mtbf lecture

54
可可可可可可可 前前 前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前 :一,,,, 前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前前 一,,,, 前前前前 前前前前 可可可可可可 前前 前前前前前 前前前前前前 前前前 前前前前前 前前前前前前 前前 前前前前前 前前前前前前 前前 前前前前前前前前前前前前前前前前前前前前前 前前前前前前前前前前前前前前 前前前前前前前前前前前前前前前前前 ,, t T 前前前前前前前前前前前 前前前前前前前前前前前前前前前前前前前前前 ,, 前 前前前前前前前前前前前前前前前前前前前前前前 ),。 前前前前 前前前前前前前前前前前前前前前 :,。 前前前前前前前前前前前前 前前前前前前 — 前前前前前前 前前前前前前 前前 前前前前前前 前前前前前 ,,, "前前前前前前" 前前前前前前前 前前前前前前 前前前前前前前→前前前前前前前前前前 ,, 1.可可可可可可可 可可可可 前前前/前前前前前 λ(t) TB w 2.可可可可可可可可可 前前前前前前前 前前前前前前前前前前 ,( De-rating) 前前 De-rating guide line前前前前前前前 前前前前 2.1可可可可可可:(1 前前前前前 )( 2 前前前前前 )( 3 前前前前前 )( 4 前前前前前前前 )( 5 前前前前前 前前前 ),, 前前前前DQE前前前前前前前 前前前前前前前前前前前前前前前前前前前 前前前前前前 前前前前前前前前前前前前前前前:(1 前前前前 )( 2EMI3 前前前前前 )( 4 前前前前前 )( 5 前前前前前 )( 6 前前前前 7 前前前前前前前前 )。 前前前前前 前前前前前前前前前前前 前前前 前前前前 前前前前 Infant Mortality 前前前 前前前前前 前前前 Useful Life Wear-out 前前前前前

Upload: ericyangyukun

Post on 15-Nov-2014

194 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: MTBF Lecture

可靠度工作簡介

前言:可靠度是一個可以數量化的機率函數,可以在設計時預估,可用試驗量度,可在生產保證,

一般而言,對電子設備整個生命週期中,其失效分佈可以區分為品質失效,可靠度失效,磨耗失效及設計失效,參照下表四種失效型態品質 與應力無關 用檢驗來消除可靠度 與應力有關 用篩選來降低磨耗 與時間有關 用更換來消除設計 用適當的用料減額定測試及失效數據分析來消除以上各失效型態組合形成早夭期,可用生命期及磨耗期,即所謂浴缸曲線

T

其中早夭期失效率為漸減,可用生命期失效率是常數,磨耗期失效率為漸增

求)作為設計過程之依據,依此選定零件或修訂線路。

量產驗證:燒機時間建立,可靠度最後驗證。

在市場上可以維護。如是我聞:亮不亮沒關係 — 沒有品質尺度 亮不亮有關係 — 品質,功能的要求,零時品質,"開始用的品質" 能亮多久? — 可靠度,耐用的程度,使用期間的品質→出貨以後市場使用狀況

1.產品的壽命特性:浴缸曲線

應力及/或時間有關

λ(t)

TB w

2.設計階段產品可靠度注意零件的選用,應力及溫度的減額定(De-rating),編修De-rating guide line或沿用其他規定(如客戶要

2.1測試分析項目:(1)線路分析(2)溫度量測(3)電壓量測(4)動作功能檢視(5)其他結構,外觀, 安全性等。 DQE會量測主要元件,若較低功率零件在設計時有特別考量而接近 元件額定值者 請設計工程師事先宣告。實驗室項目:(1)溫濕度(2)EMI(3)加速試驗(4)振動試驗(5)落下試驗(6)安規認可 (7)裝運及儲存試驗。

總特性曲線

與應力相關的可靠度失效

品質失效使用時間

InfantMortality

失效率

Ⅰ早夭期

Ⅱ可用生命期

Ⅲ磨耗期

Useful Life Wear-out

固定失效率

Page 2: MTBF Lecture

零件計數法通常用於競標階段,因缺乏設計之詳細資料原本就不夠精密,但其對達成可靠度要求之可行性,可提供給設計者與管理人員有用的回饋。當大部份設計完成,詳細零件表,零件應力可得到,就可用應力分析法,其數據亦可用來做日後可靠度選

當設計向前進行時,依前面資料產生所做的預估及依計畫測試資料所做的評估是作為配置要求是否可以完成之表示工具。

機械,電機等預估(或電子預估)可使用承包商數據或替用方法,須經顧客認可。

從浴缸曲線中去除早夭其的高失效率

General Exponential Model

韋氏分配是可以用來描述整個壽命週期的一種通式,討論可靠度不可不研究,

2.2可靠度預估(MIL-STD-785 工作203)(1)零件計數法:若元件的形式及數量為唯一可用之資料,可使用MIL-HDBK-217第三段中之預估程序或 顧客認可或顧客提供之方法。(2)應力分析法:個別元件操作條件經定義後可用MIL-HDBK-217第二階段中之預估程序或顧客認可之 替用方法。

料與應力適配(Trade-off)之用

*所做之預估不可被用作決定可獲取可靠度要求之基礎,要求可達成基於 "具有代表性之測試結果" 而定。*電子元件失效率預估技術可在最新版之MIL-HDBK-217裡找到,預估有關機械與電氣機械的裝備失效率之 技術並不容易找到,因此,可靠度人員與設計工程師之間的會商是很重要的。

2.3可靠度驗證試驗,應先訂定信賴水準及試驗計劃(1)固定試驗時間之試驗 a.故障後不修理或更換 b.故障後修理,再試驗(2)固定失效數之試驗 通常採用固定時間,故障後不修理的試驗

3.製程篩選(Burn-in)

篩選時間的決定…依顧客的要求 …依數據分析的結果通常使唉選時間用韋氏(Weibull)分配數據分析來決定Burn-in目的在剔除早期的故障,並非提昇產品可靠度。若能收集數據,回饋及改善,使早期故障率趨近於 有用期的故障率→就不必篩選*早期的壽命試驗除有篩選時間研究目的之外亦在找尋畸型母體分佈並求解決之道 (簡單的產品或許無畸型母體存在)*篩選後之失效率要小於(1/MTBF目標)否則要修訂設計 MTBF : 平均失效時間

4.量產階段之可靠度試驗及分析

4.1觀察的MTBF值與實際MTBF值之差別 由機率的觀念引入信賴水準(Confidence Level)

4.2泛指數模式(GEM table)之介紹

GEM table 係源自卜氏分配(Poisson Distribution)的累積機率值…IBM所用的方法

4.3MTBF區間推定 使用卡方分配(chi-square)來求上下限,目前幾乎很少商用產品做區間推定,僅保證至少MTBF值 GEM table 亦可用作區間推定

5.韋氏分配於可靠度方面之應用(WEIBULL)

一般有2參數及3參數二種型,在電子工業界使用2參數韋氏分配

Page 3: MTBF Lecture

Degreesof

Freedom ────────────────────────────df 0.01 0.02 0.05 0.10 0.20 0.30 1 6.635 5.412 3.841 2.706 1.642 1.074 2 9.210 7.824 5.991 4.605 3.219 2.408 3 11.341 9.837 7.815 4.642 3.665 3.665 4 13.277 11.668 9.488 7.779 5.989 4.878

5 15.086 13.388 11.070 9.236 7.289 6.064

6 16.812 15.033 12.592 10.645 8.558 7.231 7 18.475 16.622 14.067 12.017 9.803 8.383 8 20.090 18.168 15.507 13.362 11.030 9.524 9 21.666 19.679 16.919 14.684 12.242 10.656

10 23.209 21.161 18.307 15.987 13.442 11.781

11 24.725 22.618 19.675 17.275 14.631 12.899 12 26.217 24.054 21.026 18.549 15.812 14.011 13 27.688 25.472 22.362 19.812 16.985 15.119 14 29.141 26.873 23.685 21.064 18.151 16.222

15 30.578 28.259 24.996 22.307 19.311 17.322

16 32.000 29.633 26.296 23.542 20.465 18.418 17 33.409 30.995 27.587 24.769 21.615 19.511 18 34.805 32.316 28.869 25.989 22.760 20.601 19 36.191 33.687 30.144 27.204 23.900 21.689

20 37.566 35.020 31.410 28.412 25.038 22.775

21 38.932 36.343 32.671 29.615 26.171 23.858 22 40.289 37.659 33.924 30.813 27.301 24.939 23 41.638 38.968 35.172 32.007 28.429 26.018 24 42.980 40.270 36.415 33.196 29.553 27.096

25 44.314 41.566 37.652 34.382 30.675 28.172

26 45.642 42.856 38.885 35.563 31.795 29.246 27 46.963 44.140 40.113 36.741 32.912 30.319 28 48.278 45.419 41.337 37.916 34.027 31.391 29 49.588 46.693 42.557 39.087 35.139 32.461

30 50.892 47.962 43.773 40.256 36.250 33.530

published by Oliver & Boyd. Edinburgh), and by permission of the authors and publishers.

Table A13 Table of χ2 Values

PROBABILITY OF A DEVIATION GREATER THAN χ2

This table is adapted from Table IV of Fisher and Yates, Statistical Tables for Biological,Agricultural and Medical Research, published by Longman Group Lid, London (previously

Page 4: MTBF Lecture

2T

2T

在可用壽命期中,電子線路失效率 f(t)

是常數 R(t)

r!

1 T

r!所以累積失效率

2! r!

i=0 i!

M = ln10 = 2.3026

MTBF之計算 單邊界限1.固定時間試驗 T : 總共測試時間, T = nt

n : 樣本數 MTBF > ──── r : 失效數 χ2

2r+2;α χ2 : 卡方分配數值α : 生產者冒險率t : 測試時間

信賴水準 (Confidence Level) = 1-α

2.固定失效數r之試驗T : 總共測試時間

MTBF > ──── T=Σ ti + (n-r)t

χ22r;α ti : 第i個失效時間

3.GEM表介紹

λ(t) = ──

f(t) =λ∙ e-λ∙t

在固定時間之試驗中第r個失效可依卜氏分配求得Pr : 失效機率

e-λ∙T (λ∙T)r r : 失效數 Pr = ───── T : 總共測試時間

λ : 失效率

MTBF = ── 令 M =λ∙T = ────

λ MTBF

e-M M r

Pr = ────

e-M (M)2 e-M (M)r

= e-M + e-M(M) + ──── + · · · + ────

r Mi

= e-M ( Σ ──── ) = α

Confidence Level = 1-Pr(cum) = 1-α例如已知要求信賴水準1-α= 90%, 且無失效出現(r=0)P0 = e-M = 1-90% = 0.1

意即在90%信賴水準之下,且無失效至少要測試MTBF目標的2.3倍才足以保證

Page 5: MTBF Lecture

G.E.M. TABLE

NUMBER OF FAILURESCONFIDENCE -------------- -------------- -------------- -------------- -------------- -------------- --------------

LEVEL 0 1 2 3 4 5 695.00% 2.9957 4.7439 6.2958 7.7537 9.1535 10.5130 11.842490.00% 2.3026 3.8897 5.3223 6.6808 7.9936 9.2747 10.532185.00% 1.8971 3.3724 4.7231 6.0135 7.2670 8.4947 9.703180.00% 1.6094 2.9943 4.2790 5.5151 6.7210 7.9060 9.075475.00% 1.3863 2.6926 3.9204 5.1094 6.2744 7.4227 8.558570.00% 1.2040 2.4392 3.6156 4.7622 5.8904 7.0056 8.111165.00% 1.0498 2.2188 3.3474 4.4547 5.5486 6.6331 7.710563.21% 160.00% 0.9163 2.0233 3.1054 4.1753 5.2366 6.2919 7.342755.00% 0.7985 1.8436 2.8826 3.9163 4.9461 5.9732 6.998150.00% 0.6931 1.6783 2.6741 3.6721 4.6709 5.6702 6.669640.00% 0.5108 1.3764 2.2851 3.2113 4.1477 5.0910 6.039230.00% 0.3567 1.0973 1.9138 2.7637 3.6336 4.5171 5.410726.42% 120.00% 0.2231 0.8244 1.5350 2.2968 3.0895 3.9036 4.733710.00% 0.1054 0.5318 1.1021 1.7448 2.4326 3.1519 3.89485.00% 0.0513 0.3554 0.8177 1.3663 1.9702 2.6130 3.2853

TEST RATIO (For time terminated test)

TOTAL TEST TIME T.R. : TEST RATIO =

MTBF

GENERAL EXPONENTIAL MODEL (FOR TIME TERMINATED TESTS)

Page 6: MTBF Lecture

為了在短期間能得知產品可靠度數據,通常使用加速以達到這目的,然而加速因子的求取卻是一大問題,

在正規的產品開發過程中,可靠度應在設計初期即妥善規劃,逐步施行,每一階段均收集資料,將可靠度

加速壽命試驗

分固定時間,機率比率逐次,全裝備生產可靠度

應用於生產前之可靠度鑑定。

﹡風險較低的試驗計劃,相對的試驗時間較長

6.加速試驗

目前最長被使用的係Arrhenious Model,而且伴隨做一系列的實驗而求得。業界通常採用Ea=0.7ev來估計,即每溫度上昇10℃壽命減半之原則,也有顧客指定早期的故障Ea=0.4ev ( 例:NCR)

7.可靠度工程規劃

設計在產品之中,配合各種試驗,早期挑出產品的問題。目前有美軍標準 MIL-STD-785B可以沿用

Arrenhious Model :λ = A‧e-Εa/KT

A : 常數Ea : 活化能(ev)K : 波玆曼常數(8.63×10-5ev/°K)T : 凱氏溫度假設保守的估計活化能為0.6ev,則每溫升10℃失效率倍增,通常早期壽命Ea較低而可用期Ea較高 約0.6~0.7ev,可能之情況,加速因素要配合試驗求得

MIL-STD-781的試驗計劃

(a)固定測試時間:試驗計劃 IX-D~XVII-D 試驗計劃XIX-D~XXI-D(高風險) 要知道MTBF估計值或試驗時間,試驗成本需事前知道,選用固定測試時間之試驗計劃

(b)機率比例逐次(PRST:Probability Ratio Sequential Tests) 試驗計劃 I-D~VI-D 試驗計劃 VII-D.VIII-D(高風險) 當必須在誤差之預定風險下,判定允收或拒收總測試時間和MTBF值不是很重要時,使用PRST計劃, 不能提供真實的MTBF估計值,在交貨期使用。

(c)全裝備生產可靠度:試驗計劃 XVIII-D 當欲使每一裝備皆能施以可靠度允收試驗時,用全裝備生產可靠度允收試驗計劃。名詞.須求條件:θ0:較高的MTBF試驗值 θ1:較低的MTBF試驗值 d :鑑別比率 d = θ0/θ1

α:生產者冒險率;真實的MTBF=θ0時裝備被拒收之機率β:消費者冒險率;真實的MTBF=θ1時裝備被允收之機率﹡α、β、d相同時,PRST試驗計劃比固定測試時間試驗計劃,可較快決定允收或拒收。

﹡每一個PRST試驗計劃均可推導出全裝備生產可靠度允收試驗計劃(代替XVIII-D試驗計劃)例:某系統生產可靠度接收試驗,採用MIL-STD-781D II-D試驗計劃,其θ1=2000小時,若總測試時間 10000小時內發生5次失效 Q1:該批產品是否符合允收水準? Q2:若試驗繼續進行,且無失效在發生仍需是多少時間,才可判定允收?

Page 7: MTBF Lecture

可靠度工作簡介

t

)電壓量測(4)動作功能檢視(5)其他結構,外觀,

磨耗失效

使用時間

Ⅲ磨耗期

Wear-out

Page 8: MTBF Lecture

零件計數法通常用於競標階段,因缺乏設計之詳細資料原本就不夠精密,但其對達成可靠度要求之可行性

當大部份設計完成,詳細零件表,零件應力可得到,就可用應力分析法,其數據亦可用來做日後可靠度選

當設計向前進行時,依前面資料產生所做的預估及依計畫測試資料所做的評估是作為配置要求是否可以完

)零件計數法:若元件的形式及數量為唯一可用之資料,可使用MIL-HDBK-217第三段中之預估程序或

所做之預估不可被用作決定可獲取可靠度要求之基礎,要求可達成基於 "具有代表性之測試結果" 而定。裡找到,預估有關機械與電氣機械的裝備失效率之

目的在剔除早期的故障,並非提昇產品可靠度。若能收集數據,回饋及改善,使早期故障率趨近於

Page 9: MTBF Lecture

────────────────────────────0.50

0.455 1.386 2.366 3.357

4.315

5.348 6.346 7.344 8.343

9.342

10.341 11.340 12.340 13.339

14.339

15.338 16.338 17.338 18.338

19.337

20.337 21.337 22.337 23.337

24.337

25.336 26.336 27.336 28.336

29.336

published by Oliver & Boyd. Edinburgh), and by permission of the authors and publishers.

PROBABILITY OF A DEVIATION GREATER THAN χ2

This table is adapted from Table IV of Fisher and Yates, Statistical Tables for Biological,, published by Longman Group Lid, London (previously

Page 10: MTBF Lecture

MTBF之計算 單邊界限

Page 11: MTBF Lecture

G.E.M. TABLE

NUMBER OF FAILURES-------------- -------------- -------------- ---------------

7 8 9 1013.1481 14.4347 15.7052 16.962211.7709 12.9947 14.2060 15.406610.8965 12.0777 13.2488 14.411210.2325 11.3798 12.5188 13.65079.6844 10.8024 11.9138 13.01969.2090 10.3007 11.3873 12.46958.7823 9.8497 10.9132 11.9736

8.3898 9.4340 10.4757 11.51538.0212 9.0430 10.0636 11.08327.6693 8.6690 9.6687 10.66856.9914 7.9466 8.9044 9.86446.3122 7.2199 8.1329 9.0504

5.5761 6.4285 7.2892 8.15704.6561 5.4325 6.2213 7.02083.9809 4.6952 5.4254 6.1690

GENERAL EXPONENTIAL MODEL (FOR TIME TERMINATED TESTS)

Page 12: MTBF Lecture

為了在短期間能得知產品可靠度數據,通常使用加速以達到這目的,然而加速因子的求取卻是一大問題,

在正規的產品開發過程中,可靠度應在設計初期即妥善規劃,逐步施行,每一階段均收集資料,將可靠度

加速壽命試驗

,而且伴隨做一系列的實驗而求得。業界通常採用Ea=0.7ev來估計

MIL-STD-781的試驗計劃

當必須在誤差之預定風險下,判定允收或拒收總測試時間和MTBF值不是很重要時,使用PRST計劃,

Page 13: MTBF Lecture

1. Parts count

2. Stress analysis

共同討論決定

MTBF vs. AFR

(Dead on Arrival)

Assumption1. DOA rate is low2. Annual usage time is 2500 hours

MTBF之用

x → 0 , 1 - e-x→ xλ = 1 / MTBF在時間 t 時可靠度 R(t)

R(t) = e-λt = e- t / MTBF

在已知時間 t 折損率 ( if t << MTBF )

1 - R(t) = 1- e-λt = 1- e- t / MTBF = t / MTBF如果將 t 代入保證期限 (例如一年) 可求得 RMA 之比率若MTBF值為正確, Return Rate 即可知. 可據此估算維修比例/成本.

MTBF 預估在新機種設計初期競標階段,BOM 為唯一可用資料時在不違背MIL-HDBK-217E Notice 2 Derating規定情形可用第三部份的預估方法, 依零件類別直接查表求得各零件之失效率

當實體樣品可以取得, 依 MIL-HDBK-217E Notice 2第二部份的預估方法電壓/電流/功率及溫度測量必須實際執行.每一零件操作情況測量,比較結果與零件規格各查表找出失效率資料整理有現成軟體以節省時間, 需依料號主檔建立零件庫

MTBF驗證 MTBF Demonstration可分固定時間試驗及固定失效數試驗為節省測試時間可增加樣品數, 提高試驗溫度,根據Arrhenious Model溫度每上升10℃產品壽命減半,因此試驗時間得以減半試驗計劃含樣品數量 / 試驗時間 / 產品操作條件 與 設備需求

AFR : Annual Failure Rate(Estimate)AFR = Quality + Failure rate = DOA + (1 - Reliability)

Reliability = e- t / MTBF ( e- x = 1- x + x2 / 2! - x3 / 3! + · · · )

= 1 - t / MTBF + 1/2 (t / MTBF)2

- 1/3! (t / MTBF)3 + · · ·

Page 14: MTBF Lecture

∴ AFR = DOA + 1 - ( 1- t/MTBF) = 2500/MTBF

Page 15: MTBF Lecture

1. Parts count

2. Stress analysis

共同討論決定

MTBF vs. AFR

(Dead on Arrival)

Assumption1. DOA rate is low2. Annual usage time is 2500 hours

之用

- t / MTBF

- t / MTBF = t / MTBF

成本.

為唯一可用資料時規定情形

依零件類別直接查表求得各零件之失效率

MIL-HDBK-217E Notice 2第二部份的預估方法

比較結果與零件規格各查表找出失效率需依料號主檔建立零件庫.

可分固定時間試驗及固定失效數試驗根據Arrhenious Model

因此試驗時間得以減半產品操作條件 與 設備需求

/ 3! + · · · )

Page 16: MTBF Lecture
Page 17: MTBF Lecture

Power supply MTBF = 147,976 HoursBase on MIL-HDBK-217F Notice 2 R800 9.1

Ckt# Description Voltage Current Power Stress Temp.R 801 Thermister 5Ohm/8A 76.5 0.0019 1 1 1.0 R 802 CF 120,000 0.5 W 148.3 0.1833 W 0.37 53.8 0.0037 1.3 0.516 1.1 R 803 CF 120,000 0.5 W 148.3 0.1833 W 0.37 53.8 0.0037 1.3 0.516 1.1 R 804 MOF 47,000 1 W 141.7 0.4272 W 0.43 78.4 0.0037 1.6 0.7177 1.1 R 805 MOF 47,000 1 W 138.2 0.4064 W 0.41 42.2 0.0037 1.2 0.7038 1.1 R 806 CEM 47,000 5 W 147.25 0.4613 W 0.09 78.4 0.0024 1.6 0.7395 0.7 R 807 CEM 820 10 W 39.4 1.8931 W 0.19 69.1 0.0024 1.45 1.2826 0.8 R 808 CF 47 0.25 W 0.01255 0.0074 W 0.03 45.2 0.0037 1.3 0.1476 0.7 R 809 CF 100,000 0.25 W 0.346 0.0000 W 0.00 49.1 0.0037 1.3 0.0049 0.7 R 810 CF 47 0.25 W 0.0218 0.0223 W 0.09 48.1 0.0037 1.3 0.227 0.8 R 811 CF 1,000 0.25 W 0.397 0.0002 W 0.00 55.4 0.0037 1.4 0.0329 0.7 R 812 CF 22,000 0.25 W 6.85 0.0021 W 0.01 48.1 0.0037 1.3 0.0908 0.7 R 813 MOF 0.33 2 W 0.295 0.0287 W 0.01 42.2 0.0037 1.2 0.2504 0.7 R 814 CF 2,700 0.25 W 2.03 0.0015 W 0.01 45.8 0.0037 1.3 0.0797 0.7 R 815 CF 120 0.25 W 1.96 0.0320 W 0.13 44.1 0.0037 1.2 0.2613 0.8 R 816 CF 22,000 0.25 W 2.5 0.0003 W 0.00 45.8 0.0037 1.3 0.0414 0.7 R 817 CF 2,200 0.25 W 2.14 0.0021 W 0.01 38.8 0.0037 1.2 0.09 0.7 R 818 CF 560 0.25 W 0.833 0.0012 W 0.00 70.9 0.0037 1.5 0.0735 0.7 R 819 CF 12,000 0.25 W 13.25 0.0146 W 0.06 67.9 0.0037 1.5 0.1925 0.8 R 820 CF 150,000 0.5 W 189.4 0.2391 W 0.48 67.9 0.0037 1.5 0.5724 1.2 R 821 CF 560 0.25 W 0.0376 0.0000 W 0.00 59.9 0.0037 1.4 0.0066 0.7 R 822 CF 5,100 0.25 W 17.83 0.0623 W 0.25 60.3 0.0037 1.4 0.3388 0.9 R 823 VR 200 0.5 W 0.0809 0.0002 W 0.00 57.4 0.0037 1.4 0.035 0.5 R 824 CF 1,000 0.25 W 2.41 0.0058 W 0.02 57.4 0.0037 1.4 0.1343 0.7 R 825 CF 12,000 0.25 W 0.441 0.0000 W 0.00 60.3 0.0037 1.4 0.0135 0.7 R 826 CF 12,000 0.25 W 6.61 0.0036 W 0.01 63.5 0.0037 1.4 0.1119 0.7 R 827 CF 300,000 0.25 W 5.71 0.0001 W 0.00 54.3 0.0037 1.3 0.0285 0.7 R 828 CF 390,000 0.25 W 7.65 0.0002 W 0.00 54.3 0.0037 1.3 0.0323 0.7 R 829 CF 1000000 0.25 W 0.237 0.0000 W 0.00 54.3 0.0037 1.3 0.0015 0.7 R 830 CF 6,800 0.25 W 4.64 0.0032 W 0.01 56.0 0.0037 1.4 0.106 0.7 R 831 VR 5,000 0.2 W 2.78 0.0019 W 0.01 55.2 0.0037 1.4 0.0872 0.6 R 832 CF 6,800 0.25 W 4.61 0.0031 W 0.01 56.0 0.0037 1.4 0.1054 0.7 R 833 CF 120,000 0.25 W 0.228 0.0000 W 0.00 55.3 0.0037 1.4 0.0033 0.7 R 834 CF 2000000 0.25 W 0.038 0.0000 W 0.00 56.0 0.0037 1.4 0.0003 0.7 R 835 CF 47,000 0.25 W 0.1058 0.0000 W 0.00 55.3 0.0037 1.4 0.0026 0.7 R 836 CF 1000000 0.25 W 1.832 0.0000 W 0.00 55.3 0.0037 1.4 0.0073 0.7

For Resistor λp = λb πTπPπSπQπE

λb πT πP πS

Page 18: MTBF Lecture

R 837 CF 5,100 0.25 W 16.99 0.0566 W 0.23 56.8 0.0037 1.4 0.3263 0.9 R 838 CF 22,000 0.25 W 0.0283 0.0000 W 0.00 55.0 0.0037 1.4 0.0013 0.7 R 839 CF 39,000 0.25 W 20.7 0.0110 W 0.04 56.8 0.0037 1.4 0.1722 0.7 R 840 CF 7,500 0.25 W 4.04 0.0022 W 0.01 61.0 0.0037 1.4 0.0916 0.7 R 841 CF 150 0.25 W 3.6 0.0864 W 0.35 60.4 0.0037 1.4 0.3848 1.0 R 842 CF 6,200 0.25 W 10.55 0.0180 W 0.07 76.8 0.0037 1.6 0.2085 0.8 R 843 MOF 4.7 1 W 0.141 0.0934 W 0.09 75.2 0.0037 1.6 0.3967 0.8 R 848 Thermister 270Ohm/270V 102.3 0.0019 1 0.76 1.0 R 850 CF 2.2 0.25 W 0.055 0.0067 W 0.03 51.4 0.0037 1.3 0.1416 0.7

SUMMARY Resistor 800

C800 10.1

Ckt# Description Voltage Stress Temp.C 801 MEF 0.47u 250 V 230 0.92 42.4 0.00051 1.3 0.94 9.476C 802 CD 3300p 400 V 112.44 0.28 50.7 0.00099 1.6 0.54 1.103C 803 CD 3300p 400 V 114.12 0.29 50.7 0.00099 1.6 0.54 1.108C 804 MEF 0.1u 250 V 230 0.92 42.1 0.00051 1.3 0.81 9.476C 805 MEF 0.1u 250 V 230 0.92 57.6 0.00051 1.8 0.81 9.476C 806 CD 4700p 400 V 56.8 0.14 53.9 0.00099 1.6 0.54 1.013C 807 CD 4700p 400 V 54.7 0.14 59.4 0.00099 1.8 0.54 1.012C 808 ALU 330u 250 V 152.6 0.61 58.0 0.00012 4.2 4.9 2.09C 809 ALU 330u 250 V 154 0.62 61.7 0.00012 4.2 4.9 2.141C 810 CD 0.001u 1000 V 465 0.47 75.1 0.00099 2.5 0.54 1.465C 811 CD 0.02u 1000 V 160 0.16 75.1 0.00099 2.5 0.54 1.019C 812 ALU 100u 25 V 17.4 0.70 45.9 0.00012 2.9 2.3 3.1C 813 CD 0.01u 50 V 5.1 0.10 55.4 0.00099 1.8 0.66 1.005C 814 CD 0.1u 50 V 5 0.10 45.2 0.00099 1.6 0.81 1.005C 815 CD 1000p 500 V 0.6 0.00 45.2 0.00099 1.6 0.54 1C 816 PPN 0.0056u 100 V 2.36 0.02 45.8 0.00051 1.6 0.54 1C 817 PPN 0.01u 100 V 2.4 0.02 38.8 0.00051 1.3 0.66 1C 818 CD 0.1u 50 V 0.247 0.00 49.1 0.00099 1.6 0.81 1C 819 PPN 0.01u 100 V 2.28 0.02 38.8 0.00051 1.3 0.66 1C 820 CD 27p 500 V 8.65 0.02 60.3 0.00099 1.8 0.35 1C 821 PPN 0.001u 100 V 6.85 0.07 55.4 0.00051 1.8 0.54 1C 822 CD 180p 500 V 7.55 0.02 54.3 0.00099 1.3 0.44 1C 823 ALU 47u 35 V 18.15 0.52 57.3 0.00012 4.2 2.3 1.482C 824 MEF 0.022u 63 V 11.3 0.18 60.4 0.00051 1.8 0.66 1.002

For capacitor λp = λb πTπCπVπSRπQπE

λb πT πC πV

Page 19: MTBF Lecture

C 825 PEN 0.1u 50 V 1.78 0.04 53.5 0.00051 1.6 0.81 1C 826 ALU 47u 200 V 120.4 0.60 41.4 0.00012 1.9 2.3 2.017C 827 ALU 47u 200 V 119.8 0.60 43.4 0.00012 1.9 2.3 1.992C 828 CD 1000p 500 V 176.83 0.35 75.2 0.00099 2.5 0.54 1.205C 830 ALU 470u 100 V 77.6 0.78 63.5 0.00012 4.2 3.4 4.619C 831 ALU 220u 100 V 77 0.77 55.5 0.00012 4.2 3.4 4.481C 832 ALU 680u 25 V 15.85 0.63 64.7 0.00012 6 4.9 2.317C 833 ALU 1000u 25 V 15.87 0.63 63.4 0.00012 4.2 4.9 2.326C 834 ALU 1000u 10 V 7.72 0.77 60.3 0.00012 4.2 4.9 4.526C 835 ALU 1000u 10 V 7.7 0.77 53.8 0.00012 2.9 4.9 4.481C 836 ALU 470u 35 V 25.1 0.72 68.3 0.00012 6 3.4 3.439C 837 ALU 470u 35 V 24.75 0.71 62.2 0.00012 4.2 3.4 3.274C 838 ALU 100u 250 V 193.5 0.77 49.7 0.00012 2.9 3.4 4.572C 839 ALU 22u 250 V 193.5 0.77 46.9 0.00012 2.9 2.3 4.572C 840 ALU 220u 10 V 1.38 0.14 54.8 0.00012 4.2 3.4 1.001C 841 ALU 220u 10 V 1.035 0.10 76.7 0.00012 8.4 3.4 1C 843 ALU 1u 50 V 14 0.28 54.4 0.00012 2.9 1 1.022C 844 CD 0.1u 50 V 6.26 0.13 53.5 0.00099 1.6 0.81 1.009

SUMMARY Capacitor 800

L800 11.2

Ckt# Description Temp.L 801 15 uH 50.9 0.00003 1.7 3.0 1.0 L 802 3.5 mH 68.2 0.00003 2.0 3.0 1.0 L 803 15 uH 59.9 0.00003 1.8 3.0 1.0 L 804 15 uH 62.7 0.00003 1.9 3.0 1.0 L 805 15 uH 58.2 0.00003 1.8 3.0 1.0 L 806 15 uH 70.8 0.00003 2.1 3.0 1.0 L 807 15 uH 45.9 0.00003 1.6 3.0 1.0

T800 11.1

Ckt# Description Temp. λbT 801 LINE FILTER 43.4 0.014 1.5 3.0 1.0 T 802 Choke 900uH 51.9 0.00003 1.7 3.0 1.0 T 803 SW.XFMR 81.8 0.022 2.3 3.0 1.0 T 804 Driver.XFMR 59.5 0.0054 1.8 3.0 1.0

SUMMARY Inductive 800

THS

For inductor λP = λbπTπQπE

λb πT πQ πE

THS

For Transformer λP = λbπTπQπE

πT πQ πE

Page 20: MTBF Lecture

D800 6.1

Ckt# Description Power Voltage Current Tj PRV If(avg) Pd Si Sp Temp.D 801 1N5398 800 1.50 63.5 338 0.19 0.13 0.42 58.7 0.0038 2.092 0.12 1D 802 1N5398 800 1.50 69.6 337 0.35 0.23 0.42 60.8 0.0038 2.317 0.12 1D 803 1N5398 800 1.50 67.9 339 0.21 0.14 0.42 62.6 0.0038 2.253 0.12 1D 804 1N5398 800 1.50 72.0 337 0.35 0.23 0.42 63.2 0.0038 2.409 0.12 1D 805 BA159GP 1000 1.00 77.6 519 0.019 0.02 0.52 77.1 0.0038 2.635 0.20 1D 806 PR1502 100 1.50 61.1 58 0.023 0.02 0.58 60.5 0.025 2.009 0.27 1D 807 BA159GP 1000 1.00 74.8 340 0.05 0.05 0.34 73.5 0.0038 2.52 0.07 1D 808 18V 0.50 W (Zener) 48.8 0.004 W 0.01 48.1 0.002 1.613 1 1D 809 1S2076A 70 0.15 39.1 7.42 0.000 0.00 0.11 38.8 0.001 1.338 0.054 1D 810 7V 0.50 W (Zener) 66.9 0.033 W 0.07 60.3 0.002 2.217 1 1D 811 13V 0.50 W (Zener) 56.6 0.006 W 0.01 55.4 0.002 1.858 1 1D 812 1S2076A 70 0.15 55.8 2.3 0.001 0.00 0.03 55.3 0.001 1.831 0.054 1D 813 1S2076A 70 0.15 77.3 17 0.001 0.00 0.24 76.8 0.001 2.623 0.054 1D 814 UF4004 400 1.00 68.6 194 0.308 0.31 0.49 60.9 0.025 2.281 0.17 1D 815 1S2076A 70 0.15 57.8 5 0.001 0.01 0.07 56.8 0.001 1.897 0.054 1D 816 RGP10G 400 1.00 73.6 342 0.077 0.08 0.86 71.7 0.025 2.475 0.68 1D 817 UF3004 400 3.00 95.1 94.2 0.33 0.11 0.24 86.8 0.025 3.419 0.054 1D 818 UF4001 50 1.00 104.4 40 0.55 0.55 0.80 90.6 0.025 3.89 0.58 1D 819 RGP10D 200 1.00 95.3 111.5 0.5 0.50 0.56 82.8 0.025 3.432 0.24 1D 820 UF3007 1000 3.00 72.6 886 0.16 0.05 0.89 68.6 0.025 2.434 0.75 1D 821 SB340 40 3.00 103.9 12.4 1.12 0.37 0.31 75.9 0.003 3.866 0.06 1

Q800 6.3

Rated

Ckt# Description Power Voltage Current Tj Vce/Vds Pd Sp Temp.Q 802 2SC945 0.25 W 50 74.7 24.3 0.025 W 0.10 62.2 0.00074 2.757 1.5 0.60 Q 803 2SA950 0.60 W -30 61.8 -9.5 0.04 W 0.07 53.5 0.00074 2.182 1.5 0.83 Q 804 2SC945 0.25 W 50 60.0 12.4 0.005 W 0.02 57.5 0.00074 2.108 1.5 0.60 Q 805 2SA950 0.60 W -30 61.4 -18.5 0.025 W 0.04 56.2 0.00074 2.165 1.5 0.83 Q 806 2SC945 0.25 W 50 90.0 24 0.064 W 0.26 58.0 0.00074 3.562 1.5 0.60 Q 807 2SA950 0.60 W -30 68.8 -25.2 0.053 W 0.09 57.8 0.00074 2.484 1.5 0.83

For diode λP = λbπTπSπCπQπE

S2 λb πT πS πC

For Transistor λP = λbπTπAπRπSπQπE

λb πT πA πR

Page 21: MTBF Lecture

6.4

Rated

Ckt# Description Power Voltage Current Tj Vce/Vds Pd Sp Temp.Q 801 2SK727 81.5 W 900 70.2 494 1.13 W 0.01 68.5 0.012 2.343 8.0 Q 808 2SK526 21.3 W 250 96.6 197.5 2.25 W 0.11 83.4 0.012 3.495 4.0

I800 5.1

Ckt# Description Rated Power Tj Pd Temp.I 801 UC3842N 1 W 100 72.4 0.217 W 50.7 0.01 3.2 0.003 0.50 I 803 TL431CLP 0.775 W 71 61.95 0.05 W 58.4 0.01 1.6 0.001 0.50 I 804 M5238P 0.625 W 80 57.1 0.015 W 55.9 0.01 1.2 0.003 0.50 I 805 M5238P 0.625 W 80 52.3 0.035 W 49.5 0.01 0.8 0.003 0.50

6.11

Ckt# Description Rated Power Tj Pd Temp.I 802 4N35(VDE) 0.25 W 100 46.2 0.009 W 45.3 0.013 1.9 8

SUMMARY Semiconductor 800

For FET λP = λbπTπAπQπE

λb πT πA

For IC λP = (C1 πT + C2 πE)πQ πL

Rth(°C/W) C1 πT C2 πE

For Opto-electronics λP = λb πT πQπE

Rth(°C/W) λb πT πQ

Page 22: MTBF Lecture

System %10 1.0 0.019000 0.28%10 1.0 0.026371 0.39%10 1.0 0.026371 0.39%10 1.0 0.048264 0.71%10 1.0 0.034694 0.51%10 1.0 0.018511 0.27%10 1.0 0.035465 0.52%10 1.0 0.005207 0.08%10 1.0 0.000167 0.00%10 1.0 0.008555 0.13%10 1.0 0.001210 0.02%10 1.0 0.003132 0.05%10 1.0 0.008020 0.12%10 1.0 0.002741 0.04%10 1.0 0.009482 0.14%10 1.0 0.001415 0.02%10 1.0 0.002863 0.04%10 1.0 0.002912 0.04%10 1.0 0.008090 0.12%10 1.0 0.038170 0.56%10 1.0 0.000241 0.00%10 1.0 0.016393 0.24%10 1.0 0.000980 0.01%10 1.0 0.005066 0.07%10 1.0 0.000498 0.01%10 1.0 0.004182 0.06%10 1.0 0.000972 0.01%10 1.0 0.001103 0.02%10 1.0 0.000051 0.00%10 1.0 0.003952 0.06%10 1.0 0.002500 0.04%10 1.0 0.003932 0.06%10 1.0 0.000121 0.00%10 1.0 0.000010 0.00%10 1.0 0.000096 0.00%10 1.0 0.000270 0.00%

πQ πE λp

Page 23: MTBF Lecture

10 1.0 0.015394 0.23%10 1.0 0.000046 0.00%10 1.0 0.006645 0.10%10 1.0 0.003400 0.05%10 1.0 0.020698 0.31%10 1.0 0.009484 0.14%10 1.0 0.018481 0.27%10 1.0 0.014440 0.21%10 1.0 0.004979 0.07%

Resistor 800 0.43457 6.43%

πQ πE System %1 10 1.0 0.059055 0.87%1 10 1.0 0.009433 0.14%1 10 1.0 0.009473 0.14%1 10 1.0 0.050888 0.75%1 10 1.0 0.070460 1.04%1 10 1.0 0.008667 0.13%1 10 1.0 0.009737 0.14%1 10 1.0 0.051608 0.76%1 10 1.0 0.052865 0.78%1 10 1.0 0.019586 0.29%1 10 1.0 0.013618 0.20%1 10 1.0 0.024815 0.37%1 10 1.0 0.011819 0.17%1 10 1.0 0.012890 0.19%1 10 1.0 0.008554 0.13%1 10 1.0 0.004406 0.07%1 10 1.0 0.004376 0.06%1 10 1.0 0.012830 0.19%1 10 1.0 0.004376 0.06%1 10 1.0 0.006237 0.09%1 10 1.0 0.004957 0.07%1 10 1.0 0.005663 0.08%1 10 1.0 0.017182 0.25%1 10 1.0 0.006073 0.09%

= λb πTπCπVπSRπQπE

πSR λp

Page 24: MTBF Lecture

1 10 1.0 0.006610 0.10%1 10 1.0 0.010576 0.16%1 10 1.0 0.010444 0.15%1 10 1.0 0.016102 0.24%1 10 1.0 0.079146 1.17%1 10 1.0 0.076786 1.14%1 10 1.0 0.081755 1.21%1 10 1.0 0.057434 0.85%1 10 1.0 0.111784 1.65%1 10 1.0 0.076409 1.13%1 10 1.0 0.084195 1.25%1 10 1.0 0.056102 0.83%1 10 1.0 0.054100 0.80%1 10 1.0 0.036597 0.54%1 10 1.0 0.017147 0.25%1 10 1.0 0.034277 0.51%1 10 1.0 0.003557 0.05%1 10 1.0 0.012947 0.19%

Capacitor 800 1.30554 19.32%

15

System %0.000151 0.00%0.000181 0.00%0.000166 0.00%0.000171 0.00%0.000163 0.00%0.000186 0.00%0.000143 0.00%

15

λp System %0.064677 0.96%0.000153 0.00%0.151620 2.24%0.029821 0.44%

Inductive 800 0.24743 3.66%

λp

Page 25: MTBF Lecture

System %8 1 0.007839 0.12%8 1 0.008617 0.13%8 1 0.008500 0.13%8 1 0.008961 0.13%8 1 0.016272 0.24%8 1 0.106931 1.58%8 1 0.005568 0.08%

5.5 1 0.017744 0.26%8 1 0.000578 0.01%

5.5 1 0.024391 0.36%5.5 1 0.020434 0.30%

8 1 0.000791 0.01%8 1 0.001133 0.02%8 1 0.078605 1.16%8 1 0.000820 0.01%8 1 0.338264 5.01%8 1 0.036929 0.55%8 1 0.452345 6.69%8 1 0.165919 2.46%8 1 0.362818 5.37%8 0.7 0.003772 0.06%

System %0.0614 8 1 0.000899 0.01%0.0553 8 1 0.000888 0.01%0.0479 8 1 0.000537 0.01%0.0512 8 1 0.000815 0.01%0.0995 8 1 0.001884 0.03%0.0592 8 1 0.001080 0.02%

πQ πE λP

= λbπTπAπRπSπQπE

πS πQ πE λP

Page 26: MTBF Lecture

5.5

System %5.5 1 1.236939 18.30%5.5 1 0.922698 13.65%

System %10 1.0 0.33957 5.02%10 1.0 0.16920 2.50%10 1.0 0.13422 1.99%10 1.0 0.10067 1.49%

System %1 0.193680 2.87%

Semiconductor 800 4.77032 70.59%Power supply 6.757863 100.00%

πQ πE λP

πQ πL λP

For Opto-electronics λP = λb πT πQπE

πE λP

Page 27: MTBF Lecture

Power supplyMTBF = 38,225 Hours R800

For VR λp = λb * πtaps (πR *πV * πQ * πE) For resistor λp = λb (πE * πR * πQ) For thermistor λp = λb (πE * πQ)

Ckt# Description Voltage Current Power Stress Temp. λb πE πRR 801 Thermister 5Ohm/8A 76.5 0.065 1 ----R 802 CF 120,000 0.5 W 148.3 0.1833 W 0.37 53.8 0.0014 1 1.1R 803 CF 120,000 0.5 W 148.3 0.1833 W 0.37 53.8 0.0014 1 1.1R 804 MOF 47,000 1 W 141.7 0.4272 W 0.43 78.4 0.014 1 1.2R 805 MOF 47,000 1 W 138.2 0.4064 W 0.41 42.2 0.011 1 1.2R 806 CEM 47,000 5 W 147.25 0.4613 W 0.09 78.4 0.0078 1 1.6R 807 CEM 820 10 W 39.4 1.8931 W 0.19 69.1 0.0092 1 1R 808 CF 47 0.25 W 0.01255 0.0074 W 0.03 45.2 0.00096 1 1R 809 CF 100,000 0.25 W 0.346 0.0000 W 0.00 49.1 0.00096 1 1R 810 CF 47 0.25 W 0.0218 0.0223 W 0.09 48.1 0.00096 1 1R 811 CF 1,000 0.25 W 0.397 0.0002 W 0.00 55.4 0.011 1 1R 812 CF 22,000 0.25 W 6.85 0.0021 W 0.01 48.1 0.00096 1 1R 813 MOF 0.33 2 W 0.295 0.0287 W 0.01 42.2 0.0096 1 1R 814 CF 2,700 0.25 W 2.03 0.0015 W 0.01 45.8 0.00096 1 1R 815 CF 120 0.25 W 1.96 0.0320 W 0.13 44.1 0.00096 1 1R 816 CF 22,000 0.25 W 2.5 0.0003 W 0.00 45.8 0.00096 1 1R 817 CF 2,200 0.25 W 2.14 0.0021 W 0.01 38.8 0.00088 1 1R 818 CF 560 0.25 W 0.833 0.0012 W 0.00 70.9 0.0012 1 1R 819 CF 12,000 0.25 W 13.25 0.0146 W 0.06 67.9 0.0012 1 1R 820 CF 150,000 0.5 W 189.4 0.2391 W 0.48 67.9 0.0019 1 1.1R 821 CF 560 0.25 W 0.0376 0.0000 W 0.00 59.9 0.0011 1 1R 822 CF 5,100 0.25 W 17.83 0.0623 W 0.25 60.3 0.0013 1 1R 823 VR 200 0.5 W 0.0809 0.0002 W 0.00 57.4 0.026 1 1R 824 CF 1,000 0.25 W 2.41 0.0058 W 0.02 57.4 0.0011 1 1R 825 CF 12,000 0.25 W 0.441 0.0000 W 0.00 60.3 0.0011 1 1R 826 CF 12,000 0.25 W 6.61 0.0036 W 0.01 63.5 0.0011 1 1R 827 CF 300,000 0.25 W 5.71 0.0001 W 0.00 54.3 0.0011 1 1.1R 828 CF 390,000 0.25 W 7.65 0.0002 W 0.00 54.3 0.0011 1 1.1R 829 CF 1000000 0.25 W 0.237 0.0000 W 0.00 54.3 0.0011 1 1.1R 830 CF 6,800 0.25 W 4.64 0.0032 W 0.01 56.0 0.0011 1 1R 831 VR 5,000 0.2 W 2.78 0.0019 W 0.01 55.2 0.026 1 1R 832 CF 6,800 0.25 W 4.61 0.0031 W 0.01 56.0 0.0011 1 1R 833 CF 120,000 0.25 W 0.228 0.0000 W 0.00 55.3 0.0011 1 1.1

Page 28: MTBF Lecture

R 834 CF 2000000 0.25 W 0.038 0.0000 W 0.00 56.0 0.0011 1 1.2R 835 CF 47,000 0.25 W 0.1058 0.0000 W 0.00 55.3 0.0011 1 1R 836 CF 1000000 0.25 W 1.832 0.0000 W 0.00 55.3 0.0011 1 1.1R 837 CF 5,100 0.25 W 16.99 0.0566 W 0.23 56.8 0.0013 1 1R 838 CF 22,000 0.25 W 0.0283 0.0000 W 0.00 55.0 0.0011 1 1R 839 CF 39,000 0.25 W 20.7 0.0110 W 0.04 56.8 0.0011 1 1R 840 CF 7,500 0.25 W 4.04 0.0022 W 0.01 61.0 0.0011 1 1R 841 CF 150 0.25 W 3.6 0.0864 W 0.35 60.4 0.0015 1 1R 842 CF 6,200 0.25 W 10.55 0.0180 W 0.07 76.8 0.0013 1 1R 843 MOF 4.7 1 W 0.141 0.0934 W 0.09 75.2 0.01 1 1R 848 Thermister 270Ohm/270V 102.3 0.065 1 ----R 850 CF 2.2 0.25 W 0.055 0.0067 W 0.03 51.4 0.00096 1 1

SUMMARY

C800 For capacitor λp = λb (πE *πQ *πcv)

Ckt# Description Voltage Stress Temp. λb πE πQC 801 MEF 0.47u 250 V 230 0.92 42.4 0.06 1 20C 802 CD 3300p 400 V 112.44 0.28 50.7 0.0021 1 10C 803 CD 3300p 400 V 114.12 0.29 50.7 0.0021 1 10C 804 MEF 0.1u 250 V 230 0.92 42.1 0.06 1 20C 805 MEF 0.1u 250 V 230 0.92 57.6 0.08 1 20C 806 CD 4700p 400 V 56.8 0.14 53.9 0.0014 1 10C 807 CD 4700p 400 V 54.7 0.14 59.4 0.002 1 10C 808 ALU 330u 250 V 152.6 0.61 58.0 0.056 1 10C 809 ALU 330u 250 V 154 0.62 61.7 0.056 1 10C 810 CD 0.001u 1000 V 465 0.47 75.1 0.019 1 10C 811 CD 0.02u 1000 V 160 0.16 75.1 0.0045 1 10C 812 ALU 100u 25 V 17.4 0.70 45.9 0.057 1 10C 813 CD 0.01u 50 V 5.1 0.10 55.4 0.0016 1 10C 814 CD 0.1u 50 V 5 0.10 45.2 0.0011 1 10C 815 CD 1000p 500 V 0.6 0.00 45.2 0.0011 1 10C 816 PPN 0.0056u 100 V 2.36 0.02 45.8 0.00074 1 30C 817 PPN 0.01u 100 V 2.4 0.02 38.8 0.00063 1 30C 818 CD 0.1u 50 V 0.247 0.00 49.1 0.0011 1 10C 819 PPN 0.01u 100 V 2.28 0.02 38.8 0.00063 1 30C 820 CD 27p 500 V 8.65 0.02 60.3 0.0016 1 10

Page 29: MTBF Lecture

C 821 PPN 0.001u 100 V 6.85 0.07 55.4 0.00099 1 30C 822 CD 180p 500 V 7.55 0.02 54.3 0.0011 1 10C 823 ALU 47u 35 V 18.15 0.52 57.3 0.041 1 10C 824 MEF 0.022u 63 V 11.3 0.18 60.4 0.0014 1 20C 825 PEN 0.1u 50 V 1.78 0.04 53.5 0.00074 1 30C 826 ALU 47u 200 V 120.4 0.60 41.4 0.032 1 10C 827 ALU 47u 200 V 119.8 0.60 43.4 0.032 1 10C 828 CD 1000p 500 V 176.83 0.35 75.2 0.012 1 10C 830 ALU 470u 100 V 77.6 0.78 63.5 0.1 1 10C 831 ALU 220u 100 V 77 0.77 55.5 0.1 1 10C 832 ALU 680u 25 V 15.85 0.63 64.7 0.078 1 10C 833 ALU 1000u 25 V 15.87 0.63 63.4 0.057 1 10C 834 ALU 1000u 10 V 7.72 0.77 60.3 0.1 1 10C 835 ALU 1000u 10 V 7.7 0.77 53.8 0.078 1 10C 836 ALU 470u 35 V 25.1 0.72 68.3 0.11 1 10C 837 ALU 470u 35 V 24.75 0.71 62.2 0.077 1 10C 838 ALU 100u 250 V 193.5 0.77 49.7 0.078 1 10C 839 ALU 22u 250 V 193.5 0.77 46.9 0.078 1 10C 840 ALU 220u 10 V 1.38 0.14 54.8 0.022 1 10C 841 ALU 220u 10 V 1.035 0.10 76.7 0.042 1 10C 843 ALU 1u 50 V 14 0.28 54.4 0.025 1 10C 844 CD 0.1u 50 V 6.26 0.13 53.5 0.0014 1 10

SUMMARY

L800 For inductor λp = λb (πE *πQ)

Ckt# Description Temp. λb πE πQL 801 15 uH 50.9 0.0034 1 5L 802 3.5 mH 68.2 0.0108 1 5L 803 15 uH 59.9 0.0053 1 5L 804 15 uH 62.7 0.0073 1 5L 805 15 uH 58.2 0.0053 1 5L 806 15 uH 70.8 0.0108 1 5L 807 15 uH 45.9 0.0029 1 5

T800 For transformer λp = λb (πE *πQ)

Ckt# Description Temp. λb πE πQ

Page 30: MTBF Lecture

T 801 LINE FILTER 43.4 0.0029 1 5T 802 Choke 900uH 51.9 0.0034 1 30T 803 SW.XFMR 81.8 0.0051 1 5T 804 Driver.XFMR 59.5 0.0053 1 5

SUMMARY

D800

Rated For zener diode λp = λb (πE *πA *πQ)

Ckt# Description Power Voltage Current PRV If(avg) Pd Si Sp Temp. λb πE πQD 801 1N5398 800 1.43 338 0.19 0.13 0.42 58.7 0.00049 1 15D 802 1N5398 800 1.41 337 0.35 0.25 0.42 60.8 0.00063 1 15D 803 1N5398 800 1.39 339 0.21 0.15 0.42 62.6 0.00049 1 15D 804 1N5398 800 1.39 337 0.35 0.25 0.42 63.2 0.00063 1 15D 805 BA159GP 1000 0.45 519 0.019 0.04 0.52 77.1 0.00053 1 15D 806 PR1502 100 1.41 58 0.023 0.02 0.58 60.5 0.00037 1 15D 807 BA159GP 1000 0.46 340 0.05 0.11 0.34 73.5 0.00053 1 15D 808 18V 0.42 W (Zener) 0.004 W 0.01 48.1 0.00065 1 30D 809 1S2076A 70 0.15 7.42 0.000 0.00 0.11 38.8 0.00025 1 15D 810 7V 0.38 W (Zener) 0.033 W 0.09 60.3 0.0007 1 30D 811 13V 0.40 W (Zener) 0.006 W 0.02 55.4 0.0007 1 30D 812 1S2076A 70 0.15 2.3 0.001 0.00 0.03 55.3 0.00037 1 15D 813 1S2076A 70 0.15 17 0.001 0.00 0.24 76.8 0.00053 1 15D 814 UF4004 400 0.96 194 0.308 0.32 0.49 60.9 0.00082 1 15D 815 1S2076A 70 0.15 5 0.001 0.01 0.07 56.8 0.00037 1 15D 816 RGP10G 400 0.91 342 0.077 0.08 0.86 71.7 0.00045 1 15D 817 UF3004 400 1.90 94.2 0.33 0.17 0.24 86.8 0.00082 1 15D 818 UF4001 50 0.76 40 0.55 0.72 0.80 90.6 0.004 1 15D 819 RGP10D 200 0.85 111.5 0.5 0.59 0.56 82.8 0.0031 1 15D 820 UF3007 1000 2.44 886 0.16 0.07 0.89 68.6 0.00045 1 15D 821 SB340 40 3 12.4 1.12 0.37 0.31 75.9 0.0012 1 15

Q800

Rated For FET λp = λb (πE *πA *πQ *πc)

Ckt# Description Power Voltage Current Vce/Vds Pd Sp Temp. λb πE πQQ 801 2SK727 81.5 W 900 494 1.13 W 0.01 0.55 68.5 0.021 1 12

For diode λp = λb (πE *πQ *πR *πA *πs2 *πc)

S2

For Transistor λp = λb (πE*πA*πQ*πR*πs2 *πc)

S2

Page 31: MTBF Lecture

Q 802 2SC945 0.16 W 50 24.3 0.025 W 0.16 0.49 62.2 0.0012 1 12Q 803 2SA950 0.46 W -30 -9.5 0.04 W 0.09 0.32 53.5 0.0013 1 12Q 804 2SC945 0.17 W 50 12.4 0.005 W 0.03 0.25 57.5 0.00099 1 12Q 805 2SA950 0.45 W -30 -18.5 0.025 W 0.06 0.62 56.2 0.0015 1 12Q 806 2SC945 0.17 W 50 24 0.064 W 0.38 0.48 58.0 0.0017 1 12Q 807 2SA950 0.44 W -30 -25.2 0.053 W 0.12 0.84 57.8 0.0015 1 12Q 808 2SK526 21.3 W 250 197.5 2.25 W 0.11 0.79 83.4 0.026 1 12

I800

Ckt# Description Rated Power Tj Pd Temp. πQ πTI 801 UC3842N 1 W 100 72.4 0.217 W 50.7 20 0.01 13I 803 TL431CLP 0.775 W 71 61.95 0.05 W 58.4 20 0.01 4.4I 804 M5238P 0.625 W 80 57.1 0.015 W 55.9 20 0.01 3I 805 M5238P 0.625 W 80 52.3 0.035 W 49.5 20 0.01 2

For Opto-electronic coupler λp = λb πT πE πQCkt# Description Rated Power Tj Pd Temp. λb πTI 802 4N35(VDE) 0.25 W 100 46.2 0.009 W 45.3 0.0055 100

SUMMARY

For IC λp = πQ (C1 πT πv + C2 πE)πL

Rth(°C/W) C1

Rth(°C/W)

Page 32: MTBF Lecture

For VR λp = λb * πtaps (πR *πV * πQ * πE) For resistor λp = λb (πE * πR * πQ) For thermistor λp = λb (πE * πQ)

πQ πtaps πV λp System %15 ----- ---- 0.975000 3.73%15 ----- ---- 0.023100 0.09%15 ----- ---- 0.023100 0.09%3 ----- ---- 0.050400 0.19%3 ----- ---- 0.039600 0.15%

15 ----- ---- 0.187200 0.72%15 ----- ---- 0.138000 0.53%15 ----- ---- 0.014400 0.06%15 ----- ---- 0.014400 0.06%15 ----- ---- 0.014400 0.06%15 ----- ---- 0.165000 0.63%15 ----- ---- 0.014400 0.06%3 ----- ---- 0.028800 0.11%

15 ----- ---- 0.014400 0.06%15 ----- ---- 0.014400 0.06%15 ----- ---- 0.014400 0.06%15 ----- ---- 0.013200 0.05%15 ----- ---- 0.018000 0.07%15 ----- ---- 0.018000 0.07%15 ----- ---- 0.031350 0.12%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.019500 0.07%10 1 1 0.260000 0.99%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.018150 0.07%15 ----- ---- 0.018150 0.07%15 ----- ---- 0.018150 0.07%15 ----- ---- 0.016500 0.06%10 1 1 0.260000 0.99%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.018150 0.07%

Page 33: MTBF Lecture

15 ----- ---- 0.019800 0.08%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.018150 0.07%15 ----- ---- 0.019500 0.07%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.016500 0.06%15 ----- ---- 0.022500 0.09%15 ----- ---- 0.019500 0.07%3 ----- ---- 0.030000 0.11%

15 ----- ---- 0.975000 3.73%15 ----- ---- 0.014400 0.06%

Resistor 800 3.707500 14.17%

For capacitor λp = λb (πE *πQ *πcv)πcv λp System %

1.119 1.342800 5.13%1 0.020989 0.08%1 0.020989 0.08%

0.97 1.164000 4.45%0.97 1.552000 5.93%

1.039 0.014546 0.06%1.039 0.020780 0.08%0.965 0.540400 2.07%0.965 0.540400 2.07%0.877 0.166535 0.64%0.877 0.039443 0.15%0.778 0.443460 1.70%1.129 0.018067 0.07%1.455 0.016002 0.06%0.876 0.009636 0.04%0.872 0.019358 0.07%0.911 0.017218 0.07%1.455 0.016002 0.06%0.911 0.017218 0.07%0.589 0.009426 0.04%

Page 34: MTBF Lecture

0.763 0.022661 0.09%0.726 0.007984 0.03%0.68 0.278759 1.07%

0.844 0.023632 0.09%1.088 0.024154 0.09%0.679 0.217280 0.83%0.679 0.217280 0.83%0.876 0.105120 0.40%1.029 1.029000 3.93%0.898 0.897600 3.43%1.179 0.919542 3.51%1.179 0.671973 2.57%1.179 1.178900 4.51%1.179 0.919542 3.51%1.029 1.131900 4.33%1.029 0.792330 3.03%0.779 0.607464 2.32%0.515 0.401388 1.53%0.898 0.197472 0.75%0.898 0.376992 1.44%0.34 0.085000 0.32%

1.455 0.020366 0.08%Capacitor 800 16.115607 61.60%

λp System %0.017000 0.06%0.054000 0.21%0.026500 0.10%0.036500 0.14%0.026500 0.10%0.054000 0.21%0.014500 0.06%

For transformer λp = λb (πE *πQ)λp System %

Page 35: MTBF Lecture

0.014500 0.06%0.102000 0.39%0.025500 0.10%0.026500 0.10%

Inductive 800 0.397500 1.52%

For zener diode λp = λb (πE *πA *πQ)

πR πA πc λp System %1.5 1.5 0.7 1 0.011576 0.04%1.5 1.5 0.7 1 0.014884 0.06%1.5 1.5 0.7 1 0.011576 0.04%1.5 1.5 0.7 1 0.014884 0.06%

1 0.6 0.7 1 0.003339 0.01%1.5 0.6 0.7 1 0.003497 0.01%

1 0.6 0.7 1 0.003339 0.01%-------- 1 ------ ---- 0.019500 0.07%

1 0.6 0.7 1 0.001575 0.01%-------- 1 ------ ---- 0.021000 0.08%-------- 1 ------ ---- 0.021000 0.08%

1 0.6 0.7 1 0.002331 0.01%1 0.6 0.7 1 0.003339 0.01%1 0.6 0.7 1 0.005166 0.02%1 0.6 0.7 1 0.002331 0.01%

1.5 1.5 0.9 1 0.013669 0.05%2 0.6 0.7 1 0.010332 0.04%

1.5 1.5 0.8 1 0.108000 0.41%1.5 1.5 0.7 1 0.073238 0.28%

2 0.6 0.9 1 0.007290 0.03%2 1.5 0.7 1 0.037800 0.14%

For FET λp = λb (πE *πA *πQ *πc)

πR πA πc λp System %-------- 0.7 ------ 1 0.176400 0.67%

For diode λp = λb (πE *πQ *πR *πA *πs2 *πc)

πs2

For Transistor λp = λb (πE*πA*πQ*πR*πs2 *πc)

πs2

Page 36: MTBF Lecture

1 0.7 0.65 1 0.006552 0.03%1 0.7 0.35 1 0.003822 0.01%1 0.7 0.3 1 0.002495 0.01%1 0.7 0.88 1 0.011088 0.04%1 0.7 0.65 1 0.009282 0.04%1 0.7 2.2 1 0.027720 0.11%

-------- 0.7 ------ 1 0.218400 0.83%

πv πE πL λp System %1 0.0026 0.38 1 2.61976 10.01%1 0.0007 0.38 1 0.885320 3.38%1 0.0026 0.38 1 0.619760 2.37%1 0.0026 0.38 1 0.419760 1.60%

For Opto-electronic coupler λp = λb πT πE πQπE πQ λp System %1 1 0.550000 2.10%

Semiconductor 800 5.94002 22.71%Power supply 26.160631 100.00%

For IC λp = πQ (C1 πT πv + C2 πE)πL

C2

Page 37: MTBF Lecture

67501 MTBF PredictionParts count (Base on MIL-HDBK-217F Notice2)

Sub system Q'ty Failure rateResistor 19 3.26E-06Capacitor 22 4.95E-06Semiconductor 26 8.07E-06Others 11 1.17E-06

Total # 78 1.74E-05MTBF

Mean Time Between Failure 57,316 Hours

67501 ResistorITEM PQTY PN COMP-NAME REFERENCE-DESIGNATOR DESCRIPTION

1 1 R1/2W15K CF-R R7 RES=15K 1/2W2 1 540007 CF-R R13 RES=100 1/4W3 1 540040 CF-R R20 RES=100K 1/4W4 2 540041 CF-R R5,R6 RES=1 1/4W5 1 540099 CF-R R12 RES=30K 1/4W6 1 541057-459 CF-R R3 RES=11.5K 1/4W7 1 540110 CF-R R1 RES=15K 1/4W8 1 541057-459 CF-R R17 RES=32.4K 1/4W9 1 540118 CF-R R9 RES=150K10 1 540146 CF-R R2 RES=130K11 1 540147 CF-R R4 RES=180K12 1 540246 CF-R R218 RES=12 1/4W13 1 540246 MF R8 RES=150 1W

Page 38: MTBF Lecture

14 1 540985 MF R18 RES=698 1/8W15 1 540986 MF R10 RES=887 1/4W16 1 540987 MF R11 RES=3.4K 1/8W17 1 540988 MF R15 RES=43.2K 1/8W18 1 R1/4W2.2 CF R14 RES=2.2 1/4W

1967501 Resistor 19

67501 CapacitorITEM PQTY PN COMP-NAME REFERENCE-DESIGNATOR DESCRIPTION

19 1 CD33/1K CERAMIC C19 CAP=33PF20 1 260164 CERAMIC C5 CAP=1UF21 1 260155 CERAMIC C18 CAP=560PF22 1 260153 CERAMIC C13 CAP=0.15UF23 1 260152 CERAMIC C11 CAP=0.01UF24 2 260151 CERAMIC C23,C24 CAP=0.1UF25 4 260150 CERAMIC C6,C9,C12,C22 CAP=0.47UF26 4 250070 EL-C C7,C8,C10,C14 CAP=10UF27 2 250069 EL-C C15,C17 CAP=1000UF28 1 250068 EL-C C16 CAP=470UF29 4 250067 EL-C C1-C4 CAP=330UF

2267501 Capacitor 22

67501 SemiconductorITEM PQTY PN COMP-NAME REFERENCE-DESIGNATOR DESCRIPTION

30 1 370047 1N5362B Z1 Zener Diode31 1 370046 1N5254B Z4 Zener Diode

Page 39: MTBF Lecture

32 1 370045 1N5250B Z2 Zener Diode33 1 370044 1N5248B Z3 Zener Diode34 3 370003 1N4004 D6,D8,D15 General Purpose35 3 370049 1N5404 D1,D2,D4 POWER RECTIFIER36 1 370076 HT-1129 D11 DIAC37 3 370043 MBR160 D12,D16,D18 Power Rectifier38 1 370042 MUR440 D3 Switching39 4 370061 D5,D9,D13,D18 Fast Recovery Diode44 1 600057 MAC97B6 Q4 TRIAC45 1 600056 223A6L6 Q3 TRIAC46 1 600054 IRFP254 Q2 POWER MOSFET47 1 600055 TIP48 Q1 POWER MOSFET48 1 450367 IR2100 U2 IC,MOSFET DRVR49 1 450366 UC2524AN U3 IC,VOLT 50 1 450177 7815CT U1 IC,VOLT

2667501 Semiconductor 26

67501 OthersITEM PQTY PN COMP-NAME REFERENCE-DESIGNATOR DESCRIPTION

40 2 330062 4.75-5.25UH L4,L5 INDUCTOR41 1 330061 163UH L3 INDUCTOR42 2 330060 393UH L1,L2 INDUCTOR43 1 320091 T1 TRANSFORMER51 1 300059 4.0A250V F1 FUSE52 1 300055 CLIP FUSE CLIP53 2 100684 SOCKET J1,J2 SOCKET54 1 311108 PCB 67501 PCB Plated Through Hole

11

Page 40: MTBF Lecture

67501 Others 11

Page 41: MTBF Lecture

λg πQ Failure rate0.016 10 0.160.016 10 0.160.016 10 0.160.016 10 0.320.016 10 0.160.016 10 0.160.016 10 0.160.016 10 0.160.016 10 0.160.016 10 0.160.016 10 0.160.016 10 0.160.038 10 0.38

Page 42: MTBF Lecture

0.016 10 0.160.016 10 0.160.016 10 0.160.016 10 0.16

0.016 10 0.16

3.26E-06

λg πQ Failure rate0.026 10 0.260.026 10 0.260.026 10 0.260.026 10 0.260.026 10 0.260.026 10 0.520.026 10 1.040.019 10 0.760.019 10 0.380.019 10 0.190.019 10 0.76

4.95E-06

λg πQ Failure rate0.024 8 0.1920.024 5.5 0.132

Page 43: MTBF Lecture

0.024 5.5 0.1320.024 5.5 0.1320.028 8 0.6720.022 8 0.528

0.02 5.5 0.110.022 8 0.528

0.0075 8 0.060.19 5.5 4.180.02 8 0.160.02 5.5 0.11

0.0011 5.5 0.006050.0011 5.5 0.00605

0.041 10 0.410.047 10 0.470.024 10 0.24

8.07E-06

λg πQ Failure rate0.00022 3 0.00132

0.00022 3 0.000660.00022 3 0.00132

0.0042 3 0.01260.02 1 0.02

0.013 1 0.0130.11 1 0.220.45 2 0.9

Page 44: MTBF Lecture

1.17E-06

Page 45: MTBF Lecture

MTBF DEMONSTRATION TEST PROCEDURE

1. SCOPE

This test procedure describes how to plan and run a MTBF demonstration of new projects.

1.1 Purpose To demonstrate the real figure of MTBF on new product with life test facility of QAD

2. PROCEDURE

2.1 Test start Demonstration test should be conducted from Pilot-Run to Mass-Production, the sample size of demonstration for Eng. Pilot-Run and Pilot-Run should be planed by QE engineer to project team for arrangement before Eng. Pilot-Run.

2.2 Test finish -Demonstrated MTBF should be reached the MTBF target with 90% confidence level before Mass-Production. -If demonstrated MTBF with 90% confidence level cannot reached after certain period (i.e.. Pilot-Run to Mass-Production) due to many failures then the test should be extend. Suggest the limitation of failure numbers on Mass-Production should be no more than 2 and if more than 4 failures then the demonstration failed.

3. TEST CONDITIONS 3.1 Test Hour Defined – The hours are defined as operational hours exclude first 72 hours. (0-72 hours is Infant mortality period)

3.2 Conditions for Test – The conditions for the test will be 40°C with nominal line voltage applied to the product.

3.3 Power cycle – 5 hours ON / 1 hours OFF cycling Operating time : 20 hours per day.

Page 46: MTBF Lecture

3.4 Acceleration factor : × 3.06 (40°C vs. 25°C) The Arrhenious relationship is employed to compute the equivalent derated failure rate And a conservative activation energy of 0.6 ev is choice. according to “Arrhenious Model”

A : Normalization constant Ea : Activation energy

T : Temperature in °K Assume conservative activation energy of 0.6 ev Failure rate increased about 2 times per 10°C temperature rise

4. FAILURE ANALYSIS

4.1 Failure mode 4.1.1 If failure was found and the cause is known, such as material, workmanship … etc it was a quality failure –––– eliminate this problem After solution implement –– continue life test and pay more attention to observe this failure within an interval longer than the time that this problem was found. 4.1.2 Otherwise, it was reliability failure – this failure should be count.

4.2 Failure report Failure report will be issue by QE engineer to QE manager and the people concerned.

5. DEMONSTRATED MTBF CALCULATION

5.1 Test Terminated at Predetermined Time t 5.1.1 One side confidence limit of MTBF is

2T

where T : Total number of hours of testing T = nt, n : Sample size t : Test time r : Number of failures

λ = A • e-Ea/KT

where λ: Failure rate

K : Boltzman constant (8.617 × 10-5 ev/°K)

MTBF > ───── χ2

2r+2;α

χ22r+2 : Chi-square value for 2r+2 degree of freedom

α : Producer's risk (1-α = confidence level)

Page 47: MTBF Lecture

5.1.2 Base on G.E.M table (90% confidence level) Number of failures Test ratio 0 2.3 1 3.9 2 5.3 3 6.7 4 8.0 Total test time

Target MTBF

Total test time

Test Ratio

5.2 Test Terminated When The rth Failure Has Occurred One side confidence limit of MTBF is

2T

r

i=1

where T : Total number of hours of testing

n : sample size r : Number of failures t : Test time

6. PROPOSAL Suggestion: Use time terminated test method ( see 5.1.2 ) Confidence level 90%

T

Test ratio

Test ratio = ──────

MTBF > ──────

MTBF > ──── χ2

2r;α

T = Σ ti + ( n-r ) t

ti : Test time to ith failure

χ22r : Chi-square value for 2r degree of freedom

α: Producer's risk ( 1-α= confidence level )

MTBF > ─────

Page 48: MTBF Lecture

GENERAL EXPONENTIAL MODEL

In the useful life period of electronic equipment, the failure rate F(t)

R(t) and the probability density of time to failure

For a time terminated test, Total test time and total failure are constant The probability of rth failure is

r! where Pr : The probability of rth failure r : Number of failure T : Total test time

1 T

r!Cumulative probability of failures is

2! r!

i=0 i!

Hence cumulative probability of failure is Pr(cum)

M = ln 10 = 2.3026That means at 90% confidence level Test ratio is 2.3026 with no failureWe can build G.E.M. table which is the relationship between confidence level,Test ratios and Failure numbers, and it is an useful tool for MTBF demonstration test.

λ(t) = ── is relative constant

f(t) =λ∙ e-λ∙t which have an Exponential distribution

e-λ∙T (λ∙T)r

Pr = ───── which have a Poisson distribution

λ: Failure rate

MTBF = ── , let M =λ∙T = ──── (M : Test ratio) λ MTBF

e-M (M) r

Pr = ────

Pr(cum) = P0+P1+P2+ · · · +Pr

e-M (M)2 e-M (M)r

= e-M + e-M(M) + ──── + · · · + ────

r Mi

= e-M ( Σ ──── ) = α

The confidence level is 1 – Pr(cum) = 1-αFor example if given confidence level 1-α = 90% and no failure can be occur

P0 = e-M = 1-90% = 0.1

Page 49: MTBF Lecture

MTBF DEMONSTRATION TEST PROCEDURE

1. SCOPE

This test procedure describes how to plan and run a MTBF demonstration of new projects.

1.1 Purpose To demonstrate the real figure of MTBF on new product with life test facility of QAD

2. PROCEDURE

2.1 Test start Demonstration test should be conducted from Pilot-Run to Mass-Production, the sample size of demonstration for Eng. Pilot-Run and Pilot-Run should be planed by QE engineer to project team for arrangement before Eng. Pilot-Run.

2.2 Test finish -Demonstrated MTBF should be reached the MTBF target with 90% confidence level before Mass-Production. -If demonstrated MTBF with 90% confidence level cannot reached after certain period (i.e.. Pilot-Run to Mass-Production) due to many failures then the test should be extend. Suggest the limitation of failure numbers on Mass-Production should be no more than 2 and if more than 4 failures then the demonstration failed.

3. TEST CONDITIONS 3.1 Test Hour Defined – The hours are defined as operational hours exclude first 72 hours. (0-72 hours is Infant mortality period)

3.2 Conditions for Test – The conditions for the test will be 40°C with nominal line voltage applied to the product.

3.3 Power cycle – 5 hours ON / 1 hours OFF cycling Operating time : 20 hours per day.

Page 50: MTBF Lecture

3.4 Acceleration factor : × 3.06 (40°C vs. 25°C) The Arrhenious relationship is employed to compute the equivalent derated failure rate And a conservative activation energy of 0.6 ev is choice. according to “Arrhenious Model”

A : Normalization constant Ea : Activation energy

T : Temperature in °K Assume conservative activation energy of 0.6 ev Failure rate increased about 2 times per 10°C temperature rise

4. FAILURE ANALYSIS

4.1 Failure mode 4.1.1 If failure was found and the cause is known, such as material, workmanship … etc it was a quality failure –––– eliminate this problem After solution implement –– continue life test and pay more attention to observe this failure within an interval longer than the time that this problem was found. 4.1.2 Otherwise, it was reliability failure – this failure should be count.

4.2 Failure report Failure report will be issue by QE engineer to QE manager and the people concerned.

5. DEMONSTRATED MTBF CALCULATION

5.1 Test Terminated at Predetermined Time t 5.1.1 One side confidence limit of MTBF is

2T

where T : Total number of hours of testing T = nt, n : Sample size t : Test time r : Number of failures

Page 51: MTBF Lecture

5.1.2 Base on G.E.M table (90% confidence level) Number of failures Test ratio 0 2.3 1 3.9 2 5.3 3 6.7 4 8.0 Total test time

Target MTBF

Total test time

Test Ratio

5.2 Test Terminated When The rth Failure Has Occurred One side confidence limit of MTBF is

2T

r

i=1

where T : Total number of hours of testing

n : sample size r : Number of failures t : Test time

6. PROPOSAL Suggestion: Use time terminated test method ( see 5.1.2 ) Confidence level 90%

T

Test ratio

Page 52: MTBF Lecture

GENERAL EXPONENTIAL MODEL

In the useful life period of electronic equipment, the failure rate F(t)

R(t) and the probability density of time to failure

For a time terminated test, Total test time and total failure are constant The probability of rth failure is

r! where Pr : The probability of rth failure r : Number of failure T : Total test time

1 T

r!Cumulative probability of failures is

2! r!

i=0 i!

Hence cumulative probability of failure is Pr(cum)

M = ln 10 = 2.3026That means at 90% confidence level Test ratio is 2.3026 with no failureWe can build G.E.M. table which is the relationship between confidence level,Test ratios and Failure numbers, and it is an useful tool for MTBF demonstration test.

Page 53: MTBF Lecture

HALT釋疑

HALT & HASS 是快速有效得到可靠性狀況的方法 其中HALT使用於開發階段而HASS則用於生產程序中. 這種概念在30年前由 Dr. Greg Hobbs 提出

HALT & HASS 的概念並不是通過測試 而是有做過測試 找到什麼結果是屬於何種型態的失效 失效發現時的測試條件 決定採取何種對策由於吾人施加過度高的應力 某些失效 或者已經超過零組件之技術極限所以設計人員需依據測試條件 判斷是否應該針對此種失效施以對策

1.HALT 溫度可以很高(以可靠度考量) HALT進行是把待測物的外殼去除使其完全通風,甚而修改結構使每個Module 都在chamber氣流直接吹到的位置,氣流量很大,因此待測物內部的零件若原本 不熱者,會在更高的溫度動作,而原本高溫(內部發熱或是在熱源旁的)卻會 被強烈氣流控制在chamber的溫度設定點附近而不再有原來的高溫情況,然而 若依原待測物的結構在蓋上外殼時也許僅40℃的室溫就會使較高熱的零件規格 達到100℃(溫升60℃)已經接近零件規格,故環境試驗是依待測物的規格, 而HALT試較高溫度,此乃兩者之間最大的差異。

2.因為多數零件在極限情形下操作會有wear-out情況,所以HASS時間需得限制, 否則用掉產品壽命。

3.加速壽命試驗與HALT 一般加速壽命試驗外蓋,機構,散熱片並沒有Modify改變,所以當環境溫度 上升時在內部每顆零件的溫度都是〝水漲船高〞一致上升,故壽命加速率 或整部待測物的失效率變化率全數相同,因此MTBF可以估算(內部溫度平衡 情形未變)。但HALT已經改變了整個待測物的結構及溫度關係以尋找弱點。 因此其溫度加速率每個Module以至於每顆零件均不相同(內部溫度平衡情況 已變),所以其壽命加速率無法估計無法表現產品壽命亦即HALT之加速與 原來待測物結構已經不同並非life test也因此不能估算MTBF數據,我本人認為 稱為HART較恰當。Highly Accelerated Reliability Test)

4.就因為加速情況已改變,若試驗中被發掘出來的失效模式在原結構有機會 發生(需較專門的知識,應由RD研判)自然必須對策,因此RD的參與是 很重要的,如此可有效的提高產品的設計強度。

Page 54: MTBF Lecture

氣流直接吹到的位置,氣流量很大,因此待測物內部的零件若原本

Page 55: MTBF Lecture

x error0.001 0.999 0.001 0.05%0.002 0.998 0.002 0.10%0.003 0.997 0.003 0.15%0.004 0.996 0.004 0.20%0.005 0.995 0.005 0.25%0.006 0.994 0.006 0.30%0.007 0.993 0.007 0.35%0.008 0.992 0.008 0.40%0.009 0.991 0.009 0.45%

0.01 0.990 0.010 0.50%0.02 0.980 0.020 0.99%0.03 0.970 0.030 1.49%0.04 0.961 0.039 1.97%0.05 0.951 0.049 2.46%0.06 0.942 0.058 2.94%0.07 0.932 0.068 3.42%0.08 0.923 0.077 3.90%0.09 0.914 0.086 4.37%0.1 0.905 0.095 4.84%

e-x 1-e-x