mse 342f chapter # 4 properties part i 2014-15

64
MSE 342, ERB 1 Properties of 3-D Nanomaterials (Chapter # 4 Part I) Uwe Erb Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.

Upload: pedro-henrique

Post on 17-Jan-2016

15 views

Category:

Documents


0 download

DESCRIPTION

aaaaaa

TRANSCRIPT

Page 1: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

1

Properties of 3-D Nanomaterials

(Chapter # 4 Part I)

Uwe Erb Materials Science and Engineering,

University of Toronto, Toronto, Ontario, Canada.

Page 2: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

2

Properties of 3-D Nanomaterials

Before looking at details of properties you should consider that there are structurally three different types of 3-D nanomaterials.

1) Consolidated Powder Materials

These materials have been prepared by two-step processes. First nanopowders are made by techniques such as inert gas condensation, ball milling or chemical precipitation. In the second step these particles are consolidated under high pressures and at elevated temperatures. There is considerable residual porosity in these materials in addition to grain boundaries and tripe junctions.

2) Fully Dense Equiaxed Materials

These materials are made in one step such as electrodeposition or severe plastic deformation. The materials are usually fully dense with negligible porosity. Grain boundaries, triple junctions (and dislocations) are the main defects.

Page 3: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

3

Properties of 3-D Nanomaterials

3) Nanocrystallized Materials

The materials are produced by crystallization of amorphous precursor material. In addition to grain boundaries and triple junctions they contain residual amorphous matrix.

The properties of these materials are not always the same and direct comparisons are sometimes difficult.

Page 4: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

4

Consolidated Powder Material

Page 5: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

5

Fully Dense Equiaxed Material

Page 6: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

6

Nanocrystallized Material

amorphous

crystalline

clusters

Page 7: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

7

Thermal Stability

Nanomaterials contain very high interface contents (e.g. surfaces in 0-D nanomaterials, grain boundaries in 3-D nanomaterials). The associated interfacial energy gives the nanomaterial a very high driving force for crystal or grain growth. Therefore, for any nanomaterial, one of the key questions is their thermal stability with increasing temperature.

Page 8: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

8

Grain Growth in Conventional Materials

W.D. Callister, 6th ed., Materials Science and Engineering, Willey, NY, 2003

Page 9: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

9

Grain Growth in Conventional Materials

L.H. van Vlack, Elements of Materials Science and Engineering, 3rd ed., Addison-Wesley, Reading, MA, 1975

Larger grains grow Smaller grains shrink

Page 10: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

10

Driving Force for Grain Growth

Curvature Induced

L.H. van Vlack, Elements of Materials Science and Engineering, 3rd ed., Addison-Wesley, Reading, MA, 1975

Higher coordination number in growing grain

Page 11: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

11

Driving and Dragging Forces

Driving Force

Curvature Induced F ~ / d

Dragging Forces

Solute Drag F ~ C0 / r

Zener Drag F ~ f / R

interfacial energy r atomic radius of solute

d average grain size R particle diameter

C0 average concentration f particle volume fraction

Page 12: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

12

Normal Grain Growth Kinetics

dn – don = Kt n = 1.5 – 8

K = Ko exp (-Q/kBT)

d average grain size after time t Ko pre-exponential factor

do average starting grain size kB Boltzmann’s constant

K constant Q activation energy

T temperature

Page 13: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

13

Ex-situ TEM

Normal Grain Growth

100 nm 100 nm 250 nm

Ni – 2.5 % P

TEM bright field images of a) as-plated, b) DSC annealed, 50C/min to 4000C, c) annealed to 5000C.

a) b) c)

Y. Zhou, Ph.D. Thesis, University of Toronto, 2006

Page 14: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

14

(c) (d)

(b) (a)

300 nm

Ex-Situ TEM

Abnormal Grain Growth

Ni – 800ppm S

U. Klement, U. Erb, A.M. El-Sherik, K.T. Aust,Mat. Sci. Eng., A203 (1995) 177

Page 15: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

15

Time Exponents for Grain Growth

C. Suryanarayana & C.C. Koch, Hyperfine Interactions 130, (2000) 5

Time exponent: 1 / n

Page 16: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

16

Activation Energies

Kissinger Analysis

The curve was obtained for the Ni-P sample with starting grain size of 6.9 nm at the DSC

heating rate of 50 C/min

d = 6.9 nm

Temperature ( 0C)

0 100 200 300 400 500 600

He

at R

ele

ase

(W

/g)

0.00

0.02

0.04

0.06

0.08

0.10

DSC @ 5 to 80 0C/min 420

0 to 467

0

TP

Ni – 2.5% P

Y. Zhou, Ph.D. Thesis, University of Toronto, 2006

Page 17: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

17

Activation Energy

Modified Kissinger Analysis

where b: heating rate

Tp: peak temperature

C: constant

k: Boltzmann’s constant

T: Temperature

Q: Activation energy

L.C. Chen, F. Spaepen, Appl. Phys., 69 (1991) 679)

CkTQTb pp /)/ln(

Page 18: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

18

Peak Temperatures

280

320

360

400

440

480

0 20 40 60 80

Scanning rate (oC/min)

Pea

k t

emp

era

ture

(oC

)Ni

Ni-20%Fe

Ni-1.2%P

G.H. Hibbard, U. Erb, K.T. Aust, U. Klement, G. Palumbo, Mat. Sci. Forum, 386-388 (2002) 387

Page 19: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

19

Kissinger Analysis

Activation Energies

-5

-4.5

-4

-3.5

-3

-2.5

-2

15 16 17 18 19 20 21

1/ k B T p

Hea

tin

g r

ate

(b

/Tp )

Ni-1.2%P

2.25 eV

Ni

1.46 eV

Ni-20%Fe

2.53 eV

G.H. Hibbard, U. Erb, K.T. Aust, U. Klement, G. Palumbo, Mat. Sci. Forum, 386-388 (2002) 387

Page 20: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

20

Activation Energies

System Grain size

(nm) Tp (

0C) Q (eV)

Ni 20 290 1.36

Ni 26 266 1.20

Ni 20 269 1.22

Ni 15 293 1.42

Ni 20 296 1.46

Ni-1.2 wt% P 10 432 2.25

Ni-1.9 wt% P 9 412 2.63

Ni-2.5 wt% P 7 420 2.58

Ni-20 wt% Fe 13 379 2.53

Co 20 355 1.63

G.H. Hibbard, U. Erb, K.T. Aust, U. Klement, G. Palumbo, Mat. Sci. Forum, 386-388 (2002) 387

Page 21: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

21

Young’s Modulus

Page 22: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

22

Physical Meaning of Young’s Modulus

Young’s modulus ~ slope in force curve at a0

Page 23: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

23

Grain Boundaries

Very important for many properties of 3-D nanocrystals

W.D. Callister, 6th ed., Materials Science and Engineering, Willey, NY, 2003

Page 24: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

24

Nanocrystalline Ni and Ni-P

GRAIN SIZE (nm)

100 101 102 103 104 105

YO

UN

G'S

MO

DU

LU

S (

GP

a)

0

100

200

300

400

minor reductions

Page 25: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

25

Normalized Young’s Modulus for Nanocrystals

Region II: High Porosity

Region I: Low Porosity

Y. Zhou, U. Erb, K. T. Aust, G. Palumbo, Z. Metallk., 94 (2003) 10

major reductions

Page 26: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

26

Effect of Porosity Strong Solids (e.g., ceramics)

V. Krstic, U. Erb and G. Palumbo, Scripta Metall. Mater., 29 (1993) 1501

Page 27: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

27

Effect of Porosity Elastic Theory

V. Krstic, U. Erb and G. Palumbo, Scripta Metall. Mater., 29 (1993) 1501

1)21(41

VEE o

)57(254

)/1()57(29/1

2

3

RSRS

V : Pore volume fraction : Poisson’s ratio

Page 28: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

28

Effect of Porosity

Atomistic Modeling: Pore in Single Crystal

R. Zugic, B. Szpunar, V.D. Krstic, U. Erb, Phil. Mag., A75 (1997) 1041

Page 29: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

29

Effect of Porosity

Atomistic Modeling: Pore at 5 grain boundary

R. Zugic, B. Szpunar, V.D. Krstic, U. Erb, Phil. Mag., A75 (1997) 1041

Page 30: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

30

Effect of Porosity

Atomistic Modeling Elastic Theory

R. Zugic, B. Szpunar, V.D. Krstic, U. Erb, Phil. Mag., A75 (1997) 1041

Page 31: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

31

Effect of Porosity

data from

Region II

V. Krstic, U. Erb and G. Palumbo, Scripta Metall. Mater., 29 (1993) 1501

Page 32: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

32

Effect of Grain Size

Fully Dense Nanomaterials

Young’s modulus (normalized with respect to Young’s modulus of polycrystalline nickel, E0) of nanocrystalline Ni-2.5 wt% P alloys, pure nanocrystalline nickel and amorphous Ni-15 wt% P.

U. Erb, K. T. Aust, G. Palumbo, Z. Metallk., 94 (2003) 10

Page 33: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

33

Composite Model

f’s: Volume fractions

E’s: Modulus values

G: Grain

GB: Grain boundary

TJ: Triple junctions

TJTJGBGBGGm fEfEfEE

Y. Zhou, U. Erb, K. T. Aust, G. Palumbo, Z. Metallk., 94 (2003) 10

Page 34: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

34

Composite Model

Results for Nano Ni-2.5% P

GPaE

GPaE

GPaE

TJ

GB

G

151

157

208

Y. Zhou, U. Erb, K. T. Aust, G. Palumbo, Z. Metallk., 94 (2003) 10

Page 35: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

35

Young’s Modulus Summary

1) Grain boundaries and triple junctions have some effect on elastic properties. For the case of Ni it was shown that their Young’s Modulus is reduced by about 20% at grain sizes of ~ 5nm.

2) Fully dense 3-D nanomaterials produced by electrodeposition show some grain size dependence below 20 nm and virtually no grain size dependence above 20 nm.

3) 3-D nanomaterials produced from 1-D precursor material contain considerable porosity. Their Young’s modulus decreases rapidly with increasing porosity levels.

Page 36: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

36

Hardness, Strength, Ductility

Page 37: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

37

Vickers Hardness

Electrodeposited Ni

GRAIN SIZE (nm)

100 101 102 103 104 105

VIC

KE

R'S

HA

RD

NE

SS

(G

Pa

)

0

1

2

3

4

5

6

7

8

Page 38: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

38

Hall-Petch Relationship

regular strength

regular hardness

where d: grain size

k, k: constants

since 1989: k, k’ negative (inverse Hall-Petch)

21

0

/ dk

21

0

/ dkHH

E. O. Hall, Proc. Phys. Soc., London, B54 (1951) 747 N. J. Petch, J. Iron Steel Inst., 174 (1953) 25

Page 39: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

39

Hall-Petch Plot

Electrodeposited Ni

A. M. El-Sherik, U. Erb, G. Palumbo, K. T. Aust, Scripta Metal., 27 (1992) 1185

Page 40: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

40

Hall-Petch Plot

Electrodeposited Ni-P

G. Palumbo, U. Erb, K. T. Aust, Scripta Metal., 24 (1990) 2347

Page 41: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

41

Normal Crystalline Cu

Regular Hall-Petch

A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scripta Metal, 23 (1989) 1679

Page 42: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

42

Comparison with Gas Condensed Pd, Cu

Inverse Hall-Petch

A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scripta Metal, 23 (1989) 1679

Page 43: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

43

Hall-Petch Plot

Various Materials

R. W. Siegel, G. E. Fougere,, Nanostruct. Mat., 6 (1995) 205

Page 44: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

44

Hall-Petch Plot

Various Materials

R. W. Siegel, G. E. Fougere,, Nanostruct. Mat., 6 (1995) 205

Page 45: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

45

Yield Strength

Electrodeposited Ni

GRAIN SIZE (nm)

100 101 102 103 104 105

YIE

LD

ST

RE

NG

TH

(M

Pa

)

0

200

400

600

800

1000

Page 46: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

46

Yield Strength

Electrodeposited Ni

N. Wang, Z. Wang, K. T. Aust, U. Erb, Mat. Sci., A237 (1997) 150

Page 47: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

47

Grain Boundaries: Dislocation Barriers

S: source

At small grain size: no longer dominant deformation mechanism

Page 48: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

48

Constitutive Equations for Diffusional Mechanisms

23

5102

d

b

kT

bDx

dt

dgb

22

1

6108

d

b

kT

bDx

dt

d

n

kT

bDx

dt

d

1

510833.

12

114D

dkTdt

d

gbDdkTdt

d3

14

Nabarro-Herring

Coble creep

GB Sliding

GB Sliding

Dislocation Climb

Page 49: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

49

Constitutive Equations for Diffusional Mechanisms

strain rate

applied stress

grain size

volume of vacancy

grain boundary thickness

lattice diffusion coefficient

grain boundary diffusion coefficient

shear modulus

Burgers vector

:dt

d

:

:d

:

:1D

:gbD

:

:b

:

Page 50: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

50

Nabarro-Herring Creep, Coble Creep

Nabarro-Herring: lattice diffusion

Coble: grain boundary diffusion

Page 51: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

51

Grain Boundary Sliding

grain boundary or lattice diffusion controlled

C. R. Barrett, W. D. Nix, A. S. Tetelman, in The Principles of Engineering Materials, Prentice-Hall, Inc., Englewood Cliffs, NJ (1973)

Page 52: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

52

Ductility

Electrodeposited Ni (early results)

N. Wang, Z. Wang, K. T. Aust, U. Erb, Mat. Sci., A237 (1997) 150

very disappointing

Page 53: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

53

Ductility

Electrodeposited Ni (early results)

GRAIN SIZE (nm)

100 101 102 103 104 105

TE

NS

ILE

ELO

NG

AT

ION

(%

)

0

10

20

30

40

50

60

very disappointing

Page 54: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

54

Comparison with Gas Condensed Pd

R. W. Siegel, G. E. Fougere,, Nanostruct. Mat., 6 (1995) 205

very disappointing

Page 55: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

55

Elongation to Failure

Various Nanomaterials

C. Suryanarayana & C.C. Koch, Hyperfine Interactions 130, (2000) 5

Page 56: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

56

However: More Recently

Conventional and Nanodeposit Co

A. A. Karimpoor, Ph.D. Thesis, University of Toronto

good news

Page 57: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

57

Stress – Strain Curve

Electrodeposited Ni-Fe

H. Wei, M.A.Sc. Thesis, U of T, 2006

good news

Page 58: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

58

Hardness, Strength,Ductility

Summary

1) All 3-D nanocrystalline materials show significant increases in hardness, yield strength and tensile strength, regardless of synthesis method. Depending on the system, increases by factors of 3-10 are commonly observed.

2) All 3-D nanomaterials exhibit regular Hall-Petch behavior for larger grain sizes. Changes in the Hall-Petch slope are observed at smaller grain sizes (<100 nm). Some materials show the inverse Hall-Petch relationships at very small grain sizes(<10 nm).

Page 59: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

59

3) At very small grain sizes dislocation slip is no longer the dominant deformation mechanism.

4) The inverse Hall-Petch relationship can be explained on the basis of diffusional creep (Nabarro-Herring, Coble) and grain boundary sliding which become important at very small grain sizes even at room temperature.

Hardness, Strength,Ductility

Summary

Page 60: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

60

Hardness, Strength,Ductility

Summary

5) Early results on the ductility of 3-D nanomaterials were very disappointing. Most materials showed low ductility in tension (<5%), regardless of synthesis technique. However, these results were obtained using very small tensile samples.

6) Recent advances in electrodeposition processes have resulted in better materials and larger sample sizes for meaningful tensile tests. As a result tensile elongations in excess of 10% have been observed.

Page 61: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

61

7) Recent advances in other synthesis methods have also resulted in materials with better ductility.

8) Current efforts towards higher ductility include the synthesis of materials with much broader grain size distributions or even bimodal distributions. In these materials a compromise between high strength and reasonable ductility is achieved, whereby the smaller grains in the distribution are responsible for strengthening while the larger grains retain some ductility in the system.

Hardness, Strength,Ductility

Summary

Page 62: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

62

Summary

Changes in Hall-Petch Behavior

Page 63: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

63

50 µm

a

1) Dislocation slip

2) Twinning

Summary

Low Temperature Deformation Mechanisms

Polycrystals

Page 64: MSE 342F Chapter # 4 Properties PART I 2014-15

MSE 342, ERB

64

Summary

Low Temperature Deformation Mechanisms

1) Dislocation slip

2) Twinning

3) Coble

4) Nabarro-Herring

5) GB sliding

6) Grain rotation

50 nm

b

Nanocrystals