ms4031 teknik kendaraan (rel) modul-6: longitudinal train

22
MS4031 – Teknik Kendaraan (Rel) Modul - 6: Longitudinal Train Dynamics TRACTION FORCE & ROLLING RESISTANCE Yunendar Aryo Handoko ST., PhD Fakultas Teknik Mesin dan Dirgantara

Upload: others

Post on 12-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

MS4031 – Teknik Kendaraan (Rel)

Modul-6: Longitudinal Train DynamicsTRACTION FORCE & ROLLING RESISTANCE

Yunendar Aryo Handoko ST., PhD

Fakultas Teknik Mesin dan Dirgantara

Page 2: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

TRAIN RUNING PERFORMANCE• Transport capacity

• Train composition

• Number of passenger or tonnage of freight

• Headway• Acceleration

• Maximum speed

• Dwelling time• Loading unloading

• Affect Total travelling time

• Redundancy - Realibility• Minimum requirement

2

Acc Coast Dec Dwel

Page 3: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

TRANSFORMASI ENERGI MENJADI GAYA GERAK

Lokomotif Diesel & KRD Lokomotif Listrik & KRL

DE

DH

Page 4: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

TRAIN RUNING PERFORMANCE – KONSUMSI ENERGI

Page 5: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

POWER AND TRACTIVE EFFORT

𝑇𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝐸𝑓𝑓𝑜𝑟𝑡 =𝑃𝑜𝑤𝑒𝑟 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Gross power generated by diesel engine

Locomotive power available for traction

(Torque x rpm)

Electrical Power to Motors

(volts x amp)

Power at rail (tractive effort at

wheel rim x speed)

85 % Power left for hauling train

W

Page 6: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

POWER AND TRACTIVE EFFORT

Page 7: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

POWER AND TRACTIVE EFFORT

Page 8: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

TYPICAL TRACTIVE EFFORT DIAGRAM OF LOCOMOTIVE

Page 9: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

Tractive Effort – Notch & Adhesion Limit

Page 10: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

GAYA-GAYA LONGITDINAL YANG BEKERJA PADA KERETA SAAT TRAKSI

TOTAL GAYA YANG MELAWAN ARAH TRAKSI DISEBUT SEBAGAI ROLLING RESISTANCE

Page 11: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

ROLLING RESISTANCE

Fundamental Formula (Davis Equation)

• A quadratic formula has been used for over 80 years to approximate rail vehicle resistance

• Von Borries Formel, Leitzmann Formel, Barbier and Davis worked on this equation:

R = A + BV + CV2

where R is the rail vehicle resistance (N), V is the velocity of the vehicle (m/s), and A (N), B (N s/m) and

C (Ns2 / m2 ) are regression coefficients obtained by fitting test data to the Davis equation.

NOTE:

The coefficients A and B in the Davis equation account for mass and mechanical resistance

The coefficient C accounts for air resistance (proportional to the square of the speed)

The Davis equation has been modified over the years for various rail systems and configurations

Page 12: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

Example of Rolling Resistance Formula Derived from Davis Equation

Page 13: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

where:RG is the resistance (kN) due to gradients, M is the mass of the train in tons g is the acceleration due to gravity (m/s2) X is the gradient in the form 1 in X (for example: a grade of 3% is expressed as X = 1/0.03 = 33.33 in the formula above)

Additional Terms to the Davis Equation(Gradient Forces)

Page 14: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

Additional Terms to the Davis Equation(Resistance due to Curvature)

where:rc is the resistance due to curvature (kN/ton)k is dimensionless parameter depending upon the train (varies from 500 to 1200)RC is the curve radius in a horizontal plane (meters).

Page 15: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train
Page 16: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

EXAMPLE PLOT OF ROLLING RESISTANCE AND TRACTIVE EFFORT VS SPEED

Page 17: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

LOCOMOTIVE PERFORMANCE 2200 HP (1700 KW)

LOK CC 300 - INKA LOK CC 201 - GE

Page 18: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

LOK CC 300 - INKA LOK CC 201 - GE

LOCOMOTIVE PERFORMANCE 2200 HP (1700 KW) – Hauling Load

Page 19: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

HIYDRAULIC LOCOMOTIVE CC 300TRACTIVE EFFORT VS ROLLING RESISTANCE

Page 20: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

Contoh Tugas Kasus PerhitunganTraction Performance

Page 21: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

21

• Condition• Power available for traction = 1000 kW• Car Weight: MC=50 ton, TC=48 ton• Wheel-Rail adhesion = 0.22 (for traction performance calculation)• Running resistance formula (in kgf):

• R = (1.65 + 0.0247 x V) x Wm + (0.78 + 0.0028 x V) x Wt + (0.028 + 0.0078 x (n-1)) x V2

• Starting resistance 4 kgf/ton• V = train speed (km/h)• Wm = weight of motor car (ton)• Wt = weight of trailer car (ton)• n = number of car per trainset

TC TC TC MCMC

Konfigurasi Rangkaian Kereta

Page 22: MS4031 Teknik Kendaraan (Rel) Modul-6: Longitudinal Train

Profil Trek

A

B

C

𝛼

𝛽

Rangkaian kereta menempuh perjalanan dari A ke C melewati 2 petak jalan AB dan BC yang mempunyaigradien berbeda (𝛼 = 4 %0 , 𝛽= 10 %0 )

Tugas:1. Buatlah traction performance diagram (TE vs Kecepatan dan Pecepatan vs Kecepatan) dari rangkaian kereta

tersebut.2. Hitung kecepatan maksimum yang dapat dicapai rangkaian kereta pada lintas datar (gradien =0) dan pada

gradien 15 %0.

3. Jika kereta berangkat dari titik A, hitung kecepatan pada titik B dan C, serta waktu yang diperlukan untukmenempuh A ke C – asumsi kereta selalu berjalan dengan kondisi traksi maksimum.

Problem: