-wise estimation of C0 and C1 through a linear regression method.

    • The height of any pixel is retrieved independently from the others and no phase unwrapping step is needed in the spatial domain. The resolution of the resulting interferogram depends on the spectral sub-band width, Bp.

    • The inter-band coherence or the multi-frequency phase STD for the MCA and can be assumed as a quality index of the measurements:

    • Reliable measurement can be performed on the targets showing a good linear phase trend vs. frequency (PSfd):

    ( ) ( ) ( )[ ]∑=

    ⋅−−Φ=Φ

    fN

    iii

    f

    frxcrxcrxN 1

    210 ,,,

    1 σ

    ( ){ }thfd yxyxP ΦΦ ≤= σσ ),(|,

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 9

    MCA on 100 MHz AES dataset (Langnau)

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 10

    MCA potentials

    • Height retrieval (C1) / Finge classification (C0)

    • Support / enforce standard PU algorithms

    • Absolute ranging from single SLC

    • Coherent scatterers identification

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 11

    MCA implementation

    • First tested in simulation and applied on ERS data: satellite sensor available didn’t allow a reliable application.

    • However, the technique appears optimally suited for the new generation of satellite sensors, which operate with larger bandwidths (TerraSAR-X or COSMO-SkyMed) → new impulse to the experimentation!

    • First MCA implementation worked on RAW data and generate sub-bands images by focusing portions of the available bandiwidth.

    • But data policies of these missions do not foresee the delivery of RAW data thus imposing to perform the MCA starting from SLC images.

    • MCA form SLC data has been investigate both theoretically and byprocessing real data.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 12

    MCA processing

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 13

    MCA processing: coregistration

    • ISSIA MCA processing chain is designed to have in input a couple of SLC images already co-registered to avoid increasing computational efforts related to the coregistration between Master and Slave images for each sub-bands.

    • Co-registration step can be simply modeled as e shift in the space wichintroduce a phase ramp in the spectrum.

    • When the sub-bands filtering is applied to the Slave image after interpolation, an additional phase term proportional to the frequency arises in the sub-band images:

    ( ) ( ) ( ) )()()()()()()( 21211 ttIIFTeFTfHIFTeFTfHIFTFTtI iitfjitfjiCCi ∆−=⋅=⋅⋅=⋅= ∆−−∆−−− ππ

    ( ) tfjtfji

    Ci

    ii eettItI ∆⋅−−⋅∝∆−∠=∠ πτπ 22)()(

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 14

    MCA processing: coregistration

    • Then, the interferometric phase results:

    • In order to infer the proper path difference it is needed to take into account the phase term related to the coregisration shift. This operation is trivial and not computationally expensive:

    • The range shift matrix shr(p) is already available as side product of the co-registration step.

    ( ) irsirsfpsh

    fj

    iSiM

    fpshf

    j

    ii eIIepINTpINT⋅

    ∗⋅

    ⋅⋅=⋅→)(2

    ,,

    )(2

    )()(ππ

    ( ) irs

    ii fpshfpR

    cfptpp ⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛+∆−=⋅∆+∆⋅−=Φ )(2)(4)()(2)( ππτπ

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 15

    MCA processing: de-Hamming

    -6 -4 -2 0 2 4 6

    x 107

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    Frequency [Hz]

    FT a

    mpl

    itude

    MASTER TSX-2008090: Spectrum de-hamming

    OriginalHammingde-HammingFiltered

    • In order to avoid asymmetry in the spectrum, before the pass-band filtering a de-Hamming filter is applied to the SLC data which consists of weighting the range spectrum of the data by the function:

    H f( )= 1α − 1−α( )cos 2πf( )

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 16

    MCA processing: height retrieval validation

    • The InSAR phase can be expressed in terms of a reference phase (Φref) which accounts for both the difference between the slant range geometry and a reference ellipsoid and, the phase related with the elevation wrt this ellipsoid (ΦH):

    • In order to have available a topographic information in SAR geometry, the reference DEM has back-projected in slant range through standard InSARprocessing chain: HDEM(x,r)

    ⎥⎦⎤

    ⎢⎣⎡ +Φ

    ⋅⋅−≈Φ−Φ+Φ=⋅=Φ rHpHf

    cpppfCp i

    shrefHii δ

    π2

    )(4)()()()( 1

    )(2)()(4

    )( 1 pHprpCcpH Φ⋅⎥⎦

    ⎤⎢⎣⎡ +⋅−= δπ

    )(2

    )(4

    pshfcp

    fcr r

    s

    ref

    c

    −Φ−=π

    δ

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 17

    MCA processing: TSX dataset

    • A first validation started by using a TerraSAR-X dataset acquired on Langnau. This choice was driven by the possibility to obtain the data needed for validation by using a standard InSAR pre-processing.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 18

    MCA processing: TSX dataset

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 19

    MCA Pre-processing: TSX dataset

    010

    2030

    4050

    60 0

    50

    100

    150

    700

    750

    800

    850

    900

    Range

    Azimuth

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 20

    MCA processing: TSX dataset

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 21

    MCA processing: TSX dataset

    0 2 4 6 8 10 12

    x 107

    0

    5000

    10000

    15000Slave-SLC: Pass-band spectrum, fci =-25 MHz

    Frequency

    Am

    plitu

    de

    Slave-SLC: FFT along range, fci =-25 MHz

    Range FFT samples

    Azi

    mut

    h

    100 200 300 400 500 600 700 800 900

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Interferometric Phase - Sub-band:1

    Range

    Azi

    mut

    h

    50 100 150 200 250 300 350 400 450 500

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 2 4 6 8 10 12

    x 107

    0

    5000

    10000

    15000Slave-SLC: Pass-band spectrum, fci =0 MHz

    Frequency

    Am

    plitu

    deSlave-SLC: FFT along range, fci =0 MHz

    Range FFT samples

    Azi

    mut

    h

    100 200 300 400 500 600 700 800 900

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Interferometric Phase - Sub-band:2

    Range

    Azi

    mut

    h

    50 100 150 200 250 300 350 400 450 500

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 2 4 6 8 10 12

    x 107

    0

    5000

    10000

    15000Slave-SLC: Pass-band spectrum, fci =25 MHz

    Frequency

    Am

    plitu

    de

    Slave-SLC: FFT along range, fci =25 MHz

    Range FFT samples

    Azi

    mut

    h

    100 200 300 400 500 600 700 800 900

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Interferometric Phase - Sub-band:3

    Range

    Azi

    mut

    h

    50 100 150 200 250 300 350 400 450 500

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 500 1000 1500 2000 25000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4Pass-band Filter Responce

    0 500 1000 1500 2000 25000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4Pass-band Filter Responce

    0 500 1000 1500 2000 25000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4Pass-band Filter Responce

    Kernel Spectrum around B/2 Image Spectrum around 0 Φi(x,r)

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 22

    MCA processing: TSX dataset

    ( ) ( ) π

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 23

    MCA processing: TSX results

    σφth=0.02 rad

    • A useful analysis for validate the output of the MCA processing is the inspection of the distribution of the pixels in PSfdsuperimposed on the SAR amplitude as well as on an optical image.

    • Targets in PSfd drop mainly on pixels which show high amplitude values or, in the optical image, on resolution cell which correspond to man made objects (as buildings).

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 24

    MCA processing: TSX results

    • Trends before shift compensation for pixel with σφ=0.0038 rad

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 25

    MCA processing: TSX results

    =-113.0975 m

    • The trends show the effect of shift compensation for pixel withσφ=0.0038 rad

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 26

    MCA processing: TSX results

    • Pixels with σφ

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 27

    MCA processing: TSX results

    • In order to validate the results, we use external DEM back projected onto SAR Master geometry: HDEM(x,r).

    • The difference between these height values is due to a deviation of the interferometric phase Φ wrt the expected value :Φ̂

    ),(),(),(),(ˆ),(),( rxrxrxrxrxrx noiseprocAPSR Φ+Φ+Φ=Φ−Φ=Φ

    -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 25000

    0.5

    1

    1.5

    2

    x 104 Expected-estimated absolute phases (pick value = -30 rad) • In the present case it is not possible to

    discriminate between the different contributions to the residual phase.

    • Temporal decorrelation (Bt = 33 d) →increase the noise level.

    • Additional path induced by the atmosphere → bias in the estimation of absolute height (a variation of λ/2 causes an error of 50 m in H ).

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 28

    MCA processing: TSX results

    -2500 -2000 -1500 -1000 -500 0 500 1000 1500 20000

    2

    4

    6

    8

    10

    12

    14

    16

    18Height error distribution at th < 0.02 (pick value = -79 m)

    -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

    x 104

    0

    0.5

    1

    1.5

    2

    x 104Expected-estimated heigths - pick value = -229 m (no th, no APSc)

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 29

    ∆RAPS

    50 100 150 200 250 300 350 400 450 500

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000 0.061

    0.062

    0.063

    0.064

    0.065

    0.066

    0.067

    0.068

    0.069

    |∆RDEM|

    50 100 150 200 250 300 350 400 450 500

    100

    200

    300

    400

    500

    600

    700

    800

    900

    10000.24

    0.245

    0.25

    0.255

    0.26

    0.265

    0.27

    0.275

    0.28

    0.285

    0.29

    MCA processing: TSX results

    δr (m)

    50 100 150 200 250 300 350 400 450 500

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000 0.305

    0.31

    0.315

    0.32

    0.325

    0.33

    0.335

    0.34

    0.345

    0.35

    ( )( )⎥⎦

    ⎤⎢⎣⎡ ∆−∆−∆

    ⋅−⋅≈

    ≈Φ−Φ−Φ+⋅=Φ∧

    ),(),(),(4),(

    ),(ˆ),(),(),(),(

    1

    1

    rxRrxRrxRc

    ffrxC

    rxrxrxfrxCrx

    refshHc

    c

    Hrefshc

    R

    π

    • Possible rough atmospheric signal estimation by using standard pre-processing side products and SRTM DEM (90x90 m)

    The spectral density shows an average trend close to f(-5/3) which is typical of signals related to the wet component of the troposphere.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 30

    MCA processing: TSX results

    • Performing the estimation on very coherent targets by means of asevere threshold on σΦ (

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 31

    MCA processing: TSX results

    • The true problem remains the difficulty to separate different sources of phase signals without the help of ancillary data or further temporal analysis.

    • Also the bandwidth value represents a limiting factor in the MCAperformace.

    • In order to evaluate the impact of this parameter on height retrieval through MCA processing, the ariborne airborne AES-1 dataset has been used: it is not affected by neither atmosphericdistortion nor temporal and geometrical decorrelation and, provides the possibility to explore different values of bandwidth from 100 to 400 MHz

    • The experiment showed that a bandwidth of least 300 MHz seems to be required in order to obtaine reliable results height measurements.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 32

    MCA processing: AES-1 results

    • Dataset acquired by airborne AES-1 sensor appears very promising for MCA testing

    • A multi-channel In-SAR sensor operating at X-band, with a total radar bandwidth of 400 MHz resulting from four non-overlapping channels, each 100 MHz wide, whose central frequencies are in GHz {9.4 9.5, 9.6, 9.7}.

    • For this dataset the normal baseline B⊥=0.75 m thus ensuring a very limited geometrical decorrelation effect.

    • The two antenna acquire simultaneously:– NO temporal decorrelation– NO atmospheric contribution to the interferometric phase are avoided

    ),(),(),(),(),(0

    rxrxrxrxrx procnoiseprocAPSR Φ≈Φ+Φ+Φ=Φ→φσ

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 33

    MCA processing: AES-1 results

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 34

    MCA processing: AES-1 results

    • However, for airborne dataset is not possible to perform InSARpre-processing by using standard InSAR chain designed for satellite missions → Φref(x,r), Φ2H(x,r) , HDEM(x,r) are not determined properly.

    • Moreover, the analysis of the data pointed out the presence of adelay introduced by the hardware between M and S. Since, the analysis of the ancillary data did not allow to define the actual value of this delay, it result impossible to perform absolute interferometric pahse estimation.

    • For these reasons the experiment with AES data was performed by analysing the data in slant range geometry without a direct comparison wrt the SRTM height profile.

    • Anyway, this limitation didn’t prevent to verify how the MCA performances depend on the available bandwidth.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 35

    MCA processing: AES-1 results

    11 fringes

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 36

    MCA processing: AES-1 results11 K values K(x,r)

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 37

    MCA processing: AES-1 resultsK(x,r)

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 38

    MCA processing: parametric analysis

    • Relevant parameters: B , Nf , Bp , Be• Estimation of the expected noise as function of the processing parameters.

    • In the hypothesis of ideal metallic planar reflector:

    ( )

    ( )Φ

    ==

    =

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    =

    ∑∑

    ∑σσ 2

    11

    2

    1

    2

    0ff

    f

    N

    ii

    N

    iif

    N

    ii

    C

    ffN

    f

    ( )Φ

    = =∑ ∑ ⎟⎟

    ⎞⎜⎜⎝

    ⎛−

    = σσ f fN

    i

    N

    iiif

    fC

    ffN

    N

    1

    2

    1

    21

    clutterA

    ASCR

    0

    22

    4

    σλπ⋅

    =

    )m (0.5x0.5 reflector planarmetallic the of areaAcell resolution the of areaA

    1)( section cross radar normalisedσwhere

    2clutter

    0

    =

    =

    ==

    SCR⋅=Φ 2

    ),(4

    ),( 1 rxCcrxR ⋅−=∆π

    π2),(),( 0 rxCrxk −=

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 39

    MCA processing: parametric analysis

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 40

    MCA processing: parametric analysis

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 41

    MCA processing: parametric analysis

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 42

    MCA processing: comments

    • It can be noted that the K values map obtained by processing a bandwidth of 400 MHz reproduces properly the fringe pattern.

    • At least a 300 MHz bandwidth seems to be required to provide reliable results.

    • For B=100 MHz the correlation with the fringe pattern disappears. This value appears inadequate for reliable height inference.

    • Therefore, this experiment confirms that, in the case of TSX dataset, where the phase information is corrupted by temporal and geometrical decorrelation and by the presence of atmospheric signal, a bandwidth of 100 MHz leads to unreliable height.

    • The results are confirmed by the parametrical analysis obtained through theoretical modeling.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 43

    MCA processing: work in progress

    • Experiment with TSX 300 MHz bandwidth Spotlight acquisition.

    • Experiment with COSMO-SkyMED 130 MHz bandwidth on desert area.

    • More reliable figure for frequency coherent target (σΦ is not robust)

    • Multi-temporal dataset exploration for estimate the atmospheric influence.

  • FRINGE – ESA ESRIN, 30/11/2009 CNR-ISSIA Bari 44

    The End

    Work supported by ESA ESTEC Contr. N. 21319/07/NL/HE.

    TerraSAR-X images are provided by DLR under a Scientific Use License for the proposal MTH0397.

    Sample AES-1 data is courtesy of SARMAP

    Thank you