mr. miller - table of contents · 2018-11-01 · each element box on the periodic table contains...

157
900 Student Resources Table of Contents Elements Handbook . . . . . . . . . 901 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . 904 Group 1: Alkali Metals. . . . . . . . . . . . . . . 906 Group 2: Alkaline Earth Metals . . . . . . . 910 Groups 3–12: Transition Elements . . . . 916 Group 13: Boron Group . . . . . . . . . . . . . 922 Group 14: Carbon Group . . . . . . . . . . . . 926 Group 15: Nitrogen Group . . . . . . . . . . . 932 Group 16: Oxygen Group . . . . . . . . . . . . 936 Group 17: Halogen Group . . . . . . . . . . . 940 Group 18: Noble Gases . . . . . . . . . . . . . . 944 Math Handbook . . . . . . . . . . . . 946 Scientific Notation . . . . . . . . . . . . . . . . . . 946 Operations with Scientific Notation . . . 948 Square and Cube Roots . . . . . . . . . . . . . . 949 Significant Figures . . . . . . . . . . . . . . . . . . 949 Solving Algebraic Equations . . . . . . . . . . 954 Dimensional Analysis . . . . . . . . . . . . . . . 956 Unit Conversion . . . . . . . . . . . . . . . . . . . . 957 Drawing Line Graphs. . . . . . . . . . . . . . . . 959 Using Line Graphs . . . . . . . . . . . . . . . . . . 961 Ratios, Fractions, and Percents. . . . . . . . 964 Operations Involving Fractions . . . . . . . 965 Logarithms and Antilogarithms . . . . . . . 966 Reference Tables. . . . . . . . . . . . 968 R-1 Color Key . . . . . . . . . . . . . . . . . . . . . 968 R-2 Symbols and Abbreviations. . . . . . 968 R-3 Solubility Product Constants . . . . 969 R-4 Physical Constants . . . . . . . . . . . . . 969 R-5 Names and Charges of Polyatomic Ions . . . . . . . . . . . . . . . 970 R-6 Ionization Constants . . . . . . . . . . . 970 R-7 Properties of Elements . . . . . . . . . . 971 R-8 Solubility Guidelines . . . . . . . . . . . 974 R-9 Specific Heat Values . . . . . . . . . . . . 975 R-10 Molal Freezing Point Depression and Boiling Point Elevation Constants . . . . . . . . . . . . . . . . . . . . . 975 R-11 Heat of Formation Values . . . . . . . 975 Supplemental Practice Problems . . . . . . . 976 Solutions to Selected Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 992 Glossary/Glosario . . . . . . . . . . . . . . . . . . . 1005 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 For students and parents/guardians In the Elements Handbook, you’ll find use- ful information about the properties of the main group elements from the periodic table. You’ll also learn about real-world applications for many of the elements. The Math Handbook helps you review and sharpen your math skills so you get the most out of understanding how to solve math prob- lems involving chemistry. Reviewing the rules for mathematical operations such as scientific notation, fractions, and logarithms can also help you boost your test scores. The reference tables are another tool that will assist you. The practice problems and solutions are resources that will help increase your comprehension.

Upload: others

Post on 25-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

900 Student Resources

Table of ContentsElements Handbook . . . . . . . . . 901

Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . 904

Group 1: Alkali Metals. . . . . . . . . . . . . . . 906

Group 2: Alkaline Earth Metals . . . . . . . 910

Groups 3–12: Transition Elements . . . . 916

Group 13: Boron Group . . . . . . . . . . . . . 922

Group 14: Carbon Group . . . . . . . . . . . . 926

Group 15: Nitrogen Group . . . . . . . . . . . 932

Group 16: Oxygen Group . . . . . . . . . . . . 936

Group 17: Halogen Group . . . . . . . . . . . 940

Group 18: Noble Gases . . . . . . . . . . . . . . 944

Math Handbook . . . . . . . . . . . . 946Scientific Notation . . . . . . . . . . . . . . . . . . 946

Operations with Scientific Notation . . . 948

Square and Cube Roots . . . . . . . . . . . . . . 949

Significant Figures . . . . . . . . . . . . . . . . . . 949

Solving Algebraic Equations . . . . . . . . . . 954

Dimensional Analysis . . . . . . . . . . . . . . . 956

Unit Conversion . . . . . . . . . . . . . . . . . . . . 957

Drawing Line Graphs. . . . . . . . . . . . . . . . 959

Using Line Graphs . . . . . . . . . . . . . . . . . . 961

Ratios, Fractions, and Percents. . . . . . . . 964

Operations Involving Fractions . . . . . . . 965

Logarithms and Antilogarithms. . . . . . . 966

Reference Tables. . . . . . . . . . . . 968R-1 Color Key. . . . . . . . . . . . . . . . . . . . . 968

R-2 Symbols and Abbreviations. . . . . . 968

R-3 Solubility Product Constants . . . . 969

R-4 Physical Constants . . . . . . . . . . . . . 969

R-5 Names and Charges of

Polyatomic Ions . . . . . . . . . . . . . . . 970

R-6 Ionization Constants . . . . . . . . . . . 970

R-7 Properties of Elements. . . . . . . . . . 971

R-8 Solubility Guidelines . . . . . . . . . . . 974

R-9 Specific Heat Values . . . . . . . . . . . . 975

R-10 Molal Freezing Point Depression

and Boiling Point Elevation

Constants . . . . . . . . . . . . . . . . . . . . . 975

R-11 Heat of Formation Values . . . . . . . 975

Supplemental Practice Problems . . . . . . .976

Solutions to Selected Practice Problems. . . . . . . . . . . . . . . . . . . . . . . . . .992

Glossary/Glosario . . . . . . . . . . . . . . . . . . .1005

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1031

Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . .1051

For students and parents/guardians In the Elements Handbook, you’ll find use-

ful information about the properties of the

main group elements from the periodic table.

You’ll also learn about real-world applications

for many of the elements.

The Math Handbook helps you review and

sharpen your math skills so you get the most

out of understanding how to solve math prob-

lems involving chemistry. Reviewing the rules

for mathematical operations such as scientific

notation, fractions, and logarithms can also

help you boost your test scores.

The reference tables are another tool that

will assist you. The practice problems and

solutions are resources that will help increase

your comprehension.

Page 2: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Elements in Earth’s Atmosphere

Other0.04%

Argon0.93%

Nitrogen78.08%

Oxygen20.95%

Calcium4.15%

Iron5.63%

Other7.69%

Aluminum8.23%

Silicon28.20%

Oxygen46.10%

Other1.50% Calcium

1.20%Magnesium3.90%

Sulfur2.70%

Chlorine 58.30%

Sodium32.40%

Elements in Earth’s Crust

Elements Dissolved in Earth’s Oceans

Elements Handbook 901

Elements Handbook

CORBIS

Page 3: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Strontium

38

Sr[Kr]5s2

Metal

Metalloid

Nonmetal

Gas

Liquid

Solid

Synthetic

902 Elements Handbook

Elements Handbook

Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .904

Group 1: Alkali Metals . . . . . . . . . . . . . . . . . . . . . .906

Group 2: Alkaline Earth Metals . . . . . . . . . . . . . . .910

Groups 3–12: Transition Elements . . . . . . . . . . . .916

Group 13: Boron Group . . . . . . . . . . . . . . . . . . . . .922

Group 14: Carbon Group . . . . . . . . . . . . . . . . . . . .926

Group 15: Nitrogen Group . . . . . . . . . . . . . . . . . . .932

Group 16: Oxygen Group . . . . . . . . . . . . . . . . . . . .936

Group 17: Halogen Group . . . . . . . . . . . . . . . . . . .940

Group 18: Noble Gases . . . . . . . . . . . . . . . . . . . . . .944

How to Use Element BoxesEach element box on the periodic table contains useful information. In the Elements

Handbook, each element box has an element name, symbol, atomic number, and electron

configuration. At the beginning of each section, each element box also identifies the state

of matter at 25°C and 1 atm. A typical box from the handbook is shown below.

States of Matter Key

Atomic number

Symbol

Element

State of matter

Electron configuration

Color Key

To find links to information on the elements, visit glencoe.com.

Table of ContentsHow This Handbook Is Organized The Elements Handbook is divided into

10 sections: hydrogen and groups 1, 2, 3–12, 13, 14, 15, 16, 17, and 18. You will discover

physical and atomic properties, common reactions, analytical tests, and real-world

applications of the elements in each section. Questions at the end of each section will

assess your understanding of the elements.

Interactive Figure To see animations of the elements, visit glencoe.com.

Page 4: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Elements Handbook 903

How to Use the Elements Handbook

Calcium

20

Ca[Ar]4s2

Strontium

38

Sr[Kr]5s2

Toothpaste containingstrontium chloride

Crystals

Pore to root canaland nerves

Root canal

Dentine

Root

Nerve

Barium

56

Ba[Xe]6s2

914 Elements Handbook

GypsumDrywall is made from gypsum, which is a soft

mineral composed of calcium sulfate dihydrate

(CaS O 4 ·2 H 2 O). Drywall boards are used in build-

ing construction because the gypsum provides fire

protection. Gypsum contains large amounts of

water in its crystal form, which vaporizes when

heated. The boards remain at 100°C until all of the

water evaporates, protecting the wood frame of the

building. Gypsum that has had most of its water

removed is known as plaster of paris. Most

minerals form pastes when mixed with water.

When plaster of paris is mixed with water, it forms

a rigid crystal structure, so it is often used for casts

to set broken bones and for molds.

Sensitive TeethAlmost 40 million people in the United States

have teeth that are hypersensitive to touch and

temperature. Sensitivity occurs when the dentine

and roots of teeth are exposed due to receding

gums or thinning of the tooth enamel. This is the

result of poor oral hygiene or, in many instances,

from brushing too hard. Exposing the root enables

stimuli, such as cold temperatures, to reach the

Medical X RaysBarium is used by medical professionals to exam-

ine a person’s gastrointestinal tract. Patients drink

barium liquid, which coats the tract, and are then

X-rayed. Barium is almost completely insoluble in

water and acids and appears as a bright white

color in X rays. This allows doctors and radiolo-

gists to locate tumors, ulcers, areas of reflux, and

other abnormalities in the digestive tract.

nerve through openings called pores. Toothpastes

that contain strontium chloride (SrC l 2 ) help

reduce the sensitivity. The compound reacts with

a person’s saliva to create crystals that fill in the

pores so stimuli cannot reach the nerves.

A layer of plaster of paris protects fossils during shipment.

Crystals formed from strontium chloride and saliva fill in pores in the root of a tooth and block access to the nerve.

After being coated with barium liquid, the large intestine shows up clearly on an X ray.

Group 2: Alkaline Earth Metals

Assessment

Radium

88

Ra[Rn]7s2

Elements Handbook 915

Real-World Applications

The Discovery of RadioactivityMarie Curie’s discovery of the atomic property she called

radioactivity paved the way for present-day advancements

in science and medicine. Curie and her husband, Pierre,

unveiled the characteristics and capabilities of radiation,

revolutionizing scientific thinking and laying the ground-

work for present-day cancer treatments, genetics, and

nuclear energy. Today, many cancers are treated with

radiation therapy.

Radon GasDecay of radium-226 in soil and rock produces radon gas.

The radioactive radon gas can seep through cracks in a home’s

foundation or can be dissolved in water pumped into the house

from a well. High concentrations of radon can increase the risk

of cancer. In many homes, installing a radon-reduction system

reduces the concentration of radon gas by using a fan to draw

the gas through pipes that vent to the outside of the home.

13. Describe the general trend in first ionization energies in group 2, and explain why this trend occurs.

14. Explain What is the charge on alkaline earth metal ions? Explain your answer.

15. Compare and contrast the physical properties of the alkaline earth metals and the alkali metals.

16. Evaluate why magnesium is used in emergency flares instead of other alkaline earth metals.

17. Analyze Use the atomic properties of the alkali metals and alkaline earth metals to explain why calcium is less reactive than potassium.

18. Infer The alkaline earth metals are usually found combined with oxygen and other nonmetals in Earth’s crust. Based on the atomic properties of this group, explain why alkaline earth metals are so reactive.

19. Calculate Calcium makes up about 1.5% of a human’s body mass. Calculate the amount of calcium found in a person who weighs 68 kg.

20. Calculate Radium-226 has a half-life of 1600 years. After 8000 years, how much of a 500.0-g sample of radium-226 would be left?

A radon-reduction system lowers the concentration of radon in homes by venting the radon gas from the home to the outside environment.

Fan

Vent pipe

Marie Curie died at the age of 67 from aplastic anemia, probably caused by her exposure to massive amounts of radiation. Today, the effects of radiation on health are well known, and suitable safety precautions are taken when using radioactive materials.

Radium

88

Ra[Rn]7s2

Barium

56

Ba[Xe]6s2

Strontium

38

Sr[Kr]5s2

Calcium

20

Ca[Ar]4s2

Magnesium

12

Mg[Ne]3s2

Beryllium

4

Be[He]2s2

1000 2000 30000

Temperature (ºC)

MP

BP

12872469

6501090

8421484

7771382

7271870

7001737

Melting Points and Boiling Points

Be

Mg

Ca

Sr

Ba

Ra

1 20 3 4 5

g/mL

1.848

1.738

1.550

2.630

Densities

Be

Mg

Ca

Sr

Ba

Ra 5.000

3.510

910 Elements Handbook

Physical Properties• Most of the alkaline earth metals have a silvery-white, metallic

appearance. When exposed to oxygen, a thin oxide coating forms

on the surface.

• The alkaline earth metals are harder, denser, and stronger than many

of the group 1 elements, but are still relatively soft compared to other

metals.

• Most alkaline earth metals have higher melting points and boiling

points than alkali metals.

• Moving down the group, densities generally increase.

Common Reactions• Mg, Ca, Sr, and Ba react with

halogens to form salts, such as

magnesium chloride, and

hydrogen gas.

Example: Mg(s) + 2HC l (g) →

MgC l 2 (s) + H 2 (g)

• Mg, Ca, Sr, and Ba react with

hydrogen to form hydrides,

such as barium hydride.

Example: Ba(s) + H 2 (g) →

Ba H 2 (s)

• Be, Mg, Sr, and Ca react with

nitrogen to form nitrides, such

as magnesium nitride.

Example: 3Mg(s) + N 2 (g) →

M g 3 N 2 (s)A ribbon of magnesium reacts with HCl in an aqueous solution to produce M g 2+ ions, C l - ions, and hydrogen gas.

Group 2: Alkaline Earth Metals

Pauling units

Be

Mg

Ca

Sr

Ba

Ra

0.5 1.0 1.5 2.00

1.57

1.31

1.00

0.95

0.89

0.90

Electronegativities

kJ/mol

Be

Mg

Ca

Sr

Ba

Ra

2000 400 600 800

738

590

550

503

509

First Ionization Energies

900

Be112

Be2+

31

Atomicradius(pm)

Mg160

Mg2+

72

Ca197

Ca2+

100

Sr215

Sr2+

118

Ba222

Ba2+

135

Ra220

Ionicradius(pm)

Elements Handbook 911

Element Facts

• Mg, Ca, Sr, and Ba react with oxygen to

form oxides, such as magnesium oxide.

Example: 2Mg(s) + O 2 (g) → 2MgO(s)

• Sr and Ba react with oxygen to form

peroxides, such as strontium peroxide.

Example: Sr(s) + O 2 (g) → Sr O 2 (s)

• Mg, Ca, Sr, and Ba react with water to form

bases, such as barium hydroxide, and

hydrogen gas.

Example: Ba(s) + 2 H 2 O(l) →

Ba(OH ) 2 (aq) + H 2 (g)

Barium reacts with water to form B a 2+ ions, O H - ions, and hydrogen gas.

Analytical TestsThree of the alkaline earth metals can be

identified by flame tests. Calcium produces a

scarlet color, while strontium produces a crimson

color. Barium, which if present in a sample can

mask the colors of both calcium and strontium,

produces a yellow-green color.

Atomic Properties• Each element in group 2 has two valence electrons and an electron

configuration ending with n s 2 .

• Alkaline earth metals often lose their two valence electrons to form

ions with a 2+ charge.

• Atomic radii and ionic radii increase moving down the group but are

smaller than the corresponding alkali metal.

• Ionization energies and electronegativities generally decrease moving

down the group but are larger than the corresponding alkali metal.

BariumStrontiumCalcium

See how a group fits in the Periodic Table.

Discover the Physical Properties and Atomic Properties of the elements in a group.

Summarize Common Reactions for the elements within a group.

Identify elements by Analytical Tests.

Learn how elements are used every day in Real- World Applications.

Test your knowledge of the elements by answering Assessment questions.

Source: Elements Handbook, p. 910–911

Source: Elements Handbook, p. 914–915

When you read the Elements Handbook, you need to read for information. Here

are some tools that the Elements Handbook has to help you find that information.

Page 5: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Hydrogen

1

H1s1

904 Elements Handbook

Hydrogen: Element Facts

Physical and Atomic Properties• At constant temperature and pressure, hydrogen gas ( H 2 ) has the

lowest density of any gas.

• At very high pressures, such as the interior of planet Jupiter, hydrogen

might exist as a solid metal.

• Hydrogen is placed in group 1 because it has one valence electron.

• Hydrogen shares some properties with the group 1 metals. It can lose

an electron to form a hydrogen ion ( H + ).

• Hydrogen also shares some properties with the group 17 nonmetals.

It can gain an electron to form a hydride ion ( H − ).

• There are three common

hydrogen isotopes. Protium,

the most common isotope,

has one proton, one electron,

and no neutrons. Deuterium,

also called heavy hydrogen,

has one proton, one neutron,

and one electron. Tritium,

which is radioactive, has one

proton, two neutrons, and

one electron.

Common Reactions• When ignited, hydrogen reacts with oxygen

to form water.

Example: H 2 (g) + O 2 (g) → 2 H 2 O(l)

• Hydrogen reacts with sulfur to form hydro-

gen sulfide.

Example: 2H 2 (g) + S(g) → H 2 S(g)

• Hydrogen reacts with nitrogen at high tem-

peratures and pressures to form ammonia.

Example: 3 H 2 (g) + N 2 (g) → 2N H 3 (g)

Hydrogen gas in the red tube and nitrogen gas in the blue tube are mixed, then compressed under high pressure and tem-perature to form liquid ammonia in the orange tube at bottom right.

Analytical TestspH is a measure of the hydrogen ion ( H + )

concentration of aqueous solutions. When the

hydrogen ion concentration is expressed in

moles per liter, pH is the negative logarithm of

the hydrogen ion concentration, −log[ H + ]. For

example, if the hydrogen ion concentration is

1 × 1 0 -2 mol/L, the pH is 2.

Common household items are bases or acids, depending on their H + concentrations: the greater the H + concentration, the lower the pH.

Physical and Atomic Properties of Hydrogen

Melting point -259°C

Boiling point -253°C

Density 8.98 × 1 0 -5 g/mL

Atomic radius 78 pm

First ionization energy

1312 kJ/mol

Electronegativity 2.2 Pauling units

(l)©SPL/Photo Researchers, Inc., (r)Matt Meadows

Page 6: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Hydrogen

1

H1s1

Elements Handbook 905

Identifying Hydrogen in StarsSpectroscopy is the study of the spectral lines present

in an electromagnetic spectrum. The colored lines in

an emission spectrum represent the emission of energy.

How do scientists know that more than 90% of the atoms

in the universe are hydrogen atoms? By recording the

emission spectra of light from stars or galaxies, astrono-

mers can identify hydrogen. The spectrum of hydrogen

consists of four distinct color lines at different wave-

lengths. They are produced when electrons in a gas move

to different energy levels in an atom by absorbing and

then emitting energy. Each element can be identified by

characteristic patterns of spectral lines.

Hydrogen Fuel CellsHydrogen fuel cells produce electricity by combining

hydrogen ( H 2 ) and oxygen ( O 2 ) without burning. Water

and heat are the only by-products of this process. Current

demonstration projects that use hydrogen fuel cells as

their energy sources include laptop computers, cars, buses,

classrooms, and musical instruments. In the future, it

might be possible to use a pen-sized container filled with

hydrogen gas to power a laptop computer. Or, you might

drive a fuel cell car to a filling station and fill a high-pres-

sure gas cylinder with hydrogen gas.

The colorful cloud that makes up this nebula is composed of hydrogen gas.

Hydrogen fuel cells provide the energy to power this electric guitar.

1. Compare and contrast hydrogen isotopes.

2. Write the balanced equation for the reaction between hydrogen gas and oxygen gas in a fuel cell.

3. Explain what happens when hydrogen reacts with a nonmetal element.

4. Evaluate at least one advantage and one possible disadvantage of hydrogen fuel cells compared to con-ventional petroleum engines.

5. Infer Hydrogen can gain one electron to reach a stable electron configuration. Why isn’t hydrogen placed with the group 17 elements that share this behavior?

6. Apply A solution’s hydrogen ion concentration is 3.2 × 1 0 -4 mol/L. Refer to Chapter 19 to determine if this solution is an acid or a base. What is the pH of this solution?

Real-World Applications

(t)©European Southern Observatory/Photo Researchers, Inc., (b)©Melanie Stetson Freeman/The Christian Science Monitor via Getty Images

Page 7: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Lithium

3

Li[He]2s1

Sodium

11

Na[Ne]3s1

Potassium

19

K[Ar]4s1

Rubidium

37

Rb[Kr]5s1

Cesium

55

Cs[Xe]6s1

Francium

87

Fr[Rn]7s1

MP

BP

Temperature (°C)

1811342

98883

63759

39668

28671

Li

Na

K

Rb

Cs

Melting Points and Boiling Points

5000 1000 1500 0.5 1.00 1.5 2.0

g/mL

0.535

0.968

0.856

1.532

Densities

Li

Na

K

Rb

Cs 1.879

906 Elements Handbook

Group 1: Alkali Metals

Physical Properties• Pure alkali metals have a silvery, metallic appearance.

• Solid alkali metals are soft enough to cut with a knife.

• Most of the alkali metals have low densities compared to the solid

form of elements from other groups. Lithium, sodium, and potassium

metals are less dense than water.

• Compared to other metals, such as silver or gold, alkali metals have

low melting points.

• Li, Na, K, Rb, and Cs react

vigorously with water to form

metal hydroxides, such as

potassium hydroxide, and

hydrogen gas.

Example: 2K(s) + 2 H 2 O(l) →

2KOH(aq) + H 2 (g)

Potassium reacts violently with water, producing enough heat to ignite the hydrogen gas produced.

Common Reactions• Li, Na, K, Rb, and Cs react vigorously with halogens to form salts,

such as lithium chloride.

Example: 2Li(s) + C l 2 (g) → 2LiCl(s)

• Li, Na, K, Rb, and Cs react with oxygen to form oxides, such as

sodium oxide.

Example: 4Na(s) + O 2 (g) → 2N a 2 O(s)

©Richard Megna/Fundamental Photographs, NYC

Page 8: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

kJ/mol

Li

Na

K

Rb

Cs

Fr

1000 200 300 400 500

496

419

403

376

380

First Ionization Energies

520

Pauling units

Li

Na

K

Rb

Cs

Fr

0.50 1.0 1.5 2.0

0.98

0.93

0.82

0.82

0.79

0.70

Electronegativities

Li152

Li1+

76

Atomicradius(pm)

Na186

Na1+

102

K227

K1+

138

Rb248

Rb1+

152

Cs265

Cs1+

167

Fr270

Ionicradius(pm)

Elements Handbook 907

Element Facts

Atomic Properties• Each element in group 1 has one valence electron and an electron

configuration ending with n s 1 .

• Group 1 elements lose their valence electrons to form ions with a

1+ charge.

• Going down the elements in group 1, the atomic radii and ionic radii

increase.

• Electronegativity decreases going down the elements in group 1.

• The alkali metals are so reactive that they are not found in nature

as free metals.

• All the alkali metals have at least one radioactive isotope.

• Because francium is rare and decays rapidly, its properties are not

well known.

Analytical TestsAlkali metals can be qualitatively identified by flame tests. Lithium

produces a red flame. Sodium produces an orange flame. Potassium,

rubidium, and cesium produce violet flames.

Lithium

Sodium

Potassium

Rubidium

Cesium

(l)©DAVID TAYLOR/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (c cl)©JERRY MASON/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC.; (cr r)©Tom Pantages

Page 9: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Lithium

3

[He]2s1

Sodium

11

Na[Ne]3s1

908 Elements Handbook

Group 1: Alkali Metals

Environmentally Friendly BatteriesSomeday, electric cars might be powered by lightweight

lithium-ion batteries. Lithium batteries have several

advantages compared to lead-acid batteries. Unlike lead-

acid batteries, lithium batteries do not contain toxic

metals or corrosive acids, making them safer for the

environment. Lithium’s light weight is also an advantage

for electric vehicles. However, lithium batteries do have

some disadvantages. Researchers are trying to find ways

to make lithium batteries that recharge more rapidly.

Cost is also a drawback. Lithium batteries are currently

used for small applications such as laptop computers, but

they will need to be less expensive before they can be

routinely used in larger, more energy-demanding applica-

tions such as electric or hybrid vehicles.The Mars rovers, Spirit and Opportunity, use solar energy to recharge lithium-ion batteries.

Group 1: Alkali Metals

Dietary SaltIn 2006, the American Medical Association

recommended that the amount of sodium in

processed and restaurant foods be reduced by

one-half over the next decade. Sodium is essen-

tial for humans, but too much might contribute

to high blood pressure and heart failure. Current

guidelines advise consuming less than 2400 mg

of sodium per day, which is less than one tea-

spoon. However, Americans typically consume

4000 to 6000 mg of sodium per day. Foods that

contain more than 480 mg of sodium per serving

are considered high-sodium foods. To be labeled

as low sodium, foods must contain 140 mg or

less per serving. The table lists some common

foods that are either high or low in sodium.

Sodium Content of Some Common Foods

FoodSodium Content (mg) per Serving

High sodium

fast-food submarine sandwich with cold cuts

1310

canned chicken noodle soup

1106

fast-food biscuit with egg and sausage

1080

cottage cheese 851

dill pickle 833

fast-food cheeseburger 740

canned corn 571

beef hotdog 513

fried fish fillet 484

Low sodium

wheat bread 133

low-fat fruit yogurt 132

fast-food salad with cheese and egg,

no dressing

119

pound cake 111

oatmeal cookie 96

raw carrots 76

canned peaches 16

frozen corn 2

(t)©NASA/epa/Corbis, (b)©1995 Michael Dalton, Fundamental Photographs, NYC

Page 10: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Sodium

11

Na[Ne]3s1

Potassium

19

K[Ar]4s1

K+

K+

K+

K+

Na+

Na+

Na+

Na+

Na+

Na+ Sodium-potassiumpumps

Inside cell

Outside cell

Cesium

55

Cs[Xe]6s1

Elements Handbook 909

Real-World Applications

The sodium-potassium pump brings two K + ions into a cell for every three N a + ions it moves out of a cell.

The Sodium-Potassium PumpHumans and other vertebrates need to maintain

a negative potential charge inside their cells in

order to survive. This process requires sodium

ions, potassium ions, and a membrane-bound

enzyme called sodium/potassium ATPase. Sodium/

potassium ATPase uses energy from the hydrolysis

of ATP to pump sodium ions out of cells and pump

potassium ions into cells. Because of the action of

this pump, the sodium ion concentration is low

7. Describe the trend in density of the alkali metals as atomic number increases.

8. Compare lithium-ion batteries and lead-acid batteries.

9. Write a balanced equation for the reaction between lithium and water.

10. Predict the reactivity of lithium metal with water.

11. Analyze Lithium’s properties are more like magnesium in group 2 than sodium. Use what you learned about atomic sizes to explain this behavior.

12. Organize Make a table to summarize the data for physical and atomic properties of the group 1 elements according to their trends with increasing atomic number.

inside cells and high outside cells. The potassium

ion concentration is high inside cells and low out-

side cells. In fact, potassium ions are the most com-

mon ions inside living cells. For every three

sodium ions pumped out of a cell, sodium/potassi-

um ATPase pumps two potassium ions into the

cell. The net result is a negative charge inside the

cell and concentration gradients across the cell

membrane for both potassium and sodium ions.

The cesium fountain atomic clock at NIST is accurate to about 1 second over a period of 70 million years.

Cesium Atomic ClocksOne of the most accurate clocks in the world is located

at the United States National Institute of Standards and

Technology (NIST) in Boulder, Colorado. This cesium

fountain atomic clock provides the official time for

the United States. The clock is based on the natural

resonance frequency of the cesium atom

(9,192,631,770 Hz.), which defines the second.

©Geoffrey Wheeler

Page 11: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Radium

88

Ra[Rn]7s2

Barium

56

Ba[Xe]6s2

Strontium

38

Sr[Kr]5s2

Calcium

20

Ca[Ar]4s2

Magnesium

12

Mg[Ne]3s2

Beryllium

4

Be[He]2s2

1000 2000 30000

Temperature (ºC)

MP

BP

12872469

6501090

8421484

7771382

7271870

7001737

Melting Points and Boiling Points

Be

Mg

Ca

Sr

Ba

Ra

1 20 3 4 5

g/mL

1.848

1.738

1.550

2.630

Densities

Be

Mg

Ca

Sr

Ba

Ra 5.000

3.510

910 Elements Handbook

Physical Properties• Most of the alkaline earth metals have a silvery-white, metallic

appearance. When exposed to oxygen, a thin oxide coating forms

on the surface.

• The alkaline earth metals are harder, denser, and stronger than many

of the group 1 elements, but are still relatively soft compared to other

metals.

• Most alkaline earth metals have higher melting points and boiling

points than alkali metals.

• Moving down the group, densities generally increase.

Common Reactions• Mg, Ca, Sr, and Ba react with

halogens to form salts, such as

magnesium chloride, and

hydrogen gas.

Example: Mg(s) + 2HC l (g) →

MgC l 2 (s) + H 2 (g)

• Mg, Ca, Sr, and Ba react with

hydrogen to form hydrides,

such as barium hydride.

Example: Ba(s) + H 2 (g) →

Ba H 2 (s)

• Be, Mg, Sr, and Ca react with

nitrogen to form nitrides, such

as magnesium nitride.

Example: 3Mg(s) + N 2 (g) →

M g 3 N 2 (s)A ribbon of magnesium reacts with HCl in an aqueous solution to produce M g 2+ ions, C l - ions, and hydrogen gas.

Group 2: Alkaline Earth Metals

Charles D. Winters/Photo Researchers, Inc.

Page 12: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Pauling units

Be

Mg

Ca

Sr

Ba

Ra

0.5 1.0 1.5 2.00

1.57

1.31

1.00

0.95

0.89

0.90

Electronegativities

kJ/mol

Be

Mg

Ca

Sr

Ba

Ra

2000 400 600 800

738

590

550

503

509

First Ionization Energies

900

Be112

Be2+

31

Atomicradius(pm)

Mg160

Mg2+

72

Ca197

Ca2+

100

Sr215

Sr2+

118

Ba222

Ba2+

135

Ra220

Ionicradius(pm)

Elements Handbook 911

Element Facts

• Mg, Ca, Sr, and Ba react with oxygen to

form oxides, such as magnesium oxide.

Example: 2Mg(s) + O 2 (g) → 2MgO(s)

• Sr and Ba react with oxygen to form

peroxides, such as strontium peroxide.

Example: Sr(s) + O 2 (g) → Sr O 2 (s)

• Mg, Ca, Sr, and Ba react with water to form

bases, such as barium hydroxide, and

hydrogen gas.

Example: Ba(s) + 2 H 2 O(l) →

Ba(OH ) 2 (aq) + H 2 (g)

Barium reacts with water to form B a 2+ ions, O H - ions, and hydrogen gas.

Analytical TestsThree of the alkaline earth metals can be

identified by flame tests. Calcium produces a

scarlet color, while strontium produces a crimson

color. Barium, which if present in a sample can

mask the colors of both calcium and strontium,

produces a yellow-green color.

Atomic Properties• Each element in group 2 has two valence electrons and an electron

configuration ending with n s 2 .

• Alkaline earth metals often lose their two valence electrons to form

ions with a 2+ charge.

• Atomic radii and ionic radii increase moving down the group but are

smaller than the corresponding alkali metal.

• Ionization energies and electronegativities generally decrease moving

down the group but are larger than the corresponding alkali metal.

BariumStrontiumCalcium

(l)Andrew Lambert/Photo Researchers, Inc., (others)Fundamental Photographs

Page 13: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

N N

N NMg

CH3CH3

H2C CH————

HH

H

O

CH3CH3

CH2 CH2 CO2 CH2 CH C (CH2 CH2 CH2 CH)3 CH3

CO2 CH3

CH2 CH3 CH3

H3C

Beryllium

4

Be[He]2s2

Magnesium

12

Mg[Ne]3s2

912 Elements Handbook

Space TelescopesBeryllium and beryllium alloys have properties

that make them useful for applications in space:

they are hard, they are lighter than aluminum, and

they are stable over a wide temperature range. The

Hubble Space Telescope’s reaction plate is made of

lightweight beryllium. The reaction plate carries

heaters that keep the main mirror at a constant

temperature. Beryllium is also being used in the

Hubble’s replacement—the James Webb Space

Telescope (JWST).

Chlorophyll and Crop YieldsIn the early 1900s, German chemist Richard Willstätter discovered

that a molecule of chlorophyll has a magnesium ion at its center.

Chlorophyll, the green pigment in plants, is responsible for photo-

synthetic processes, which convert sunlight to chemical energy. It is

this chemical energy that supports life on Earth. Notice in the table

that an average yield of common crops removes large amounts of

magnesium from just one hectare of soil. Once the importance of

magnesium was revealed, soils deficient in magnesium were fertil-

ized, greatly increasing crop yields. Willstätter’s work won him the

Nobel Prize in Chemistry in 1915.

Precious GemsEmerald (B e 3 A l 2 S i 6 O 18 ), one of the world’s most

valuable gemstones, belongs to a family of gem-

stones known as beryls. Pure beryls are clear,

colorless crystals. Beryls tinted with other elements

form gems such as aquamarine, morganite, and

emerald. Trace amounts of chromium or vanadium

give emeralds their unique green color.

The JWST’s large mirror is composed of 18 hexagonal beryllium plates.

Emerald beryl

Amount of Magnesium Removed by Crops from One Hectare of Soil

CropMagnesium Removed

from Soil (kg)

Alfalfa 44

Corn 58

Cotton 25

Oranges 25

Peanuts 27

Rice 15

Soybeans 27

Tomatoes 40

Wheat 20

Beryllium plates

Group 2: Alkaline Earth Metals

Chlorophyll molecule

(l)Mark A. Schneider/Photo Researchers, (r)Courtesy of Northrop Grumman Space Technology

Page 14: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Magnesium

12

Mg[Ne]3s2

Calcium

20

Ca[Ar]4s2

Strontium

38

Sr[Kr]5s2

Barium

56

Ba[Xe]6s2

Engine cradle

Elements Handbook 913

Real-World Applications

New Engineering AlloysMagnesium alloys are used when

strong, but lightweight, materials are

needed, such as in backpack frames

and aircraft. These alloys also enable

automotive engineers to design

lighter, more fuel-efficient cars. A

new magnesium alloy, introduced in

the engine cradle of some 2006 auto-

motive models, replaces traditional

aluminum. This alloy reduces the

engine cradle’s mass by approxi-

mately one-third, creating a vehicle

that is both agile and controllable.

Considered a breakthrough in

engineering technology, the new

alloy is currently being evaluated

for use in other applications.

FireworksThe four main components of fireworks are a

container, a fuse, a bursting charge, and stars.

Stars contain the chemical compounds needed

to produce light of brilliant colors. Many of these

compounds contain alkaline earth metals, such

as barium chloride (BaC l 2 ), strontium carbonate

(SrC O 3 ), and calcium chloride (CaC l 2 ). The table

identifies which metals are needed to make the

colors seen during a fireworks display.

The magnesium-alloy engine cradle is lighter than the aluminum model, yet it can still withstand the high temperatures produced by the car’s engine.

Metals Used in Fireworks

Color Metal

Red strontium, lithium

Orange calcium

Gold iron (with carbon)

Yellow sodium

White white-hot magnesium or aluminum, barium

Green barium

Blue copper

Purple mixture of strontium (red) and copper (blue)

Silver aluminum, titanium, or magnesium powder or flakes

(t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/CORBIS

Page 15: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Calcium

20

Ca[Ar]4s2

Strontium

38

Sr[Kr]5s2

Toothpaste containingstrontium chloride

Crystals

Pore to root canaland nerves

Root canal

Dentine

Root

Nerve

Barium

56

Ba[Xe]6s2

914 Elements Handbook

GypsumDrywall is made from gypsum, which is a soft

mineral composed of calcium sulfate dihydrate

(CaS O 4 ·2 H 2 O). Drywall boards are used in build-

ing construction because the gypsum provides fire

protection. Gypsum contains large amounts of

water in its crystal form, which vaporizes when

heated. The boards remain at 100°C until all of the

water evaporates, protecting the wood frame of the

building. Gypsum that has had most of its water

removed is known as plaster of paris. Most

minerals form pastes when mixed with water.

When plaster of paris is mixed with water, it forms

a rigid crystal structure, so it is often used for casts

to set broken bones and for molds.

Sensitive TeethAlmost 40 million people in the United States

have teeth that are hypersensitive to touch and

temperature. Sensitivity occurs when the dentine

and roots of teeth are exposed due to receding

gums or thinning of the tooth enamel. This is the

result of poor oral hygiene or, in many instances,

from brushing too hard. Exposing the root enables

stimuli, such as cold temperatures, to reach the

Medical X RaysBarium is used by medical professionals to exam-

ine a person’s gastrointestinal tract. Patients drink

barium liquid, which coats the tract, and are then

X-rayed. Barium is almost completely insoluble in

water and acids and appears as a bright white

color in X rays. This allows doctors and radiolo-

gists to locate tumors, ulcers, areas of reflux, and

other abnormalities in the digestive tract.

nerve through openings called pores. Toothpastes

that contain strontium chloride (SrC l 2 ) help

reduce the sensitivity. The compound reacts with

a person’s saliva to create crystals that fill in the

pores so stimuli cannot reach the nerves.

A layer of plaster of paris protects fossils during shipment.

Crystals formed from strontium chloride and saliva fill in pores in the root of a tooth and block access to the nerve.

After being coated with barium liquid, the large intestine shows up clearly on an X ray.

Group 2: Alkaline Earth Metals

(t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers

Page 16: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Radium

88

Ra[Rn]7s2

Elements Handbook 915

Real-World Applications

The Discovery of RadioactivityMarie Curie’s discovery of the atomic property she called

radioactivity paved the way for present-day advancements

in science and medicine. Curie and her husband, Pierre,

unveiled the characteristics and capabilities of radiation,

revolutionizing scientific thinking and laying the ground-

work for present-day cancer treatments, genetics, and

nuclear energy. Today, many cancers are treated with

radiation therapy.

Radon GasDecay of radium-226 in soil and rock produces radon gas.

The radioactive radon gas can seep through cracks in a home’s

foundation or can be dissolved in water pumped into the house

from a well. High concentrations of radon can increase the risk

of cancer. In many homes, installing a radon-reduction system

reduces the concentration of radon gas by using a fan to draw

the gas through pipes that vent to the outside of the home.

13. Describe the general trend in first ionization energies in group 2, and explain why this trend occurs.

14. Explain What is the charge on alkaline earth metal ions? Explain your answer.

15. Compare and contrast the physical properties of the alkaline earth metals and the alkali metals.

16. Evaluate why magnesium is used in emergency flares instead of other alkaline earth metals.

17. Analyze Use the atomic properties of the alkali metals and alkaline earth metals to explain why calcium is less reactive than potassium.

18. Infer The alkaline earth metals are usually found combined with oxygen and other nonmetals in Earth’s crust. Based on the atomic properties of this group, explain why alkaline earth metals are so reactive.

19. Calculate Calcium makes up about 1.5% of a human’s body mass. Calculate the amount of calcium found in a person who weighs 68 kg.

20. Calculate Radium-226 has a half-life of 1600 years. After 8000 years, how much of a 500.0-g sample of radium-226 would be left?

A radon-reduction system lowers the concentration of radon in homes by venting the radon gas from the home to the outside environment.

Fan

Vent pipe

Marie Curie died at the age of 67 from aplastic anemia, probably caused by her exposure to massive amounts of radiation. Today, the effects of radiation on health are well known, and suitable safety precautions are taken when using radioactive materials.

(l)Fred Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS

Page 17: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

916 Elements Handbook

Groups 3–12: Transition Elements

Physical Properties• The main transition elements include four series of d-block elements

with atomic numbers between 21–30, 39–48, 72–80, and 104–109. The

inner transition elements include the f-block (rare earth) elements in

the lanthanide series (atomic numbers 57–71) and actinide series

(atomic numbers 89–103.) All are metals.

• As metals, transition elements are generally good conductors of

electricity and heat. They are ductile, which means they can be pulled

into wires. Transition metals are also malleable, which means they

can be hammered into thin sheets. For example, 1 g of gold can be

hammered into a 1 m 2 -sheet that is 0.1 µ thick .

• In general, the transition elements have high densities, high melting

points, and low vapor pressure. Except for mercury, which is a liquid,

all are solids at room temperature.

• High density and resistance to corrosion make transition elements,

such as iron, good structural materials.

• Most transition elements can form colored compounds.

• Transition elements are often paramagnetic, which means they are

attracted to an applied magnetic field. Three transition elements—iron,

cobalt, and nickel—are ferromagnetic. That means these elements can

form their own magnetic fields.

Common Reactions• Most transition elements can form stable

complex ions and coordinate covalent com-

pounds. A complex ion is an ion in which

a central metal ion is surrounded by weakly

bound molecules or ions called ligands.

Example: Prussian blue, an intense blue pigment

used in paints, is a coordinate compound made

of iron(III) and an iron(II) cyanide complex:

F e 4 [Fe(CN ) 6 ] 3 .

• Transition elements can often combine to form

alloys.

Examples:

• Brass is a mixture of copper and zinc.

• Bronze is a mixture of copper and tin.

When exposed to a magnet, iron filings become magnetic and are attracted to the magnet and to each other.

• Transition elements and their compounds are

often useful as catalysts.

Example: Nickel is used as a catalyst in

converting unsaturated fats to saturated fats.

• Transition elements can react with oxygen to

form oxides.

Example: In the presence of water, iron reacts

with oxygen to form rust. The overall reaction is:

4Fe + 3 O 2 → 2F e 2 O 3 .

• Some transition elements are important in

biochemical reactions.

Example: In the protein hemoglobin, iron binds

to O 2 to transport oxygen from the lungs to the

rest of the body.

©CORDELIA MOLLOY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.

Page 18: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Elements Handbook 917

Element Facts

Analytical TestsNotice in the photo the colorful compounds

of transition metals. When placed in solutions,

these compounds absorb different wavelengths

of light. Visible spectroscopy uses light absorp-

tion at specific wavelengths to measure the con-

centration of colored compounds in solution.

This method of analysis uses the interaction

of valence electrons of transition elements and

visible light. Because many transition element

compounds are colored, this technique can be

used in transition element analysis.

Atomic Properties• The main transition elements have incomplete d sublevels.

• Inner transition elements include the lanthanide series and actinide series. Elements in these

series have incomplete f sublevels.

• The electronic structures of the transition elements give rise to their physical properties.

The more unpaired electrons in the d sublevel, the greater the hardness and the higher the

melting and boiling points.

• Unpaired d and f electrons produce paramagnetism in the transition elements.

• The tendency of transition elements to form colored compounds also derives from their

electron configurations. Compounds with unpaired d electrons can absorb visible light.

• For transition elements, there is little variation in atomic size, electronegativity, and ioniza-

tion energy across a period.

• Transition metals can typically form ions in more than one oxidation state.

The compounds of transition metals have color because of the par-tially filled d sublevels. The electrons in these sublevels can absorb visible light of specific wavelengths. Compounds with empty or filled d sublevels do not produce brilliant colors.

Oxidation Numbers of the First Row of Transition Elements

Sc +3

Ti +1 +2 +3 +4

V +1 +2 +3 +4 +5

Cr 0 +1 +2 +3 +4 +5 +6

Mn 0 +1 +2 +3 +4 +5 +6 +7

Fe 0 +1 +2 +3 +4 +5 +6

Co 0 +1 +2 +3 +4 +5

Ni +1 +2 +3 +4

Cu +1 +2 +3

Zn +2

©Martyn F. Chillmaid/Photo Researchers, Inc.

Page 19: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Titanium

22

[Ar]3d24s2

Chromium

24

Cr[Ar]3d54s1

Manganese

25

Mn[Ar]3d54s2

Cobalt

27

Co[Ar]3d74s2

Tungsten

74

W[Xe]4f145d46s2

Platinum

78

Pt[Xe]4f145d96s1

Canada Nickel Copper Gallium Tantalum Zinc Cesium Cobalt Platinum Vanadium

Mexico Zinc Cadmium Strontium

Jamaica Aluminum

Bolivia Antimony Tin

South Africa Chromium Manganese Vanadium

Indonesia Tin

Australia Aluminum Manganese

Platinum Tantalum

Japan Cadmium China Antimony Cadmium Copper Tin Manganese Tantalum Vanadium

Norway Nickel Cobalt

Brazil Manganese Aluminum

France Manganese Gallium

Gabon Manganese

India Cadmium Chromium Manganese

Turkey Chromium

Locations of Some Strategic Metals Russia Chromium Platinum

CopperManganese

PlatinumAntimonyGold

GoldTin

TinZinc

CopperNickel

AntimonyCobaltNickel

CopperGallium

918 Elements Handbook

Lighter but Stronger than SteelThe curved surfaces of the Guggenheim Museum in Bilbao,

Spain, are covered with 32,000 m 2 of 0.4 mm-thick titani-

um panels. Titanium’s reflective properties give the building

a warm look that is ever changing. Titanium is also three

times stronger than steel, more resistant to weathering, and

weighs less than steel.

The titanium panels that cover the outside of the Guggenheim Museum in Bilbao, Spain, were chosen for the metal’s physical properties.

Strategic and Critical MaterialsTransition metals, such as chromium, manganese, cobalt, tungsten, and platinum, play a

vital role in the economy of many countries because they have a wide variety of uses. As the

uses of transition metals increase, so does the demand for these valuable materials. Ores

that contain transition metals are located throughout the world.

The United States now imports more than 60 materials that are classified as “strategic and critical” because industry and the military are dependent on these materials.

Groups 3–12: Transition Elements

©Colin Walton/Alamy

Page 20: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Iron

26

Fe[Ar]3d64s2

Nickel

28

[Ar]3d84s2

Copper

29

Cu[Ar]3d104s1

Titanium

22

[Ar]3d24s2

Chromium

24

Cr[Ar]3d54s1

Iron

26

Fe[Ar]3d64s2

Cobalt

27

Co[Ar]3d74s2

Copper

29

Cu[Ar]3d104s1

Elements Handbook 919

Real-World Applications

Copper MicrochipsFor many years, aluminum was used to make computer

microchips. Although copper is a better electrical conductor

than aluminum, it was not until the late 1990s that the tech-

nology existed to use copper in microchips. Combined with

the extremely small size of copper wires, this allows copper

microchips to be smaller and to operate 25 to 30 times faster

than other kinds of microchips. To make wires this small, the

copper must be between 99.999 and 99.9999% pure.

Paint PigmentsPaints are a mixture of particles of pigment in a liquid

base. Once the liquid evaporates, the pigment particles

coat a painted surface. Transition elements and their

compounds are often used as paint pigments. Iron oxides

are used as red, yellow, and brown pigments. Chromium,

copper, and cobalt compounds produce green and blue

pigments. Titanium dioxide is often used for white paint.

Earth’s Iron Core Earth’s core is a solid iron sphere about the size of the

Moon. Surrounding the inner core, there is an outer

liquid core that contains a nickel-iron alloy. Scientists

think the iron core formed when multiple collisions

during Earth’s early history resulted in enough heat to

melt metals. In the molten state, the densest materials,

including iron and nickel, settled to the center and

became Earth’s core. The less-dense materials

remained at the surface. As Earth cooled, the outer

layers solidified, creating Earth’s mantle and crust. Earth’s crust and mantle insulate the hot iron core.

To create a copper microchip, first a layer of tantalum coats a silicon substrate. Then, copper is deposited using a vacuum process. Copper chips like this one are used in handheld games, computers, and other electronic devices.

Artists can create their own paints by mixing dry pigments in a liquid base such as oil, latex, or even egg yolk.

Crust

Outer mantle

Inner mantle

Inner core (iron)

Outer core (iron and nickel)

(t)©Roger Harris/Photo Researchers, Inc., (c)©Tom Pantages, (b)©Kalicoba/Alamy

Page 21: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Gold

79

Au[Xe]4f145d106s1

Plastic sheet

Au

Glass

Au (10 nm)

CdS(3 nm)

Cadmium

48

Cd[Kr]4d105s2

Gold

79

Au[Xe]4f145d106s1

Manganese

25

Mn[Ar]3d54s2

Iron

26

Fe[Ar]3d64s2

Copper

29

Cu[Ar]3d104s1

Zinc

30

Zn[Ar]3d104s2

Silver

47

Ag[Kr]4d105s1

Cadmium

48

Cd[Kr]4d105s2

920 Elements Handbook

Groups 3–12: Transition Elements

GildingCovering an ordinary object with gold foil or gold leaf can

make the object look like it is made of solid gold. The process,

which is called gilding, has been used for more than 5000

years. To create gold foil, gold is hammered until it is very

thin. The thinnest sheets are called gold leaf. They can be as

thin as 0.1 mm thick. It takes skill and a special gilder’s brush

to handle sheets this thin, but the results can be spectacular.

Egyptian King Tutankhamun’s coffin was made of wood covered with gold foil. It has lasted more than 3000 years.

Touch Sensors for Robot FingersImagine a surgeon using a robot for microsurgery. In the

future, it might be possible for the surgeon to feel what is

happening as the robot makes a microsuture. Future robots

might use thin, film sensors to mimic the human sense of

touch. These sensors are built on a glass base from alternating

layers of nanoparticles of gold and cadmium sulfide separated

by layers of plastic. The entire sensor is only 100 nm thick and

works by transmitting an electro-luminescent signal and

electric current when regions of the sensor are touched.

This touch sensor is made from nanoparticles of gold and cadmium sulfide.

Biotreatment of Acid Mine WastesMining operations can generate acidic wastewater

that contain harmful levels of dissolved transition

metals, including manganese, iron, copper, zinc,

silver, and cadmium. One treatment method uses

naturally occurring anaerobic bacteria to remove

all of the oxygen. Then sulfate-reducing bacteria

convert sulfuric acid in the mine waste to sulfide.

Sulfide reacts with metals in the wastewater to

form metal sulfide precipitates, which can be

recovered and processed for commercial use.

Untreated acid mine drainage can contaminate streams with harmful concentrations of transition metals. The red-orange color of the water comes from iron compounds.

(t)©The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)©Theodore Clutter/Photo Researchers, Inc.

Page 22: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Gadolinium

64

Gd[Xe]4f75d16s2

Thorium

90

Th[Rn]6d27s2

Lawrencium

103

Lr[Rn]5f146d17s2

Elements Handbook 921

Real-World Applications

Magnetic Resonance ImagingGadolinium contrast agents are compounds that enhance

differences between normal tissue and abnormal tissue, such

as tumors, in magnetic resonance imaging (MRI) scans. The

gadolinium compounds are injected directly into the blood-

stream prior to an MRI scan. Tumors accumulate more of the

gadolinium compounds than normal tissue. Gadolinium

enhances MRI images because it is paramagnetic. Magnetic

resonance imaging uses a strong magnetic field and radio

waves to stimulate water molecules to an excited state. The

MRI image is formed as water molecules relax back to their

normal state. Gadolinium speeds up the relaxation rate, which

improves the contrast between normal and abnormal tissue.

21. Compare the electron configurations of the main transition elements and the inner transition elements.

22. Explain how some transition metals can form ions with more than one charge.

23. Identify countries that export only one “strategic and critical” transition metal to the United States.

24. Predict Which elements would you expect to have properties most closely related to gold?

25. Calculate A particular copper-chip manufacturing process specifies that the copper must be 99.999 to 99.9999% pure. Calculate the maximum limit for impurities in the copper in parts per million (ppm).

26. Hypothesize Silver is the best conductor of electricity. Hypothesize why silver is not used for electric wires if it is such a good conductor of electricity.

This gadolinium-enhanced MRI scan from a patient with multiple sclerosis shows several areas of scar tissue (white patches).

Reorganizing the Periodic TableThe actinides are a row of radioactive elements from thorium to

lawrencium. They were not always separated into their own row in

the periodic table. Originally, the actinides were located within the

d-block following actinium. In 1944, Glenn Seaborg proposed a

reorganization of the periodic chart to reflect what he knew about

the chemistry of the actinide elements. He placed the actinide

series elements in their own row directly below the lanthanide

series. Seaborg had played a major role in the discovery of

plutonium in 1941. His reorganization of the periodic table made

it possible for him and his coworkers to predict the properties of

possible new elements and facilitated the synthesis of nine addi-

tional transuranium elements.

Seaborg won the Nobel Prize in Chemistry in 1951 for his work. Element 106, seaborgium, was named in his honor.

(t)©ISM/Phototake, (b)©Fritz Goro/Time & Life Pictures/Getty Images

Page 23: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Thallium

81

Tl[Xe]6s24f145d106p1

Gallium

31

Ga[Ar]4s23d104p1

Indium

49

In[Kr]5s24d105p1

Aluminum

13

Al[Ne]3s23p1

Boron

5

B[He]2s22p1

MPBP

300020000 1000

Temperature (°C)

20763927

6602519

302204

1572072

3041473

4000

B

Al

Ga

In

Tl

Melting Points and Boiling Points

g/mL

2.460

2.700

5.904

7.310

Densities

B

Al

Ga

In

Tl 11.850

3 60 9 12

922 Elements Handbook

Physical Properties• Most of the elements in group 13 are metals that have a silvery-white

appearance. The exception is boron, which is pure black. Thallium is

initially silvery, but oxidizes quickly.

• Boron is a metalloid. The remaining group 13 elements are metals.

• Elements in this group are relatively lightweight and soft, except for

boron. Boron is extremely hard—almost as hard as diamond.

• The group 13 elements are solids at room temperature. Gallium melts

slightly above room temperature.

• They have higher boiling points than the alkaline earth metals and

lower boiling and melting points than the carbon group elements.

Group 13: Boron Group

Common Reactions• B, Al, Ga, In, and Tl react with oxygen to form metal(III) oxides,

such as aluminum(III) oxide.

Example: 4Al(s) + 3 O 2 (g) → 2A l 2 O 3 (s)

• B and Al react with nitrogen to form nitrides, such as boron nitride.

Example: 2B(s) + N 2 (g) → 2BN(s)

• Al, Ga, In, and Tl react with halogens to form metal(III) halides,

such as gallium(III) fluoride.

Example: 2Ga(s) + 3 F 2 (g) → 2Ga F 3 (g)

• Tl reacts with halogens to form metal(I) halides, such as thallium(I)

fluoride.

Example: 2Tl(s) + F 2 (g) → 2TlF(s)

• B reacts with halogens to form covalent compounds, such as boron

trichloride.

Example: 2B(s) + 3C l 2 (g) → 2BC l 3 (g)

• Tl reacts with water to form thallium hydroxide and hydrogen gas.

Example: 2Tl(s) + 2 H 2 O(l) → 2TlOH(aq) + H 2 (g)

Page 24: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

B85

B3+

20

Atomicradius(pm)

Al143

Al3+

50

Ga135

Ga3+

62

In167

In3+

81

Tl170

Tl3+

95

Ionicradius(pm)

kJ/mol

B

Al

Ga

In

Tl

578

579

558

589

First Ionization Energies

801

2000 400 600 800

Pauling units

B

Al

Ga

In

Tl

2.04

1.61

1.81

1.78

1.62

Electronegativities

0 0.5 1.0 1.5 2.0

indium

Elements Handbook 923

Element Facts

Atomic Properties• Each element in group 13 has three valence electrons and an electron

configuration ending with n s 2 n p 1 .

• Except for boron, the group 13 elements lose their three valence electrons

to form ions with a 3+ charge. Some of the elements (Ga, In, and Tl) also

have the ability to lose just one of their valence electrons to form ions with

a 1+ charge.

• Boron participates only in covalent bonding.

• Atomic radii and ionic radii generally increase going down the group and

are similar in size to the group 14 elements.

• First ionization energies for the group 13 elements generally decrease

going down the group.

Analytical TestsWith the exception of aluminum, which is one of

the most abundant elements in Earth’s crust, most

of the boron group elements are rare. None of the

elements are found free in nature. Three can be

identified by flame tests, as shown in the table.

Boron produces a bright green color, while indium

produces an indigo blue color. Thallium produces

a green color. More precise identification methods

involve advanced spectral and imaging techniques.

Flame Test Results

Element Color of Flame

Boron initial bright green flash

Indium indigo blue

Thallium green

Indium was named after its distinct indigo blue spectral line.

Page 25: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Boron

5

B[He]2s22p1

Aluminum

13

Al[Ne]3s23p1

Gallium

31

Ga[Ar]4s23d104p1

924 Elements Handbook

Group 13: Boron Group

DetergentSodium perborate (NaB O 3 · H 2 O or NaB O 3 ·4 H 2 O) is one of the

key ingredients in powdered laundry detergent. The hydrate,

formed by combining borax pentahydrate (N a 2 B 4 O 7 ·5 H 2 O)

with hydrogen peroxide and sodium hydroxide, releases

oxygen during the laundering process to help make clothes

whiter and brighter. Sodium perborate is the chemical of

choice because it remains stable over long periods of time,

helps maintain wash water pH, and increases the solubility

of detergent ingredients.

Many powder laundry detergents contain boron compounds that help make clothes cleaner.

CDs and DVDsHave you ever wondered what your CDs and DVDs are

made of? The inside is made of plastic, about 1 mm thick. A

machine embeds digital information, such as sound record-

ings, into the plastic as a series of bumps and then coats the

plastic with aluminum. That is what makes CDs and DVDs so

shiny. A thin layer of acrylic protects the aluminum. The

shiny surface allows the laser from the CD or DVD player to

read the information reflected off the disc’s surface.

A thin aluminum film coats the depressions embed-ding information in a compact disc and makes the surface of a CD shiny.

HD DVDsVideos in high-definition (HD) have higher quality sound

and pictures than regular DVDs. However, HD technology

requires more information than can be stored on regular

DVDs. A red laser is used to read and write data on a regular

DVD. Blue lasers made from gallium nitride (GaN) are used

to read and write data on HD DVDs. Blue light has a shorter

wavelength than red light, so a blue laser can read more

densely packed information, allowing more information to be

stored in the same amount of space.

HD DVDs store up to 50 gigabytes (GB) of information, com-pared to 4.7 GB on a regular DVD.

(t)©Tom Pantages, (tc)©Greg Stott/Masterfile, (b)©Toshiba Corporation images, (bc)©Eye of Science/Photo Researchers, Inc.

Page 26: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Indium

49

In[Kr]5s24d105p1

Thallium

81

Tl[Xe]6s24f145d106p1

Elements Handbook 925

Real-World Applications

27. Describe how the properties of boron are different from the other group 13 elements.

28. Identify what an unknown element would be if it produced a green flash of color at the beginning of a flame test.

29. Describe any trends in the first ionization energies of the group 13 elements.

30. Explain why HD DVDs can store more information than regular DVDs.

31. Summarize how “cold” areas in thallium-201 scans could correspond to artery blockages.

32. Calculate It is estimated that 123,000 aluminum cans are recycled each minute. Assume that each can has a mass of 14 g. Determine how much aluminum (kg) is recycled during the month of September.

Flat-Screen TelevisionsKnown as ITO in the electronics industry,

indium-tin oxide has proven to be the cornerstone

of liquid crystal display (LCD) technology. During

production, a thin layer of indium-tin oxide

(a mixture of I n 2 O 3 and Sn O 2 ) is used to coat the

glass contained within an LCD flat-screen panel.

This allows the glass to be both conductive and

transparent. About half of the world’s indium is

used to make LCDs.

Indium-tin oxide is one of the main components in LCD flat-panel televisions.

Cardiac ScansThallium-201 is a radioisotope used by medical pro-

fessionals to determine the health of a person’s heart.

During a thallium-201 scan, also called a heart stress

test, a patient performs physical activity and is injected

with thallium-201 one to two minutes before stopping

the activity. The isotope emits gamma rays that are

recorded by a detector to display a two-dimensional

image of the heart and its blood supply. If gamma rays

are not detected in certain areas in and around the

heart, the areas are considered “cold.” This means that

the blood supply has been impeded or blocked, a con-

dition that often leads to heart attack or stroke.

The dark blue areas in this thallium-201 scan are areas with low blood supply.

(t)©Judith Collins/Alamy, (b)©Collection CNRI/Phototake

Page 27: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Lead

82

Pb[Xe]6s24f145d106p2

Germanium

32

Ge[Ar]4s23d104p2

Tin

50

Sn[Kr]5s24d105p2

Silicon

14

Si[Ne]3s23p2

Carbon

6

C[He]2s22p2

MPBP

300020000 1000

Temperature (°C)

35274027

14142900

9382820

2322602

3271749

4000

C

Si

Ge

Sn

Pb

Melting Points and Boiling Points

g/mL

2.267

2.330

5.323

7.310

Densities

C

Si

Ge

Sn

Pb 11.340

0 3 6 9 12

926 Elements Handbook

Group 14: Carbon Group

Physical Properties• Elements in the carbon group increase in metallic character going

down the group. Carbon is a nonmetal. Silicon and germanium are

metalloids. Tin and lead are metals.

• Carbon can be a black powder; a soft, slippery gray solid; a hard,

transparent solid; or an orange-red solid.

• Silicon can be a brown powder or a shiny-gray solid.

• Germanium is a shiny, gray-white solid that breaks easily.

• Tin also occurs in two forms. One form is a silvery-white solid, while

the other is a shiny-gray solid. Both forms are ductile and malleable.

• Lead is a shiny-gray solid. It is soft, malleable, and ductile.

• Moving down the group, melting and boiling points decrease and

densities increase.

Common ReactionsAt room temperature, carbon group ele-

ments are generally unreactive. Reactions

do occur under elevated temperature

conditions.

• C, Si, Ge, and Sn react with oxygen to

form oxides, such as carbon dioxide.

Example: C(s) + O 2 (g) → C O 2 (g)

• C, Si, Ge, and Sn react with halogens to

form halides, such as silicon chloride.

Example: Si(s) + 2C l 2 (l) → SiC l 4 (g)

• Sn and Pb react with bases to form

hydroxo ions and hydrogen gas.

Example:

Sn(s) + KOH(aq) + 2 H 2 O(l) →

K + (aq) + Sn(OH ) 3 - (aq) + H 2 (g)

Silicon chloride (SiCl4) reacts with water to form silicon dioxide and hydrochloric acid, which turns lit-mus paper pink.

©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC.

Page 28: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

C77

C4+

15

Atomicradius(pm)

Si118

Si4+

41

Ge122

Ge4+

53

Sn140

Sn4+

71

Pb146

Pb4+

84

Ionicradius(pm)

kJ/mol

C

Si

Ge

Sn

Pb

2000 400 600 800 1000

787

762

709

716

First Ionization Energies

1087

Pauling units

C

Si

Ge

Sn

Pb

2.55

1.90

2.01

1.96

2.33

Electronegativities

0.50 1.0 1.5 2.0 2.5

Elements Handbook 927

Element Facts

Atomic Properties• Each element in group 14 has four valence electrons and an electron

configuration ending with n s 2 n p 2 .

• Carbon group elements participate in covalent bonding with an oxidation

number of 4+. Tin and lead can also have an oxidation number of 2+.

Carbon and silicon have an oxidation number of 4- in some compounds.

• Carbon, silicon, and tin occur as allotropes.

• Atomic and ionic radii increase moving down the group and are similar to

their corresponding group 13 elements.

• Except for carbon, the group 14 elements have similar ionization energies

and no distinct pattern of electronegativities.

Analytical TestsBecause the group 14 ele-

ments bond covalently, they

do not lend themselves to

identification through flame

tests. The exception is lead,

which produces a light-blue

color. The carbon group

elements can be identified

through analysis of their

physical properties (melting

point, boiling point, densi-

ty), emission spectra, or

reactions with other chemi-

cals. For example, tin and

lead form precipitates when

added to specific solutions.

• C reacts with water to form carbon

monoxide and hydrogen gas.

Example: C(s) + H 2 O(g) →

CO(g) + H 2 (g)

• Si reacts with water to form silicon

dioxide and hydrogen gas.

Example: Si(s) + 2 H 2 O(l) →

Si O 2 (s) + 2 H 2 (g)

• Sn and Pb react with acids to form

hydrogen gas.

Example:

Pb(s) + 2HBr(aq) →

P b B r 2(aq) + H 2 (g)

• C reacts with hydrogen to form

hydrocarbons, such as propane.

Example: 3C(s) + 4 H 2 (g) → C 3 H 8 (g)If lead nitrate is added to potassium iodide, a yellow precipitate of lead iodide forms.

©David Taylor/Photo Researchers, Inc.

Page 29: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Too deep Too shallowIdeal

Carbon

6

C[He]2s22p2

928 Elements Handbook

Group 14: Carbon Group

Graphite Golf ShaftsSome golf shafts are created by fusing

sheets of graphite together with a binding

material. The use of graphite instead of traditional steel allows

greater versatility in club design and construction. Graphite

sheets can be layered to vary the weight and stiffness of the

club, which for many golfers translates into greater shot dis-

tance and overall performance. Graphite also offers greater

durability than steel for golfers with powerful swings.

Graphite can be easily formed into sheets due to its atomic structure.

Diamond Cutting The way a diamond is cut is one of the “4 Cs” that

gemologists use to determine a diamond’s value. If

diamond is the hardest mineral on Earth, then how

is it possible to cut a diamond? Diamond cutters use

other diamonds and lasers to create facets that reflect

and refract light. The more precisely the cuts are

made, the greater the gem’s brilliance. If a diamond

cut is too shallow or too deep, light escapes from the

diamond without traveling back to the eye, resulting

in a lackluster appearance.

The way a diamond is cut determines how well light is reflected and refracted within the gemstone.

NanotubesFullernes form a group of carbon allotropes. There are

spherical fullerenes nicknamed buckyballs and cylindrical

fullerenes known as buckytubes or nanotubes. Fullerenes

have yet to display all of their capabilities to scientists. One

of the most promising areas of fullerene research involves the

creation of nanotubes. Nanotubes are sheets of carbon that

are rolled up into cylinders. These cylinders are strong—due

to the hexagonal structure of the carbon atoms —and have

unique conducting properties. Fullerene nano-technology on

the horizon includes the development of faster computer

chips, smaller electronic components, and more advanced

space-exploration vehicles.

The hexagonal structure of carbon atoms gives extraordinary strength to carbon nanotubes.

(tr)©CHEMICAL DESIGN/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (tr)©Johner Images/Getty Images, (b)©DR TIM EVANS/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.

Page 30: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Silicon

14

Si[Ne]3s23p2

Step 1 Thin wafers are cut from a bar of silicon.

Step 2 A layer of silicon dioxide is added to each wafer.

2,500,000

2,000,000

1,500,000

1,000,000

500,000

0

Sand

pro

duce

d (m

etri

c to

ns)

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05Year

Sand Production in Michigan

Elements Handbook 929

Real-World Applications

Computer ChipsComputer chips are everywhere. From pet-identification

systems to laptop computers—any device that can be

programmed contains a computer chip. Silicon’s abundance

and ability as a semiconductor make it an ideal material for

the production of computer chips. The first step in making a

computer chip involves cutting pure silicon into wafer-like

pieces. Silicon dioxide (Si O 2 ) is then cultivated on each wafer.

Layers upon layers of silicon dioxide and other chemicals are

used to create chips for specific functions.

GlassAlmost 40% of the sand produced in the United States is used for glass production. Glass is creat-

ed by first melting silicon dioxide (Si O 2 ) obtained from sand with sodium carbonate and then

supercooling the mixture. This results in a solid whose structure resembles a liquid and whose

physical properties make it ideal for glassmaking. For manufacturing purposes, sand that yields at

least 95% Si O 2 with no impurities is required for making glass products, such as exterior panels

on buildings, automotive windshields, and commercial beverage containers. Manufacturers of

high precision optical instruments, such as telescopes and microscopes, require sand that con-

tains more than 99.5% Si O 2 .

More than 250 steps are needed to create one computer chip.

Sand dunes in Michigan provide millions of metric tons of sand each year.

©Phil Schermeister/CORBIS

Page 31: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Germanium

32

Ge[Ar]4s23d104p2

Tin

50

Sn[Kr]5s24d105p2

930 Elements Handbook

Group 14: Carbon Group

Night VisionLenses that contain germanium are found in an array of night vision

equipment including goggles, binoculars, and cameras. Unlike ordi-

nary glass lenses, germanium-containing lenses are transparent to

infrared radiation. Infrared radiation is emitted by objects that radiate

heat. Infrared radiation is part of the electromagnetic spectrum, a

region distinct from the visible spectrum, so special equipment is

needed to detect it. Night vision is used for military and security appli-

cations, to monitor wildlife, to navigate roads, and to locate objects

that have been hidden by criminals.The germanium lens in night vision goggles focuses infrared radiation emit-ted from living things.

Fiber Optic CablesFiber optic cables are responsible for the transmission of

information both across the street and across the globe.

These cables are made of extremely pure glass that allows

light signals to travel the span of the cable without losing a

significant amount of energy. Each fiber optic cable consists

of three main parts: a core, cladding, and a buffer coating.

The core is made by exposing gaseous germanium tetra-

chloride (GeC l 4 ) to oxygen, resulting in germanium dioxide

(Ge O 2 ). The germanium dioxide helps the light signal move

effectively along the cable.

Germanium is added to the core of a fiber optic cable to improve the efficiency of the light signal.

Food PackagingA quick trip to the grocery store reveals that many dif-

ferent foods are stored in cans. Soft drinks, fruits, veg-

etables, and even meats can be stored in cans. Cans are

made from sheets of steel that are coated on both sides

with pure tin. Known as tinplate, the metal is both

durable and resistant to rusting and corrosion. These

properties allow foods to stay fresh on the shelf for

long periods of time, and to be transported long dis-

tances. More than 200 million cans are used per day in

the United States alone. More than 2500 different products are packaged in cans.

(t)©Martin Dohrn/naturepl.com, (c)©GOODSHOOT - JUPITERIMAGES FRANCE/Alamy, (b)©Allan H Shoemake/Taxi/Getty Images

Page 32: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Lead

82

Pb[Xe]6s24f145d106p2

LeaddioxideLead

Electrolyticsolution

Anode (+)Cathode (-)

Elements Handbook 931

Real-World Applications

BatteriesA car battery is composed of three main parts: one elec-

trode made of lead, one electrode made of lead dioxide

(Pb O 2 ), and an electrolytic solution made with sulfuric acid

( H 2 S O 4 ). That is why car batteries are also called lead-acid

batteries. The battery’s energy comes from the chemical

reactions occurring between the electrodes and the

electrolyte. During the chemical reaction, electrons are pro-

duced that accumulate on the lead electrode. When a wire

connects the electrodes, electrons flow freely from the lead

electrode to the lead-dioxide electrode, and the battery

discharges. Applying a current reverses the reaction,

recharging the battery.

33. Write the electron configuration of tin.

34. Summarize the physical properties of the elements in group 14.

35. Compare and contrast the atomic properties of the group 13 and group 14 elements.

36. Predict what product or products will be formed if bromine gas reacts with solid carbon under elevated temperature conditions.

37. Consider why graphite is the most suitable carbon allotrope for golf clubs.

38. Calculate Pure diamond has a density of 3.52 g/c m 3 , while graphite has a density of 2.20 g/c m 3 . Recall that density = mass/volume. Samples of diamond and graphite each displace 4.60 mL of water. What is the mass of each sample?

Leaded or Unleaded?In the early 1900s, the automotive industry needed to solve a

problem that people complained about when they drove their

cars—knocking in the engine. At the time, little was known about

the chemistry of fuels and fuel additives. Researchers spent seven

years searching for a gasoline additive that effectively reduced

knocking before discovering tetraethyl lead (Pb( C 2 H 5 ) 4 ). Further

research revealed the health and environmental risks posed by

lead, leading to the development of unleaded fuels that reduce

knocking.

Unleaded fuels reduce knocking in car engines and do not have the health and envi-ronmental concerns posed by leaded fuels.

Eighty-five percent of the lead used in the United States goes into making lead-acid batteries.

©Chinch Gryniewicz; Ecoscene/CORBIS

Page 33: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

MPBP

-500 0

Temperature (°C)

-210-196

44277

817614

6311587

2711564

500 1000 1500

N

P

As

Sb

Bi

Melting Points and Boiling Points

2 40 6 8 10

g/mL

1.823

5.727

6.697

Densities

P

As

Sb

Bi 9.780

Nitrogen

7

N[He]2s22p3

Phosphorus

15

P[Ne]3s23p3

Arsenic

33

As[Ar]4s23d104p3

Antimony

51

Sb[Kr]5s24d105p3

Bismuth

83

Bi[Xe]6s24f145d106p3

932 Elements Handbook

Common Reactions• At high temperatures are increased, nitrogen reacts with oxygen to

form nitric oxide.

Example: N 2 (g) + O 2 (g) → 2NO(g)

• At high temperature and pressure, nitrogen reacts with hydrogen to

form ammonia.

Example: N 2 (g) + 3 H 2 (g) → 2N H 3 (g)

• P reacts with an excess of oxygen to form phosphorus(V) oxide.

Example: P 4 (s) + 5 O 2 (g) → P 4 O 10 (s)

• P, As, Sb, and Bi react with oxygen to form element(III) oxides.

Example: P 4 (s) + 3 O 2 (g) → P 4 O 6 (s)

• P, As, Sb, and Bi react with halogens to form trihalides.

Example: 2Sb(s) + 3C l 2 (g) → 2SbC l 3 (s)

Physical Properties• Like the elements in group 14, the group 15 elements increase in

metallic character going down the group. Nitrogen and phosphorus are

nonmetals. Arsenic and antimony are metalloids. Bismuth is a metal.

• Also like group 14, the nitrogen group elements vary in appearance.

• Nitrogen is a colorless, odorless gas ( N 2 ).

• Phosphorus exists in three allotropic forms, which are all solids. The

forms are white, red, and black in color.

• Arsenic is a shiny, gray solid that is brittle. Under certain conditions, it

can become a dull, yellow solid. Arsenic sublimates when heated.

• Antimony is a shiny, silver-gray solid that is very brittle.

• Bismuth is a shiny, gray solid that has a pink cast to it. It is one of the

least conductive metals on the periodic table and is also brittle.

• Boiling points and densities of the group 15 elements generally

increase going down the group.

Group 15: Nitrogen Group

Page 34: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

N75

N3-

146

Atomicradius(pm)

P110

P3-

212

As120

As3-

222

Sb140

Sb5+

62

Bi150

Bi5+

74

Ionicradius(pm)

Pauling units

N

P

As

Sb

Bi

3.04

2.19

2.18

2.05

2.02

Electronegativities

0 1.0 2.0 3.0

kJ/mol

N

P

As

Sb

Bi

0

1012

947

834

703

First Ionization Energies

1402

500 1000 1500

Elements Handbook 933

Element Facts

Atomic Properties• Each element in group 15 has five valence electrons and an electron

configuration ending with n s 2 p 3 .

• Nitrogen is diamagnetic, meaning it is repelled by magnetic fields. This

indicates that all of nitrogen’s electrons are paired.

• Nitrogen can have oxidation numbers ranging from −3 to +5.

• Phosphorus, arsenic, and antimony can have oxidation numbers of −3,

+3, and +5.

• Bismuth can have oxidation numbers of +3 and +5.

• Going down the group, first ionization energies and electronegativities

decrease and atomic radii increase.

Analytical TestsBecause group 15 elements bond covalently and most

are nonmetallic in nature, they do not lend themselves

to identification through flame tests. The exceptions

are antimony and bismuth. Antimony produces a faint

green or blue color when placed in a flame, while

bismuth produces a light purple-blue color.

The nitrogen group elements can be identified

through analysis of their physical properties (melting

point, boiling point, density), emission spectra, or

reactions with other chemicals. For example, bismuth

ions precipitate when added to tin(II) hydroxide and

sodium hydroxide. Another example is the test for

ammonium compounds. These compounds, which

contain nitrogen, can be identified by their distinct

smell when added to sodium hydroxide and by the

color change observed when red litmus paper is

placed at the opening of the test tube.

The ammonia vapor produced by mixing ammonium compounds (N H 4 + ) with sodium hydroxide changes red litmus paper to blue.

©Tom Pantages

Page 35: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Nitrogen

7

N[He]2s22p3

Phosphorus

15

P[Ne]3s23p3

934 Elements Handbook

Group 15: Nitrogen Group

Nitrogen-Fixing BacteriaAlthough nitrogen makes up about 78% of Earth’s atmosphere,

it occurs in a form that plants cannot use. Some bacteria in the

soil convert nitrogen gas ( N 2 ) from the air into a usable form

by breaking the molecule’s triple bond. This creates a form of

nitrogen that plants uptake into their root systems. Plants need

nitrogen to build cellular components, to participate in photo-

synthesis, and to transfer energy effectively. Commercial

fertilizers mimic the action of nitrogen-fixing bacteria by

providing nitrogen and other nutrients in forms that are easily

incorporated into the plant system.Nitrogen-fixing bacteria are found in protective nodules along plant roots.

Liquid Nitrogen CryotherapyCryotherapy, also called cryosurgery, is a medical procedure

used to remove a variety of skin lesions, including

carcinomas, warts, and other tissue abnormalities. The pro-

cedure involves dabbing liquid nitrogen onto the affected

area to freeze and kill the cells. This is then repeated over

time until all of the affected tissue is gone. Research has

shown that patients who undergo cryotherapy treatment for

certain types of lesions experience a lower recurrence rate

than patients who receive radiation or surgical removal.

Doctors use liquid nitrogen as one of the treatment options to remove certain types of skin cancer. More than 1.3 million new cases of skin cancer are recorded each year in the United States.

Safety MatchesSafety matches consist of two main parts: the tip and the

textured strip on the side of the box. The tip contains potassium

chlorate, and the textured strip contains red phosphorus.

When these two chemicals come in contact, a chemical

reaction occurs, and fire is produced. In safety matches, the

chemicals needed for reaction are separate from each other. In

strike-anywhere matches, both chemicals are contained in the

matchstick so that ignition can occur using almost any surface.The strike of a match initiates a chemical reaction that produces a flame.

(t)©Wally Eberhart/Visuals Unlimited, (c)©Dr P. Marazzi/Photo Researchers, Inc., (b)©Al Francekevich/CORBIS

Page 36: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Antimony

51

Sb[Kr]5s24d105p3

Bismuth

83

Bi[Xe]6s24f145d106p3

Elements Handbook 935

Real-World Applications

39. Identify which elements in the nitrogen group are metals, nonmetals, or metalloids.

40. Explain why nitrogen does not react with other elements under normal temperature conditions.

41. Explain why a compound of antimony is used in flame retardants that protect plastic products.

42. Describe how fertilizers mimic the action of nitrogen-fixing bacteria.

43. Write a balanced chemical equation for the reaction between potassium chlorate (KCl O 3 ) and red phospho-rus ( P 4 ). The reaction produces potassium chloride (KCl) and phosphorus pentoxide ( P 4 O 10 ).

44. Predict what product will be formed when bismuth is combined with chlorine.

45. Calculate A 35-kg bag of fertilizer contains 5.25 kg of nitrogen. What percentage of the fertilizer is nitrogen?

Flame RetardantsAntimony trioxide (S b 2 O 3 ) is used along with

brominated or chlorinated compounds in the making

of flame retardants that protect plastics, paints, and

some textile products. Antimony trioxide increases the

effectiveness of the halogen compounds in preventing

the spread of a fire. Research shows that approximately

5000 deaths in the United States are caused by fire

each year. The use of flame retardants improves escape

time, releases less toxic gases and heat, and decreases

fire damage.

Antimony trioxide fire retardants coat electrical wires and components found in a variety of everyday appliances.

Soothing Upset StomachsOriginally named Mixture Cholera Infantum, the popular

pink medicine now used for upset stomachs was created to

combat cholera. This mixture, whose active ingredient was

bismuth subsalicylate ( C 7 H 5 Bi O 4 ), proved effective in treating

the nausea and vomiting associated with infant cholera.

However, it could not cure the disease itself. Nonetheless, the

product became a wide success. As science advanced and doc-

tors realized that cholera was contracted from bacteria (which

could be treated with antibiotics), bismuth subsalicylate found

its way into medical treatments for a variety of other stomach

problems, including heartburn, indigestion, and ulcers.

Bismuth subsalicylate ( C 7 H 5 Bi O 4 ) is the active ingre-dient in some medicines used to treat stomach problems.

(t)©Michael Newman/Photo Edit, (bl)©Michael Newman/photoedit, (br)©Janet Horton

Page 37: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Oxygen

8

O[He]2s22p4

Sulfur

16

S[Ne]3s23p4

Selenium

34

Se[Ar]4s23d104p4

Tellurium

52

Te[Kr]5s24d105p4

Polonium

84

Po[Xe]6s24f145d106p4

MPBP

Temperature (°C)

-218-183

115445

221685

450988

254962

O

S

Se

Te

Po

Melting Points and Boiling Points

2000-200-400 400 600 800 1000 2 40 6 8 10g/mL

1.960

4.819

6.240

Densities

S

Se

Te

Po 9.196

936 Elements Handbook

Group 16: Oxygen Group

Physical Properties• At room temperature, oxygen is a clear, odorless gas, while the other

group 16 elements are solids.

• Some of the group 16 elements have several common allotropic

forms. Oxygen can exist as either O 2 or O 3 (ozone). Sulfur has many

allotropes. Selenium has three common allotropes: amorphous gray,

red crystalline, and red/black powder.

• Oxygen, sulfur, and selenium are nonmetals. Tellurium and pollonium

are metalloids.

• O 2 is paramagnetic, which means that a strong magnet will attract

oxygen molecules.

• Except for polonium, boiling points and melting points of the group 16

elements increase with increasing atomic number. Density increases

with increasing atomic number for all group 16 elements.

Common Reactions• S, Se, Te, and Po react with oxygen

to form oxides, such as selenium

oxide.

Example: Se(s) + O 2 (g) → Se O 2 (s)

• Oxygen also reacts with hydrogen

and most of the elements in

groups 1, 2, 13, 14, 15, and 17 to

form oxides, such as silicon oxide

and magnesium oxide.

Examples: Si + O 2 → Si O 2

2Mg + O 2 → 2MgO

• O, S, Se, Te, and Po react with

halogens to form halides, such

as sulfur(VI) fluoride.

Example: S(s) + 3 F 2 (g) → S F 6 (l)

Oxides of Main Group Elements

H H 2 O, H 2 O 2

1L i 2 O, N a 2 O, K 2 O, R b 2 O,

C s 2 O, F r 2 O

2 BeO, MgO, CaO, SrO, BaO, RaO

13 B 2 O 3 , A l 2 O 3 , G a 2 O 3 , I n 2 O 3 ,

I n 2 O, T i 2 O

14C O 2 , Si O 2 , Ge O 2 , Sn O 2 , SnO,

Pb O 2 , PbO

15 N 2 O 5 , N 2 O 3 , N 2 O, NO, N O 2 , P 4 O 10 , P 4 O 6 , A s 2 O 5 , A s 4 O 6 ,

S b 2 O 5 , S b 4 O 6 , B i 2 O 3

17 C l 2 O 7 , C l 2 O, B r 2 O, I 2 O 5

Page 38: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

O73

O2-

140

Atomicradius(pm)

S103

S2-

184

Se119

Se2-

198

Te142

Te2-

221

Po168

Ionicradius(pm)

kJ/mol

O

S

Se

Te

Po

0

1000

941

869

812

First Ionization Energies

1314

500 1000 1500

Pauling units

O

S

Se

Te

Po

3.44

2.58

2.55

2.10

2.00

Electronegativities

3.02.00 1.0 4.0

Elements Handbook 937

Element Facts

Atomic Properties• Each element in group 16 has six valence electrons and an electron

configuration ending with n s 2 n p 4 .

• Group 16 elements can have many different oxidation numbers.

For example, oxygen can have oxidation numbers of 2- and 1-, and

sulfur can have oxidation numbers of 6+, 4+, and 2-.

• Going down the elements in group 16, the atomic radii and ionic radii

increase.

• Electronegativity and first ionization energy decrease going down the

elements in group 16.

• Polonium has 27 known isotopes. All are radioactive.

Analytical TestsOxygen can be measured in many different ways and in many

different environments. For example, dissolved-oxygen meters

measure oxygen in water samples. Dissolved-oxygen meters

use an electrochemical reaction that reduces oxygen mole-

cules to hydroxide ions. The meter measures the electric

current produced during this reaction. The higher the oxygen

concentration, the larger the current.

• Group 16 elements are involved

in many important industrial

reactions, such as the formation

of sulfuric acid.

Example: Sulfuric-acid production

is a three-step process.

1) S(s) + O 2 (g) → S O 2 (g)

2) 2S O 2 (g) + O 2 (g) → 2S O 3 (g)

3) S O 3 (g) + H 2 O(l) → H 2 S O 4 (l)

Dissolved-oxygen tests are part of routine water quality monitoring.

©Chuck Place Photography

Page 39: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Oxygen

8

O[He]2s22p4

938 Elements Handbook

Group 16: Oxygen Group

Photosynthesis Produces O 2 from H 2 OEarth’s atmosphere is 21% oxygen by volume. Most of the oxygen in

the atmosphere comes from photosynthesis. Photosynthetic organisms,

including plants and cyanobacteria, use energy from sunlight to oxi-

dize water. The result is hydrogen ions ( H + ) and oxygen ( O 2 ). The

reactions involved in this part of photosynthesis are called light

reactions because they depend on light energy to proceed. During the

dark reactions of photosynthesis, the hydrogen ions derived during the

light reactions are combined with carbon dioxide (C O 2 ) to form

glucose ( C 6 H 12 O 6 ). The overall reaction for photosynthesis follows:

6 H 2 O + 6C O 2 → C 6 H 12 O 6 + 6 O 2

Photosynthesis captures energy from sunlight and provides hydrogen ions to synthesize glucose from carbon dioxide.

Air Quality Index for Ozone

Index Values

Levels of Health

ConcernCautionary Statements

0–50 good none

51–100 moderate Unusually sensitive people should consider reducing prolonged or heavy exertion outdoors.

101–150 unhealthy for sensitive groups

Active children and adults, and people with lung disease, such as asthma, should reduce prolonged or heavy exertion outdoors.

151–200 unhealthy Active children and adults, and people with lung disease should avoid prolonged or heavy exertion outdoors. Everyone else should reduce prolonged or heavy exertion outdoors.

201–300 very unhealthy

Active children and adults, and people with lung disease, such as asthma, should avoid all outdoor exertion. Everyone else should avoid prolonged or heavy exertion outdoors.

301–500 hazardous Everyone should avoid all physical activity outdoors.

Data obtained from: Patient Exposure and the Air Quality Index. U.S. E.P.A. March 2006

The Dual Nature of OzoneOzone ( O 3 ), an allotrope of oxygen, has three

oxygen atoms per molecule instead of two. Like

diatomic oxygen ( O 2 ), ozone is a gas at room

temperature. However, unlike O 2 , ozone gas has

a slight blue color and a distinctive odor that

can be detected during a thunderstorm or near

a high-voltage electric motor. Ozone is also

more reactive than diatomic oxygen. At ground

level, ozone can be a serious potential health

hazard, irritating eyes and lungs. High ground-

level ozone concentrations are a particular

threat on hot sunny days. The table illustrates

how ozone affects air quality and health. On the

other hand, stratospheric ozone protects Earth

from harmful UV radiation by absorbing UV

rays from sunlight.

Many cities issue air-quality alerts when ground-level ozone levels are high.

(t)©Scientifica/Visuals Unlimited, (b)©Glow Images/Alamy

Page 40: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Sulfur

16

S[Ne]3s23p4

1994

Mill

ions

of

met

ric

tons

$ Bi

llion

s

40

30

20

10

0

500

400

300

200

100

0

Year1996 1998 2000 2002 2004

Sulfuric acid

Chemical sales

Chlorine

Ammonia

U.S. Chemical Production

Data obtained from: Chemical & Engineering News 83 (2005) and 84 (2006).

Selenium

34

Se[Ar]4s23d104p4

Elements Handbook 939

Real-World Applications

46. Identify the molecule that is the source of oxygen atoms for O 2 production during photosynthesis.

47. Explain why high ozone concentrations are harmful at ground level but beneficial in the upper atmosphere.

48. Calculate Approximately 90% of the sulfur used in the United States is used to make sulfuric acid. In 2004, 38.0 million metric tons of sulfuric acid were produced. How much sulfur did the United States use in 2004?

49. Apply Coal and petroleum products are sometimes contaminated with sulfur. When coal or petroleum con-taining sulfur is burned, sulfur dioxide (S O 2 ) can be released into the atmosphere. Use the information about the reactions involved in industrial sulfuric-acid production to infer how atmospheric sulfur dioxide contributes to acid precipitation.

An Economic IndicatorSulfuric acid is one of the world’s most impor-

tant industrial raw materials. In the United

States, more sulfuric acid is produced than any

other industrial chemical. Most sulfuric acid is

used in the production of phosphate fertilizers.

Sulfuric acid is also important in extracting

metals from ore, oil refining, waste treatment,

chemical synthesis, and as a component in

lead-acid batteries. Sulfuric acid is so impor-

tant that economists use its production as a

measure of a nation’s industrial development.

Sulfuric acid production in the United States is used to track chemical economic trends.

PhotocopiesGray selenium is a photoconductor, which means it conducts

electricity more efficiently in the presence of light than in the

dark. Some photocopiers use this property to copy images.

In a photocopier, a bright light shines on the original. Mirrors

reflect the dark and light areas onto a drum coated with a

thin layer of selenium. Because selenium is a photoconductor,

the light areas conduct electricity, while the dark areas do not.

As current flows through the drum, the light areas develop

a negative charge and the dark areas develop a positive

charge. Negatively charged toner particles are attracted to the

positively charged dark areas to create a copy of the original

image. Some of this same technology has been applied in

developing new high-resolution digital detectors that use

selenium as a photoconductor.

Gray selenium is a key component in many photocopiers.

©Leslie Garland Picture Library/Alamy

Page 41: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Fluorine

9

F[He]2s22p5

Chlorine

17

Cl[Ne]3s23p5

Bromine

35

Br[Ar]4s23d104p5

Iodine

53

I[Kr]5s24d105p5

Astatine

85

At[Xe]6s24f145d106p5

MPBP

-400 -200

Temperature (°C)

-220-188

-102-34

-759

114184

302

0 200 400

F

Cl

Br

I

At

Melting Points and Boiling Points

940 Elements Handbook

Group 17: Halogen Group

Physical Properties• Fluorine and chlorine are gases at room temperature. Along with

mercury, bromine is one of only two elements that are liquid at room

temperature. Iodine is a solid that easily sublimes at room temperature.

• Fluorine gas is pale yellow. Chlorine gas is yellow-green. Bromine is a

red-brown liquid. Iodine is a blue-black solid.

• Both boiling points and melting points of the group 17 elements

increase with increasing atomic number.

Iodine crystals are a blue-black color. They produce a violet vapor when they sublime at room temperature.

Common Reactions• The halogens react with alkali metals and alkaline earth metals to

form salts, such as potassium bromide and calcium chloride.

Examples: 2K(s) + B r 2 (g) → 2KBr(s) and Ca(s) + C l 2 (g) → CaC l 2 (s)

• The halogens can form acids, such as hydrochloric acid, by hydroly-

sis in water.

Example: C l 2 (g) + H 2 O(l) → HClO(aq) + HCl(aq)

• Several important plastic polymers, including nonstick coatings and

polyvinyl chloride, contain group 17 elements.

Example: Polyvinyl chloride (vinyl) is made by a three-step process.

1) Ethene reacts with chlorine to form dichloroethane.

C 2 H 4 (g) + C l 2 (g) → C 2 H 4 C l 2 (l)

2) At high temperature and pressure, dichloroethane is converted to

vinyl chloride and HCl gas.

C 2 H 4 C l 2 (l) → C 2 H 3 Cl(l) + HCl(g)

3) Vinyl chloride polymerizes to form polyvinyl chloride.

2n( C 2 H 3 Cl)(l) → (—C H 2 –CHCl–C H 2 –CHCl— ) n (l)

• Fluorine is the most active of all the elements and reacts with every

element except helium, neon, and argon.

Example: 2Al(s) + 3 F 2 (g) → 2Al F 3 (s)

©Larry Stepanowicz/Visuals Unlimited

Page 42: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Pauling units

F

Cl

Br

I

At

3.98

3.16

2.96

2.66

2.20

Electronegativities

3.02.00 1.0 4.0

kJ/mol

F

Cl

Br

I

At

1251

1140

1008

920

First Ionization Energies

1681

5000 1000 1500 2000

F1-

133

Cl1-

181

Br1-

195

I1-

220

F72

Atomicradius(pm)

Cl100

Br114

I133

Ionicradius(pm)

Elements Handbook 941

Element Facts

Atomic Properties• Each element in group 17 has seven valence electrons and an electron

configuration ending with n s 2 n p 5 .

• Electronegativities and first ionization energies decrease going down

the elements in group 17.

• Fluorine is the most electronegative element on the periodic table.

Therefore, it has the greatest tendency to attract electrons.

• Astatine is a radioactive element with no known uses.

• The atomic radii and ionic radii of the group 17 elements increase

going down the group.

Analytical TestsThree of the halogens can be identified through

precipitation reactions. Chlorine, bromine, and

iodine react with silver nitrate, forming distinc-

tive precipitates. Silver chloride is a white

precipitate, silver bromide is a cream-colored

precipitate, and silver iodide is a yellow

precipitate.

Chlorine, bromine, and iodine can also be

identified when they dissolve in cyclohexane.

As shown in the photo, when these halogens

are dissolved in cyclohexane, the solution turns

yellow for chlorine, orange for bromine, and

violet for iodine.

The halogens are only slightly soluble in water (bottom layer). However, in cyclohexane (top layer), chlorine (yellow), bromine (orange), and iodine (violet) readily dissolve.

©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc.

Page 43: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Tungsten

Bromine

Tungsten-bromideparticle

Tungstenfilament

Fluorine

9

F[He]2s22p5

Chlorine

17

Cl[Ne]3s23p5

Bromine

35

Br[Ar]4s23d104p5

Iodine

53

I[Kr]5s24d105p5

942 Elements Handbook

Group 17: Halogen Group

FluoridationFluorine compounds added to toothpaste and public

drinking-water supplies have greatly reduced the incidence

of cavities. Fluoride protects teeth in two ways. As teeth

form, fluoride from food and drink is incorporated into

the enamel layer. The fluoride makes the enamel stronger

and more resistant to decay. Once teeth are present in the

mouth, fluoride in saliva bonds to teeth and strengthens

the surface enamel. This surface fluoride attracts calcium,

which helps to fill in areas where decay has begun.

How Chlorine Bleach Is MadeChlorine compounds are widely used as bleaching agents by the textile

and paper industries. Some chlorine compounds can bleach materials by

oxidizing colored molecules. Chlorine compounds are also used as disinfec-

tants. Household bleach is a 5.25% solution of sodium hypochlorite (NaOCl)

in water. Chlorine bleach is prepared commercially by passing an electric

current through a solution of sodium chloride in water. As the sodium chlo-

ride breaks down, sodium hydroxide collects at the cathode and chlorine

gas is generated at the anode. Sodium hydroxide and chlorine can then

be combined to form sodium hypochlorite.

Halogen lamps use bromine or other halo-gen molecules to capture tungsten vapor and return tungsten atoms to the filament.

Many brands of toothpaste contain either stannous fluoride or sodium fluoride, which, like fluoridated water, strengthen teeth and provide protection from cavities.

Household chlorine bleach is made by reacting chlorine gas or liquid chlorine with sodium hydroxide to form sodium hypochlorite.

Halogen LightbulbsHalogen lightbulbs include a halogen gas, such as iodine or bromine.

Compared to standard lightbulbs, halogen bulbs are brighter and last

longer and can be more energy efficient. During the operation of a

normal lightbulb, some of the tungsten in the filament evaporates and

is deposited on the inside surface of the bulb. In a halogen lamp, the

evaporated tungsten reacts with the halogen gas and is redeposited

back on the filament. This extends the life of the filament.

©Michael Newman / PhotoEdit

Page 44: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Iodine

53

I[Kr]5s24d105p5

Iodine Deficiency Around the World

Severe deficiency (<20 µg/L)Moderate deficiency (20–49 µg/L)

Risk of iodine-induced hyperthyroidism (200–299 µg/L)Risk of adverse health consequences (>300 µg/L)No data

Mild deficiency (50–99 µg/L)Optimal (100–199 µg/L)

Elements Handbook 943

Real-World Applications

50. Compare the risks for iodine deficiency in Europe, Africa, and the United States.

51. Explain why fluorine is the most reactive of all the elements.

52. Evaluate Why does a tungsten filament last longer in a halogen lightbulb than in a normal lightbulb?

53. Calculate Household bleach is typically a 5.25% solution of sodium hypochlorite in water. How many grams of sodium hypochlorite would there be in 300 mL of bleach?

54. Hypothesize In 1962, Neil Bartlett synthesized the first noble gas compound using Pt F 6 . Hypothesize why Bartlett used a fluorine compound for this synthesis.

Combating Iodine Deficiency with SaltThe thyroid gland is the only part of the body that absorbs iodine. Thyroid cells use

iodine to produce thyroid hormones, which regulate metabolism. Low levels of iodine

in the diet can lead to thyroid-hormone deficiencies and goiters, which are enlarged

thyroid glands. In serious cases, low levels of thyroid hormones can cause birth defects

and brain damage. In the United States, potassium iodide is added to most table salt

to protect against dietary iodine deficiency. Even small amounts of added iodine can

prevent iodine-deficiency disorders. However, there are parts of the world in which

iodine deficiency is still prevalent.

A significant percentage of the world’s population was at risk for iodine deficiency in 2004. In 2005, the World Health Organization launched a program to eliminate iodine deficiency worldwide.

Page 45: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Helium

2

He1s2

Neon

10

Ne[He]2s22p6

Argon

18

Ar[Ne]3s23p6

Krypton

36

Kr[Ar]4s23d104p6

Xenon

54

Xe[Kr]5s24d105p6

Radon

86

Rn[Xe]6s24f145d106p6

-200 -100 0-300

Temperature (ºC)

MPBP

-270-269

-249-246

-189-186

-157-153

-112-108

-71-62

Melting Points and Boiling Points

He

Ne

Ar

Kr

Xe

Rn

kJ/mol

He

Ne

Ar

Kr

Xe

Rn

500 1000 1500 20000

1521

1351

1170

1037

First Ionization Energies

2372

2081

944 Elements Handbook

Group 18: Noble Gases

Physical Properties• The group 18 elements are

colorless, odorless gases.

• They are all nonmetals.

• Their melting points and

boiling points increase going

down the group, but are much

lower than those of the other

groups in the periodic table.

Atomic Properties• Each element in group 18

has eight valence electrons,

producing an octet with an

electron configuration ending

with n s 2 n p 6 , except for helium,

which has two electrons.

• Noble gases are monatomic—

they exist as single atoms.

• Compared to the other groups

in the periodic table, the noble

gases have the highest first

ionization energies.

Common ReactionsAlthough the noble

gases are also known

as inert gases, a few

compounds can be

formed if conditions

are favorable. Generally,

however, noble gases

are nonreactive.

Analytical TestsBecause the noble gases are odorless, colorless and generally unreactive,

many of the common analytical tests used for identifying elements

are not useful. However, the noble gases do emit light of certain colors

when exposed to an electric current and have characteristic emission

line spectra.

When an electric current passes through xenon, it exhibits a characteristic color (blue) and line spectrum.

(l)©Charles D. Winters/Photo Researchers, Inc., (r)©TED KINSMAN/SCIENCE PHOTO LIBRAR/Photo Researchers Inc.Y

Page 46: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Assessment

Helium

2

He1s2

Neon

10

Ne[He]2s22p6

Argon

18

Ar[Ne]3s23p6

Krypton

36

Kr[Ar]4s23d104p6

Xenon

54

Xe[Kr]5s24d105p6

Elements Handbook 945

Real-World Applications

55. Describe three physical properties of the noble gases.

56. Write the reaction for the production of xenon tetroxide.

57. Analyze why the noble gases have the highest first ionization energies compared to the rest of the elements on the periodic table.

58. Hypothesize why argon is used in everyday lighting even though krypton and xenon produce whiter light and last longer.

59. Calculate If the Sun is 150 million km away and light travels at 3.00 x 105 m/s, how long does it take for sunlight to reach Earth?

The SunOnly 150 million km away (considered close in astronomi-

cal terms), the Sun provides the energy needed to support

life on Earth. The Sun makes its energy through the fusion

of hydrogen to make helium. Scientists have determined

that the core of the Sun is composed of approximately

50% helium, leaving enough hydrogen for the Sun to burn

for another 5 billion years.The Sun’s energy comes from a nuclear reaction that produces helium.

LightingNeon, argon, krypton, and xenon are all

used in different lighting applications. Neon

signs are found in many businesses to

advertise products or display the name of

the business. Although true neon signs glow

with a red-orange color, the term neon sign

has also come to represent the collection of

gas tubes that contain gases that display

other colors. Argon is found in everyday

lightbulbs such as those in lamps. Because

argon is inert, it provides an ideal atmo-

sphere for the filament. Krypton and xenon

bulbs produce whiter, sharper light and last

longer than traditional argon bulbs. These

bulbs are commonly found in chandeliers,

flashlights, and luxury car headlights.

The noble gases are found in many different light sources.

(t)©epa/Corbis, (bl)©PHOTOTAKE Inc./Alamy, (br)©Wolfgang Kaehler/CORBIS

Page 47: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

946 Math Handbook

Mathematics is a language used in science to express and solve problems. Calculations you perform during your study of chemistry require arithme-tic operations, such as addition, subtraction, multiplication, and division. Use this handbook to review basic math skills and to reinforce some math skills presented in more depth in the chapters.

Scientific NotationScientists must use extremely small and extremely large numbers to describe the objects in Figure 1. The mass of the proton at the center of a hydrogen atom is 0.000000000000000000000000001673 kg. HIV, the virus that causes AIDS, is about 0.00000011 m. The temperature at the center of the Sun reaches 15,000,000 K. Such small and large numbers are difficult to read and hard to work with in calculations. Scientists have adopted a method of writing exponential numbers called scientific notation. It is easier than writing numerous zeros when numbers are very large or very small. It is also easier to compare the relative size of numbers when they are written in scientific notation.

A number written in scientific notation has two parts.

N × 1 0 n

The first part (N) is a number in which only one digit is placed to the left of the decimal point and all remaining digits are placed to the right of the decimal point. The second part is an exponent of ten (1 0 n ) by which the decimal portion is multiplied. For example, the number 2.53 × 1 0 6 is written in scientific notation.

Number between one and ten

2.53 × 1 0 6

Exponent of ten

The decimal portion is 2.53 and the exponent is 1 0 6 .Positive exponents are used to express large numbers, and negative

exponents are used to express small numbers.

Proton

Hydrogen atomProton mass = 1.673 × 1 0 -27 kg

HIV attacking a white blood cellHIV length = 1.1 × 1 0 -7 m

The SunSun temperature = 1.5 × 1 0 7 K

Figure 1 Scientific notation provides a convenient way to express data with extremely large or small numbers. Scientists can express the mass of a proton, the length of HIV, and the temperature of the Sun in scientific notation.

(l)©Chris Bjornberg/Photo Researchers, Inc, (r)©Daniele Pellegrini/Photo Researchers, Inc.

Page 48: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 947

Positive exponentsWhen scientists discuss the physical properties of the Moon, shown in Figure 2, the numbers are enormously large. A positive exponent of 10 (n) tells how many times a number must be multiplied by 10 to give the long form of the number.

2.53 × 1 0 6 = 2.53 × 10 ×10 × 10 × 10 × 10 × 10 = 2,530,000

You can also think of the positive exponent of 10 as the number of places you move the decimal to the left until only one nonzero digit is to the left of the decimal point.

2,530,000. The decimal point moves six places to the left.

To convert the number 567.98 to scientific notation, first write the number as an exponential number by multiplying by 10 0 .

567.98 × 1 0 0

(Remember that multiplying any number by 1 0 0 is the same as multi-plying the number by 1.) Move the decimal point to the left until there is only one digit to the left of the decimal. At the same time, increase the exponent by the same number as the number of places the decimal is moved.

567.98 × 1 0 0 + 2 The decimal point moves two places to the left.

Thus, 567.98 written in scientific notation is 5.6798 × 1 0 2 .

Negative exponentsMeasurements can also have negative exponents, such as shown by the X rays in Figure 3. Negative exponents are used for numbers that are very small. A negative exponent of 10 tells how many times a number must be divided by 10 to give the long form of the number.

6.43 × 1 0 −4 = 6.43 __

10 × 10 × 10 × 10 = 0.000643

A negative exponent of 10 is the number of places you move the deci-mal to the right until it is just past the first nonzero digit.

When converting a number that requires the decimal to be moved to the right, the exponent is decreased by the appropriate number. For example, the expression of 0.0098 in scientific notation is as follows:

0.0098 × 1 0 0

0 0098 × 10 0 − 3

9.8 × 1 0 -3

The decimal point moves three places to the right.

Thus, 0.0098 written in scientific notation is 9.8 × 1 0 -3 .

Figure 3 Because of their short wavelengths (1 0 -8 m to 1 0 -13 m), X rays can pass through some objects.

Figure 2 The mass of the Moon is 7.349 × 1 0 22 kg.

(t)©JULIAN BAUM/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (b)©Royalty-Free/CORBIS

Page 49: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

948 Math Handbook

Math Handbook

Operations with Scientific NotationThe arithmetic operations performed with ordinary numbers can be done with numbers written in scientific notation. However, the expo-nential portion of the numbers must also be considered.

1. Addition and subtractionBefore numbers in scientific notation can be added or subtracted, the exponents must be equal. Remember that the decimal is moved to the left to increase the exponent and to the right to decrease the exponent.

(3.4 × 1 0 2 ) + (4.57 × 1 0 3 ) = (0.34 × 1 0 3 ) + (4.57 × 1 0 3 ) = (0.34 + 4.57) × 1 0 3 = 4.91 × 1 0 3

(7.52 × 1 0 -4 ) − (9.7 × 1 0 -5 ) = (7.52 × 1 0 -4 ) − (0.97 × 1 0 -4 ) = (7.52 − 0.97) × 1 0 -4 = 6.55 × 1 0 -4

2. MultiplicationWhen numbers in scientific notation are multiplied, only the decimal portion is multiplied. The exponents are added.

(2.00 × 1 0 3 )(4.00 × 1 0 4 ) = (2.00)(4.00) × 1 0 3 + 4 = 8.00 × 1 0 7

3. DivisionWhen numbers in scientific notation are divided, only the decimal portion is divided, while the exponents are subtracted as follows:

9.60 × 1 0 7

_ 1.60 × 1 0 4

= 9.60

_ 1.60

× 1 0 7 − 4

= 6.00 × 1 0 3

PRACTICE Problems

1. Express the following numbers in scientific notation.

a. 5800 c. 0.0005877

b. 453,000 d. 0.0036

2. Perform the following operations.

a. (5.0 × 1 0 6 ) + (3.0 × 1 0 7 ) c. (3.89 × 1 0 12 ) − (1.9 × 1 0 11 )

b. (1.8 × 1 0 9 ) + (2.0 × 1 0 8 ) d. (6.0 × 1 0 -8 ) − (4.0 × 1 0 −9 )

3. Perform the following operations.

a. (6.0 × 1 0 -4 ) × (4.0 × 1 0 -6 ) d. 9.6 × 1 0 8 _ 1.6 × 1 0 -6

b. (4.5 × 10 9 ) × (6.0 × 1 0 -10 ) e. (2.5 ×1 0 6 )(7.2 × 1 0 4 )

__ 1.8 × 1 0 -5

c. 4.5 × 1 0 -8 _ 1.5 × 1 0 -4

f. (6.2 × 1 0 12 )(6.0 × 1 0 -7 )

__ 1.2 × 1 0 6

Page 50: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 949

Figure 4 a. The number 4 can be expressed as two groups of 2. The identi-cal factors are 2. b. The number 9 can be expressed as three groups of 3. Thus, 3 is the square root of 9. c. 4 is the square root of 16. Determine the cube root of 16 using your calculator.

2 × 2 = 4

2 = 4

a b

3 × 3 = 9

3 = 9

c

4 × 4 = 16

4 = 16

Square and Cube RootsA square root is one of two identical factors of a number. As shown in Figure 4a, the number 4 is the product of two identical factors—2. Thus, the square root of 4 is 2. The symbol √ , called a radical sign, is used to indicate a square root. Most scientific calculators have a square root key labeled √ .

√ 4 = √ 2 × 2 = 2

This equation is read “the square root of 4 equals 2.” What is the square root of 9, shown in Figure 4b?

There can be more than two identical factors of a number. You know that 2 × 4 = 8. Are there any other factors of the number 8? It is the product of 2 × 2 × 2. A cube root is one of three identical factors of a number. Thus, what is the cube root of 8? It is 2. A cube root is also indicated by a radical.

3 √ 8 =

3 √ 2 × 2 × 2 = 2

Check your calculator handbook for more information on finding roots.

Significant FiguresAccuracy reflects how close the measurements you make in the labora-tory come to the real value. Precision describes the degree of exactness of your measurements. Which ruler in Figure 5 would give you the most precise length? The top ruler, with the millimeter markings, would allow your measurements to come closer to the actual length of the pencil. The measurement would be more precise.

25 26 27 29 cm28242322212019

25 26 27 29282423222120 cm19

Figure 5 The estimated digit must be read between the millimeter markings on the top ruler. Evaluate Why is the bottom ruler less precise?

Page 51: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

950 Math Handbook

Math Handbook

Measuring tools are never perfect, nor are the people doing the measuring. Therefore, whenever you measure a physical quantity, there will always be some amount of uncertainty in the measurement. The number of significant figures in the measurement indicates the uncer-tainty of the measuring tool.

The number of significant figures in a measured quantity is all of the certain digits plus the first uncertain digit. For example, the pencil in Figure 6 has a length that is between 27.6 and 27.7 cm. You can read the ruler to the nearest millimeter (27.6 cm), but after that you must estimate the next digit in the measurement. If you estimate that the next digit is 5, you would report the measured length of the pencil as 27.65 cm. Your measurement has four significant figures. The first three are certain, and the last is uncertain. The ruler used to measure the pencil has precision to the nearest tenth of a millimeter.

How many significant figures?When a measurement is provided, the following series of rules will help you to determine how many significant figures there are in that measurement.

1. All nonzero figures are significant.

2. When a zero falls between nonzero digits, the zero is also significant.

3. When a zero falls after the decimal point and after a significant figure, that zero is significant.

4. When a zero is used merely to indicate the position of the decimal, it is not significant.

5. All counting numbers and exact numbers are treated as if they have an infinite number of significant figures.

Examine each of the following measurements. Use the rules above to check that all of them have three significant figures.

245 K Rule 1

18.0 L Rule 3

308 km Rule 2

0.00623 g Rule 4

186,000 m Rule 4

Suppose you must do a calculation using the measurement 200 L. You cannot be certain which zero was estimated. To indicate the signifi-cance of digits, especially zeros, write measurements in scientific nota-tion. In scientific notation, all digits in the decimal portion are significant. Which measurement is most precise?

200 L has unknown significant figures. 2 × 1 0 2 L has one significant figure. 2.0 × 1 0 2 L has two significant figures. 2.00 × 1 0 2 L has three significant figures.

The greater the number of digits in a measurement expressed in scien-tific notation, the more precise the measurement is. In this example, 2.00 × 1 0 2 L is the most precise data.

25 26 27 2824

Figure 6 If you determine that the length of this pencil is 27.65 cm, that measurement has four significant figures.

Page 52: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 951

EXAMPLE Problem 1

Significant Figures How many significant figures are in the measurement 0.00302 g? 60 min? 5.620 m? 9.80 × 1 0 2 m/ s 2 ?

1 Analyze the ProblemTo determine the number of significant digits in a series of numbers, review the rules for significant figures.

2 Solve for the Unknown 0.00302 g

Not significant Significant (Rule 4) (Rules 1 and 2)

The measurement 0.00302 g has three significant figures.

60 min Unlimited significant figures (Rule 5)

5.620 m Significant (Rules 1 and 3)

The measurement 5.620 m has four significant figures.

9.80 × 1 0 2 m/ s 2

Significant (Rules 1 and 3)

3 Evaluate the AnswerThe measurements 0.00302 g and 9.80 × 1 0 2 m/ s 2 have three significant figures. The measurement 60 min has unlimited significant figures. The measurement 5.620 m has four significant figures.

PRACTICE Problems

4. Determine the number of significant figures in each measurement:

a. 35 g m. 0.157 kg

b. 3.57 m n. 28.0 mL

c. 3.507 km o. 2500 m

d. 0.035 kg p. 0.070 mol

e. 0.246 L q. 30.07 nm

f. 0.004 m 3 r. 0.106 cm

g. 24.068 kPa s. 0.0076 g

h. 268 K t. 0.0230 c m 3

i. 20.04080 g u. 26.509 cm

j. 20 dozen v. 54.52 c m 3

k. 730,000 kg w. 2.40 × 1 0 6 kg

l. 6.751 g x. 4.07 × 1 0 16 m

Page 53: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

952 Math Handbook

Math Handbook

RoundingArithmetic operations that involve measurements are done the same way as operations involving any other numbers. However, the results must correctly indicate the uncertainty in the calculated quantities. Perform all of the calculations, and then round the result to the least number of significant figures in any of the measurements used in the calculations. To round a number, use the following rules.

1. When the leftmost digit to be dropped is less than 5, that digit and any digits that follow are dropped. Then, the last digit in the rounded num-ber remains unchanged. For example, when rounding the number 8.7645 to three significant figures, the leftmost digit to be dropped is 4. Therefore, the rounded number is 8.76.

2. When the leftmost digit to be dropped is greater than 5, that digit and any digits that follow are dropped, and the last digit in the rounded number is increased by one. For example, when rounding the num-ber 8.7676 to three significant figures, the leftmost digit to be dropped is 7. Therefore, the rounded number is 8.77.

3. When the leftmost digit to be dropped is 5 followed by a nonzero number, that digit and any digits that follow are dropped. The last digit in the rounded number increases by one. For example, 8.7519 rounded to two significant figures equals 8.8.

4. If the digit to the right of the last significant figure is equal to 5 and is not followed by a nonzero digit, look at the last significant figure. If it is odd, increase it by one; if even, do not round up. For example, 92.350 rounded to three significant figures equals 92.4, and 92.25 equals 92.2.

Calculations with significant figuresLook at the glassware in Figure 7. Would you expect to measure a more precise volume with the beaker or the graduated cylinder? When you perform any calculation using measured quantities such as volume or mass, it is important to remember that the result can never be more precise than the least-precise measurement. That is, your answer cannot have more significant figures than the least precise measurement. Note that it is important to perform all calculations before dropping any insignificant digits.

The following rules determine how to use significant figures in calculations that involve measurements.

1. To add or subtract measurements, first perform the mathematical operation, then round off the result to the least-precise value. There should be the same number of digits to the right of the decimal as the measurement with the least number of decimal digits.

2. To multiply or divide measurements, first perform the calculation, then round the answer to the same number of significant figures as the measurement with the least number of significant figures. The answer should contain no more significant figures than the fewest number of significant figures in any of the measurements in the calculation.

Figure 7 Compare the markings on the graduated cylinder at the top with the markings on the beaker at the bottom. Analyze Which piece of glassware will yield more precise measurements?

Matt Meadows

Page 54: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 953

Table 1 Pressures of Gases in Air

Pressure (kPa)

Nitrogen gas

79.10

Carbon dioxide gas

0.040

Trace gases 0.94

Total gases 101.3

EXAMPLE Problem 2

Calculating with Significant Figures Air contains oxygen ( O 2 ), nitrogen ( N 2 ), carbon dioxide (C O 2 ), and trace amounts of other gases. Use the known pressures in Table 1 to calculate the partial pressure of oxygen.

1 Analyze the ProblemThe data in Table 1 contains the gas pressure for nitrogen gas, carbon dioxide gas, and trace gases. To add or subtract measurements, first perform the operation, then round off the result to correspond to the least-precise value involved.

2 Solve for the UnknownP O 2 = Ptotal - (P N 2 + P CO 2 + Ptrace)P O 2 = 101.3 kPa - (79.10 kPa + 0.040 kPa + 0.94 kPa )

P O 2 = 101.3 kPa - 80.080 kPa

P O 2 = 21.220 kPa

The total pressure (Ptotal) was measured to the tenths place. It is the least precise measurement. Therefore, the result should be rounded to the nearest tenth of a kilopascal. The pressure of oxygen is P O 2 = 21.2 kPa.

3 Evaluate the AnswerBy adding the gas pressure of all the gases, including oxygen, the total gas pressure is 101.3 kPa.

PRACTICE Problems

5. Round off the following measurements to the number of significant figures indicated in parentheses.

a. 2.7518 g (3)

b. 8.6439 m (2)

c. 13.841 g (2)

d. 186.499 m (5)

e. 634,892.34 (4)

f. 355,500 g (2)

6. Perform the following operations.

a. (2.475 m ) + (3.5 m ) + (4.65 m )

b. (3.45 m ) + (3.658 m ) + (47 m )

c. (5.36 × 1 0 −4 g ) − (6.381 × 1 0 −5 g )

d. (6.46 × 1 0 12 m ) − (6.32 × 1 0 11 m )

e. (6.6 × 1 0 12 m ) × (5.34 × 1 0 18 m )

f. 5.634 × 1 0 11 m __ 3.0 × 1 0 12 m

g. (4.765 × 1 0 11 m ) (5.3 × 1 0 -4 m )

___ 7.0 × 1 0 -5 m

Page 55: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

954 Math Handbook

Math Handbook

Solving Algebraic EquationsWhen you are given a problem to solve, it often can be written as an algebraic equation. You can use letters to represent measurements or unspecified numbers in the problem. The laws of chemistry are often written in the form of algebraic equations. For example, the ideal gas law relates pressure, volume, moles, and temperature of the gases. The ideal gas law is written as follows.

PV = nRT

The variables are pressure (P), volume (V), number of moles (n), and temperature (T). R is a constant. This is a typical algebraic equation that can be manipulated to solve for any of the individual variables.

When you solve algebraic equations, any operation that you perform on one side of the equal sign must be performed on the other side of the equation. Suppose you are asked to use the ideal gas law to find the pressure of a gas (P). To solve for, or isolate, P requires you to divide the left-hand side of the equation by V. This operation must be performed on the right-hand side of the equation as well, as shown in the second equation below.

PV = nRT

PV

_ V

= nRT

_ V

The Vs on the left-hand side of the equation cancel each other out.

PV

_ V

= nRT

_ V

P × V

_ V

= nRT

_ V

P = nRT

_ V

The ideal gas law equation is now written in terms of pressure. That is, P has been isolated.

Order of operationsWhen isolating a variable in an equation, it is important to remember that arithmetic operations have an order of operations, as shown in Figure 8, that must be followed. Operations in parentheses (or brackets) take precedence over multiplication and division, which in turn take precedence over addition and subtraction. For example, in the following equation

a + b × c

variable b must be multiplied first by variable c. Then, the resulting product is added to variable a. If the equation is written

(a + b) × c

the operation in parentheses or brackets must be done first. In the equa-tion above, variable a is added to variable b before the sum is multiplied by variable c.

Order of Operations

Do all operations insideparentheses or brackets.

Examine allarithmetic operations.

Do all multiplication and division from left to right.

Perform addition andsubtraction from left to right.

Figure 8 When faced with an equation that contains more than one operation, use this flowchart to determine the order in which to perform your calculations.

Page 56: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 955

To see the difference order of operations makes, try replacing a with 2, b with 3, and c with 4.

a + (b × c) = 2 + (3 × 4) = 14

(a + b) × c = (2 + 3) × 4 = 20

To solve algebraic equations, you also must remember the distributive property. To remove parentheses to solve a problem, any number out-side the parentheses is distributed across the parentheses as follows.

6(x + 2y) = 6(x) + 6(2y) = 6x + 12y

EXAMPLE Problem 3

Order of Operations The temperature on a cold day was 25°F. What was the temperature on the Celsius scale?

1 Analyze the ProblemThe temperature in Celsius can be calculated by using the equation for converting from the Celsius temperature to Fahrenheit temperature. The Celsius temperature is the unknown variable. The known variable is 25°C.

2 Solve for the UnknownDetermine the equation for calculating the temperature in Celsius.

°F = 9 _ 5 °C + 32

°F − 32 = 9 _ 5 °C + 32 − 32 Rearrange the equation to isolate °C. Begin by subtracting 32 from both sides.

°F − 32 = 9 _ 5 °C

5 × ( °F − 32) = 5 × 9 _ 5 °C Then, multiply both sides by 5.

5 × ( °F − 32) = 9°C

5 × ( °F − 32) __ 9 = 9°C _ 9 Finally, divide both sides by 9.

°C = 5 _ 9 ( °F − 32)

= 5 _ 9 (25 − 32) Substitute the known Fahrenheit temperature.

= −3.9°C

The Celsius temperature is −3.9°C.

3 Evaluate the AnswerTo determine if the answer is correct, place the answer, −3.9°C, into the original equation. If the Fahrenheit temperature is 25°, the calculation was done correctly.

Page 57: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

956 Math Handbook

Math Handbook

PRACTICE Problems

Isolate the indicated variable in each equation.

7. PV = nRT for R

8. 3 = 4(x + y) for y

9. z = x(4 + 2y) for y

10. 2 _ x = 3 + y for x

11. 2x + 1 _ 3 = 6 for x

Dimensional AnalysisThe dimensions of a measurement refer to the type of units attached to a quantity. For example, length is a dimensional quantity that can be measured in meters, centimeters, and kilometers. Dimensional analysis is the process of solving algebraic equations for units as well as num-bers. It is a way of checking to ensure that you have used the correct equation, and that you have correctly applied the rules of algebra when solving the equation. It can also help you to choose and set up the cor-rect equation, as shown on the next page, when you learn how to do unit conversions. It is good practice to make dimensional analysis a habit by always stating the units as well as the numerical values whenever substituting values into an equation.

EXAMPLE Problem 4

Dimensional Analysis The sculpture in Figure 9 is made from aluminum. The density (D) of aluminum is 2700 kg/ m 3 . Determine the mass (m) of a piece of aluminum of volume (V ) 0.20 m 3 .

1 Analyze the ProblemThe facts of the problem are density (2700 kg/ m 3 ), volume (0.20 m 3 ), and the density equation, D = m/V.

2 Solve for the UnknownDetermine the equation for mass by rearranging the density equation.The equation for density is

D = m _ V

DV = mV _ V Multiply both sides of the

equation by V, and isolate m.

DV = V _ V × m

m = DV

m = (2700 kg/ m 3 )(0.20 m 3 ) = 540 kg Substitute the known values for D and V.

3 Evaluate the AnswerNotice that the unit m 3 cancels out, leaving mass in kg, a unit of mass.

Figure 9 Aluminum is a metal that is useful from the kitchen to the sculpture garden.

©ABN Stock Images/Alamy

Page 58: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 957

Unit ConversionRecall from Chapter 2 that the universal unit system used by scientists is called Le Système Internationale d’Unités, or SI. It is a metric system based on seven base units—meter, second, kilogram, kelvin, mole, ampere, and candela—from which all other units are derived. The size of a unit in the metric system is indicated by a prefix related to the dif-ference between that unit and the base unit. For example, the base unit for length in the metric system is the meter. One-tenth of a meter is a decimeter, where the prefix deci- means one-tenth. One thousand meters is a kilometer, where the prefix kilo- means one thousand.

You can use the information in Table 2 to express a measured quantity in different units. For example, how is 65 m expressed in centimeters? Table 2 indicates one centimeter and one-hundredth meter are equivalent, that is, 1 cm = 1 0 −2 m. This information can be used to form a conversion factor. A conversion factor is a ratio equal to one that relates two units. You can make the following conversion factors from the relationship between meters and centimeters. Be sure when you set up a conversion factor that the measurement in the numerator (the top of the ratio) is equivalent to the measurement in the denominator (the bottom of the ratio).

1 = 1 cm

_ 1 0 −2 m

and 1 = 1 0 −2 m

_ 1 cm

PRACTICE Problems

Determine whether the following equations are dimensionally correct. Explain.

12. v = s × t where v = 24 m/s, s = 12 m, and t = 2 s.

13. R = nT _ PV

where R is in L·atm/mol·K, n is in mol, T is in K, P is in atm,

and V is in L.

14. t = v _ s where t is in seconds, v is in m/s, and s is in m.

15. s = a t 2 _ 2 where s is in m, a is in m/ s 2 , and t is in s.

Table 2 Common SI Prefixes

Prefix SymbolExponential

NotationPrefix Symbol

Exponential Notation

Peta P 1 0 15 Deci d 1 0 −1

Tera T 1 0 12 Centi c 1 0 −2

Giga G 1 0 9 Milli m 1 0 −3

Mega M 1 0 6 Micro μ 1 0 −6

Kilo k 1 0 3 Nano n 1 0 −9

Hecto h 1 0 2 Pico p 1 0 −12

Deka da 1 0 1 Femto f 1 0 −15

Page 59: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

958 Math Handbook

Math Handbook

Recall that the value of a quantity does not change when it is multiplied by 1. To convert 65 m to centimeters, multiply 65 m by the conversion factor for centimeters.

65 m × 1 cm

_ 1 0 −2 m

= 65 × 1 0 2 cm = 6.5 × 1 0 3 cmNote the conversion factor is set up so that the unit meters cancels and the answer is in centimeters as required. When setting up a unit conversion, use dimensional analysis to check that the units cancel to give an answer in the desired units. Always check your answer to be certain the units make sense.

You make unit conversions every day when you determine how many quarters are needed to make a dollar or how many feet are in a yard. One unit that is often used in calculations in chemistry is the mole. Chapter 10 shows you equivalent relationships among moles, grams, and the number of representative particles (atoms, molecules, formula units, or ions). For example, 1 mol of a substance contains 6.02 × 1 0 23 representative particles. Try the next Example Problem to see how this information can be used in a conversion factor to deter-mine the number of atoms in a sample of manganese.

Figure 10 The mass of one mole of manganese equals 54.94 g.Determine How many significant figures are in this measurement?

EXAMPLE Problem 5

Unit Conversions One mole of manganese (Mn), shown in Figure 10, has a mass of 54.94 g. How many atoms are in 2.0 mol of manganese?

1 Analyze the ProblemYou are given the mass of 1 mol of manganese. In order to convert to the number of atoms, you must set up a conversion factor relating the number of moles and the number of atoms.

2 Solve for the UnknownThe conversion factors for moles and atoms are shown below.

1 mol __ 6.02 × 1 0 23 atoms

and 6.02 × 1 0 23 atoms __ 1 mol

Choose the conversion factor that cancels units of moles and gives an answer in number of atoms.

2.0 mol × 6.02 × 1 0 23 atoms __ 1 mol

= 12.04 × 1 0 23 atoms

= 1.2 × 1 0 24 atoms

3 Evaluate the AnswerThe answer is expressed in the desired units (number of atoms). It is expressed in two significant figures because the number of moles (2.0) has two significant figures.

Matt Meadows

Page 60: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 959

PRACTICE Problems

16. Convert the following measurements as indicated.

a. 4 m = ____cm i. 2.7 × 1 0 2 L = ____mL

b. 50.0 cm = ____m j. 7.3 × 1 0 5 mL = ____L

c. 15 cm = ____mm k. 8.4 × 1 0 10 m = ____km

d. 567 mg = ____g l. 3.8 × 1 0 4 m 2 = ____m m 2

e. 324 mL = ____L m. 6.9 × 1 0 12 c m 2 = ____ m 2

f. 28 L = ____mL n. 6.3 × 1 0 21 m m 3 = ____c m 3

g. 4.6 × 1 0 3 m = ____mm o. 9.4 × 1 0 12 c m 3 = ____ m 3

h. 8.3 × 1 0 4 g = ____kg p. 5.7 × 1 0 20 c m 3 = ____k m 3

Drawing Line GraphsScientists, such as the one shown in Figure 11, as well as you and your classmates, use graphing to analyze data gathered in experiments. Graphs provide a way to visualize data in order to determine the mathe-matical relationship between the variables in your experiment. Line graphs are used most often.

Figure 11 also shows a line graph. Line graphs are drawn by plotting variables along two axes. Plot the independent variable on the x-axis (horizontal axis), also called the abscissa. The independent variable is the quantity controlled by the person doing the experiment. Plot the dependent variable on the y-axis (vertical axis), also called the ordinate. The dependent variable is the variable that depends on the independent variable. Label the axes with the variables being plotted and the units attached to those variables.

Origin

y-axis

0

Dep

ende

nt v

aria

ble

Independent variable

(x, y)

0

x-axis

Graph of Line with Point A

Figure 11 Once experimental data have been collected, they must be analyzed to determine the relationships between the measured variables.

Any graph of your data should include labeled x- and y-axes, a suitable scale, and a title.

This research scientist might use graphs to analyze the data she collects on ultrapure water.

©Bill Aron/Photo Edit

Page 61: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

960 Math Handbook

Math Handbook

Determining a scaleAn important part of graphing is the selection of a scale. Scales should be easy to plot and easy to read. First, examine the data to determine the highest and lowest values. Assign each division on the axis (the square on the graph paper) with an equal value so that all data can be plotted along the axis. Scales divided into multiples of 1, 2, 5, or 10, or decimal values, are often the most convenient. It is not necessary to start at zero, nor is it necessary to plot both variables to the same scale. Scales must, however, be labeled clearly with the appropriate numbers and units.

Plotting dataThe values of the independent and dependent variables form ordered pairs of numbers, called the x-coordinate and the y-coordinate (x,y), that correspond to points on the graph. The first number in an ordered pair always corresponds to the x-axis; the second number always corresponds to the y-axis. The ordered pair (0,0) is always the origin. Sometimes, the points are named by using a letter. In Figure 12, Point A on the Density of Water graph corresponds to Point (x,y).

After the scales are chosen, plot the data. To graph or plot an ordered pair means to place a dot at the point that corresponds to the values in the ordered pair. The x-coordinate indicates how many units to move right (if the number is positive) or left (if the number is negative). The y-coordinate indicates how many units to move up or down. Which direction is positive on the y-axis? Negative? Locate each pair of x- and y-coordinates by placing a dot, as shown in Figure 12 in the Density of Water graph. Sometimes, a pair of rulers, one extending from the x-axis and the other from the y-axis, can ensure that data are plotted correctly.

Drawing a curveOnce the data is plotted, a straight line or a curve is drawn. It is not necessary to make it go through every point plotted, or even any of the points, as shown in the Experimental Data graph in Figure 12. Graphing data is an averaging process. If the points do not fall along a line, the best-fit line or most-probable smooth curve through the points is drawn. Note that curves do not always go through the origin (0,0).

Mas

s (g

)Volume (mL)

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

A (x, y)

Density of Water

Mas

s (g

)

Volume (mL)

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

Experimental Data

Figure 12 To plot a point on a graph, place a dot at the location for each ordered pair (x,y) determined by your data. In the Density of Water graph, the dot marks the ordered pair (40 mL, 40 g). Generally, the line or curve that you draw will not include all of your experimental data points, as shown in the Experimental Data graph.

Page 62: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 961

Naming a graphLast but not least, give each graph a title that describes what is being graphed. The title should be placed at the top of the page, or in a box on a clear area of the graph. It should not cross the data curve.

Using Line GraphsOnce the data from an experiment has been collected and plotted, the graph must be interpreted. Much can be learned about the relationship between the independent and dependent variables by examining the shape and slope of the curve. Four common types of curves are shown in Figure 13. Each type of curve corresponds to a mathematical rela-tionship between the independent and dependent variables.

Direct and inverse relationshipsIn your study of chemistry, the most common curves are the linear, representing the direct relationship (y ∞ x), and the inverse, representing the inverse relationship (y ∞ 1/x), where x represents the independent variable and y represents the dependent variable. In a direct relationship, y increases in value as x increases in value, or y decreases when x decreases. In an inverse relationship, y decreases in value as x increases.

An example of a typical direct relationship is the increase in volume of a gas with increasing temperature. When the gases inside a hot-air balloon are heated, the balloon gets larger. As the balloon cools, its size decreases. However, a plot of the decrease in pressure as the volume of a gas increases yields a typical inverse curve.

You might also encounter exponential and root curves in your study of chemistry. See Figure 13. An exponential curve describes a relation-ship in which one variable is expressed by an exponent. A root curve describes a relationship in which one variable is expressed by a root.

Linear curvey ∝ x

Exponential curve y ∝ x n

(n > 1)

Inverse curvey ∝

Root curvey ∝

(n > 1)

-x1

xn

a

c

b

d

Figure 13 The shape of the curve formed by a plot of experimental data indicates how the variables are related.

Page 63: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

962 Math Handbook

Math Handbook

The linear graphThe linear graph is useful in analyzing data because a linear relationship can be translated easily into equation form using the equation for a straight line.

y = mx + b

In the equation, y stands for the dependent variable, m is the slope of the line, x stands for the independent variable, and b is the y-intercept, the point where the curve crosses the y-axis.

The slope of a linear graph is the steepness of the line. Slope is defined as the ratio of the vertical change (the rise) to the horizontal change (the run) as you move from one point to the next along the line. Use the graph in Figure 14 to calculate slope. Choose any two points on the line, ( x 1 , y 1 ) and ( x 2 , y 2 ). The two points need not be actual data points, but both must fall somewhere on the straight line. After selecting two points, calculate slope, m, using the following equation.

m = rise

_ run = ∆y

_ ∆x

= y 2 − y 1

_ x 2 − x 1 , where x 1 ≠ x 2

The symbol ∆ stands for change, x 1 and y 1 are the coordinates or values of the first point, and x 2 and y 2 are the coordinates of the second point.

Choose any two points along the graph of mass v. volume in Figure 15, and calculate its slope.

m = 135 g − 54 g

__ 50.0 c m 3 − 20.0 c m 3

= 2.7 g/c m 3

Note that the units for the slope are the units for density. Plotting a graph of mass versus volume is one way of determining the density of a substance.

Apply the general equation for a straight line to the graph in Figure 15.

y = mx + b mass = (2.7 g/c m 3 )(volume) + 0 mass = (2.7 g/c m 3 )(volume)

Mas

s (g

)

Volume (mL)

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

(x1, y1)

(x2, y2)

Density of Water

Run

Rise

Figure 14 A steep slope indicates that the dependent variable changes rapidly with a change in the indepen-dent variable. Infer What would an almost flat line indicate?

Page 64: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 963

Mas

s (g

)

Volume (mL)

0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0

Density of Aluminum

Figure 15 Interpolation and extrap-olation will help you determine the values of points you did not plot.

Once the data from the graph in Figure 15 has been placed in the general equation for a straight line, this equation verifies the direct rela-tionship between mass and volume. For any increase in volume, the mass also increases.

Interpolation and extrapolationGraphs also serve functions other than determining the relationship between variables. They permit interpolation, the prediction of values of the independent and dependent variables. For example, you can see in the table in Figure 15 that the mass of 40.0 c m 3 of aluminum was not measured. However, you can interpolate from the graph that the mass would be 108 g.

Graphs also permit extrapolation, which is the determination of points beyond the measured points. To extrapolate, draw a broken line to extend the curve to the desired point. In Figure 15, you can determine that the mass at 10.0 c m 3 equals 27 g. One caution regarding extrapolation—some straight-line curves do not remain straight indefi-nitely. So, extrapolation should only be done where there is a reasonable likelihood that the curve does not change.

PRACTICE Problems

17. Plot the data in each table. Explain whether the graphs represent direct or inverse relationships.

Table 3 Effect of Pressure on Gas

Pressure (mm Hg)

Volume (mL)

3040 5.0

1520 10.0

1013 15.0

760 20.0

Table 4 Effect of Pressure on Gas

Pressure (mm Hg)

Temperature (K)

3040 1092

1520 546

1013 410

760 273

Data

Volume (mL) Mass (g)

20.0 54.0

30.0 81.0

50.0 135.0

Page 65: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

964 Math Handbook

Math Handbook

Ratios, Fractions, and PercentsWhen you analyze data, you may be asked to compare measured quanti-ties. Or, you may be asked to determine the relative amounts of ele-ments in a compound. Suppose, for example, you are asked to compare the molar masses of the diatomic gases, hydrogen ( H 2 ) and oxygen ( O 2 ). The molar mass of hydrogen gas equals 2.00 g/mol; the molar mass of oxygen equals 32.00 g/mol. The relationship between molar masses can be expressed in three ways: a ratio, a fraction, or a percent.

RatiosYou make comparisons by using ratios in your daily life. For example, if the mass of a dozen limes is shown in Figure 16, how does it compare to the mass of one lime? The mass of one dozen limes is 12 times larger than the mass of one lime. In chemistry, the chemical formula for a compound compares the elements that make up that compound, as shown in Figure 17. A ratio is a comparison of two numbers by division. One way it can be expressed is with a colon (:). The comparison between the molar masses of oxygen and hydrogen can be expressed as follows.

molar mass ( H 2 ):molar mass ( O 2 )

2.00 g/mol:32.00 g/mol

2.00:32.00

1:16

Notice that the ratio 1:16 is the smallest integer (whole number) ratio. It is obtained by dividing both numbers in the ratio by the smaller num-ber, and then rounding the larger number to remove the digits after the decimal. The ratio of the molar masses is 1 to 16. In other words, the ratio indicates that the molar mass of diatomic hydrogen gas is 16 times smaller than the molar mass of diatomic oxygen gas.

FractionsRatios are often expressed as fractions in simplest form. A fraction is a quotient of two numbers. To express the comparison of the molar masses as a fraction, place the molar mass of hydrogen over the molar mass of oxygen as follows.

molar mass H 2

__ molar mass O 2

= 2.0 g/mol

_ 32.00 g/mol

= 2.00

_ 32.00

= 1 _ 16

In this case, the simplified fraction is calculated by dividing both the numerator (top of the fraction) and the denominator (bottom of the fraction) by 2.00. This fraction yields the same information as the ratio. That is, diatomic hydrogen gas has one-sixteenth the mass of diatomic oxygen gas.

Figure 17 In a crystal of table salt (sodium chloride), each sodium ion is surrounded by chloride ions, yet the ratio of sodium ions to chloride ions is 1:1. The formula for sodium chloride is NaCl.

Figure 16 The mass of one lime would be one-twelfth the mass of one dozen limes.

Matt Meadows

Page 66: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 965

PercentsA percent is a ratio that compares a number to 100. The symbol for percent is %. You also are used to working with percents in your daily life. The number of correct answers on an exam can be expressed as a percent. If you answered 90 out of 100 questions correctly, you would receive a grade of 90%. Signs like the one in Figure 18 indicate a reduc-tion in price. If the item’s regular price is $100, how many dollars would you save? Sixty percent means 60 of every 100, so you would save $60. How much would you save if the sign said 75% off?

The comparison between molar mass of hydrogen gas and the molar mass of oxygen gas described on the previous page can also be expressed as a percent by taking the fraction, converting it to decimal form, and multiplying by 100 as follows.

molar mass H 2

__ molar mass O 2

× 100 = 2.00 g/mol

_ 32.00 g/mol

× 100 = 0.0625 × 100 = 6.25%

Diatomic hydrogen gas has 6.25% of the mass of diatomic oxygen gas.

Operations Involving FractionsFractions are subject to the same type of operations as other numbers. Remember that the number on the top of a fraction is the numerator and the number on the bottom is the denominator. Figure 19 shows an example of a fraction.

1. Addition and subtractionBefore two fractions can be added or subtracted, they must have a common denominator. Common denominators are found by finding the least common multiple of the two denominators. Finding the least common multiple is often as easy as multiplying the two denominators together. For example, the least common multiple of the denominators

of the fractions 1 _ 2 and 1 _

3 is 2 × 3 or 6.

1 _ 2 + 1 _

3 = (

3 _

3 × 1 _

2 ) + ( 2 _

2 × 1 _

3 ) =

3 _

6 + 2 _

6 =

5 _

6

Sometimes, one of the denominators will divide into the other, which

makes the larger of the two denominators the least common multiple.

For example, the fractions 1 _ 2 and 1 _

6 have 6 as the least common multiple

denominator.

1 _ 2 + 1 _

6 = (

3 _

3 × 1 _

2 ) + 1 _

6 =

3 _

6 + 1 _

6 = 4 _

6

In other situations, both denominators will divide into a number that is

not the product of the two. For example, the fractions 1 _ 4 and 1 _

6 have the

number 12 as their least common multiple denominator, rather than 24, the product of the two denominators.

The least common denominator can be deduced as follows:

1 _ 6 + 1 _

4 = ( 4 _

4 × 1 _

6 ) + (

6 _

6 × 1 _

4 ) = 4 _

24 +

6 _

24 = 2 _

12 +

3 _

12 =

5 _

12

Because both fractions can be simplified by dividing numerator and denominator by 2, the least common multiple must be 12.

9 × 108

3 × 10-4Quotient =

Dividend(numerator)

Divisor(denominator)

Figure 19 When two numbers are divided, the one on top is the numerator and the one on the bottom is the denominator. The result is called the quotient. When you perform calculations with fractions, the quotient can be expressed as a fraction or a decimal.

Figure 18 Stores often use percentages when advertising sales.Analyze Would the savings be large at this sale? How would you determine the sale price?

©Elena Rooraid/Photo Edit

Page 67: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

966 Math Handbook

Math Handbook

2. Multiplication and divisionWhen multiplying fractions, the numerators and denominators are multiplied together as follows:

1 _ 2 × 2 _

3 =

1 × 2 _

2 × 3 = 2 _

6 = 1 _

3

Note the final answer is simplified by dividing the numerator and denominator by 2.

When dividing fractions, the divisor is inverted and multiplied by the dividend as follows:

2 _ 3 ÷ 1 _

2 = 2 _

3 × 2 _

1 =

2 × 2 _

3 × 1 = 4 _

3

PRACTICE Problems

18. Perform the indicated operation:

a. 2 _ 3 + 3 _ 4 e. 1 _ 3 × 3 _ 4

b. 4 _ 5 + 3 _ 10 f. 3 _ 5 × 2 _ 7

c. 1 _ 4 − 1 _ 6 g. 5 _ 8 ÷ 1 _ 4

d. 7 _ 8 − 5 _ 6 h. 4 _ 9 ÷ 3 _ 8

Logarithms and AntilogarithmsWhen you perform calculations, such as the pH of the products in Figure 20, you might need to use the log or antilog function on your calculator. A logarithm (log) is the power or exponent to which a num-ber, called a base, must be raised in order to obtain a given positive number.

This textbook uses common logarithms based on a base of 10. Therefore, the common log of any number is the power to which 10 is raised to equal that number. Examine Table 5 to compare logs and exponents. Note the log of each number is the power of 10 for the exponent of that number. For example, the common log of 100 is 2, and the common log of 0.01 is −2.

log 1 0 2 = 2 log 1 0 −2 = −2

A common log can be written in the following general form.

If 1 0 n = y, then log y = n.

In each example in Table 5, the log can be determined by inspection.How do you express the common log of 5.34 × 1 0 5 ? Because logarithms are exponents, they have the same properties as exponents, as shown in Table 6 on the next page.

log 5.34 × 1 0 5 = log 5.34 + log 1 0 5

Table 5

Comparison Between

Exponents and Logs

Exponent Logarithm

1 0 0 = 1 log 1 = 0

1 0 1 = 10 log 10 = 1

1 0 2 = 100 log 100 = 2

1 0 -1 = 0.1 log 0.1 = -1

1 0 -2 = 0.01 log 0.01 = -2

Page 68: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Math Handbook

Math Handbook 967

Table 6 Properties of Exponents

Exponential Notation Logarithm

1 0 A × 1 0 B = 1 0 A + B log (A × B) = log A + log B

1 0 A ÷ 1 0 B = 1 0 A − B log (A ÷ B) = log A − log B

A B (log A) × B

PRACTICE Problems

19. Find the log of each of the following numbers.

a. 367 b. 4078 c. X n

20. Find the antilog of each of the following logs.

a. 4.663 b. 2.367 c. 0.371 d. −1.588

Figure 20 Ammonia is a base. That means its hydrogen ion concentration is less than 1 0 −7 M.

Significant figures and logarithmsMost scientific calculators have a button labeled log and, in most cases, you enter the number and push the log button to display the log of the number. Note that there is the same number of digits after the decimal in the log as there are significant figures in the original number entered.

log 5.34 × 1 0 5 = log 5.34 + log 1 0 5 = 0.728 + 5 = 5.728

AntilogarithmsSuppose the pH of the aqueous ammonia in Figure 20 is 9.54 and you are asked to find the concentration of the hydrogen ions in that solu-tion. By definition, pH = −log [ H +]. Compare this to the general equa-tion for the common log.

Equation for pH: pH = −log [ H +] General equation: y = log 1 0 n

To solve the equation for [ H +], you must follow the reverse process and calculate the antilogarithm (antilog) of −9.54 to find [ H +].

Antilogs are the reverse of logs. To find the antilog, use a scientific calculator to input the value of the log. Then, use the inverse function and press the log button. The number of digits after the decimal in the log equals the number of significant figures in the antilog. An antilog can be written in the following general form.

If n = antilog y, then y = 1 0 n.

Thus, [ H +] = antilog(−9.54) = 1 0 −9.54 = 1 0 (0.46 − 10)

= 1 0 0.46 × 1 0 −10

= 2.9 × 1 0 −10M

Check the instruction manual for your calculator. The exact procedure to calculate logs and antilogs might vary.

Geoff Butler

Page 69: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

968 Reference Tables

Table R-1 Color Key

Carbon Bromine Sodium/Other metals

Hydrogen Iodine Gold

Oxygen Sulfur Copper

Nitrogen Phosphorus Electron

Chlorine Silicon Proton

Fluorine Helium Neutron

Table R-2 Symbols and Abbreviationsα = rays from radioactive

materials, helium nucleiβ = rays from radioactive

materials, electronsγ = rays from radioactive

materials, high-energy quanta

∆ = change inλ = wavelengthν = frequencyA = ampere (electric current)amu = atomic mass unitBq = becquerel (nuclear

disintegration)°C = Celsius degree (temperature)C = coulomb (quantity of

electricity)c = speed of lightcd = candela (luminous intensity)c = specific heatD = density

E = energy, electromotive forceF = forceG = free energyg = gram (mass)Gy = gray (radiation)H = enthalpyHz = hertz (frequency)h = Planck’s constanth = hour (time)J = joule (energy)K = kelvin (temperature) K a = ionization constant (acid) K b = ionization constant (base) K eq = equilibrium constant K sp = solubility product constantkg = kilogram (mass)M = molaritym = mass, molalitym = meter (length)mol = mole (amount)min = minute (time)

N = newton (force) N A = Avogadro’s numbern = number of molesP = pressure, powerPa = pascal (pressure)q = heat Q sp = ion productR = ideal gas constantS = entropys = second (time)Sv = sievert (absorbed radiation)T = temperatureV = volumeV = volt (electric potential)v = velocityW = watt (power)w = workX = mole fraction

Page 70: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Reference Tables

Reference Tables 969

Table R-3 Solubility Product Constants at 298 KCompound K sp Compound K sp Compound K sp

Carbonates Halides Hydroxides

BaC O 3 2.6 × 1 0 -9 Ca F 2 3.5 × 1 0 -11 Al(OH ) 3 4.6 × 1 0 -33

CaC O 3 3.4 × 1 0 -9 PbB r 2 6.6 × 1 0 -6 Ca(OH ) 2 5.0 × 1 0 -6

CuC O 3 2.5 × 1 0 -10 PbC l 2 1.7 × 1 0 -5 Cu(OH ) 2 2.2 × 1 0 -20

PbC O 3 7.4 × 1 0 -14 Pb F 2 3.3 × 1 0 -8 Fe(OH ) 2 4.9 × 1 0 -17

MgC O 3 6.8 × 1 0 -6 Pb I 2 9.8 × 1 0 -9 Fe(OH ) 3 2.8 × 1 0 -39

A g 2 C O 3 8.5 × 1 0 -12 AgCl 1.8 × 1 0 -10 Mg(OH ) 2 5.6 × 1 0 -12

ZnC O 3 1.5 × 1 0 -10 AgBr 5.4 × 1 0 -13 Zn(OH ) 2 3 × 1 0 -17

H g 2 C O 3 3.6 × 1 0 -17 AgI 8.5 × 1 0 -17 Sulfates

Chromates Phosphates BaS O 4 1.1 × 1 0 -10

BaCr O 4 1.2 × 1 0 -10 AlP O 4 9.8 × 1 0 -21 CaS O 4 4.9 × 1 0 -5

PbCr O 4 2.3 × 1 0 -13 C a 3 (P O 4 ) 2 2.1 × 1 0 -33 PbS O 4 2.5 × 1 0 -8

A g 2 Cr O 4 1.1 × 10 -12 M g 3 (P O 4 ) 2 1.0 × 1 0 -24 A g 2 S O 4 1.2 × 1 0 -5

Iodates Fe(P O 4 ) 2 1.0 × 1 0 -22 Arsenates

Cd(I O 3 ) 2 2.3 × 1 0 -8 N i 3 (P O 4 ) 2 4.7 × 1 0 -32 P b 3 (As O 4 ) 2 4.0 × 1 0 -36

Table R-4 Physical ConstantsQuantity Symbol Value

Atomic mass unit amu 1.6605 × 10 -27

Avogadro’s number N 6.022 × 10 23 particles/mole

Ideal gas constant R 8.31 L·kPa/mol·K0.0821 L·atm/mol·K62.4 mm Hg·L/mol·K

62.4 torr·L/mol·K

Mass of an electron m e 9.109 × 1 0 -31 kg5.485799 × 1 0 -4 amu

Mass of a neutron m n 1.67492 × 1 0 -27 kg1.008665 amu

Mass of a proton m p 1.6726 × 1 0 -27 kg1.007276 amu

Molar volume of ideal gas at STP V 22.414 L/mol

Normal boiling point of water T b 373.15 K100.0°C

Normal freezing point of water T f 273.15 K0.00°C

Planck’s constant h 6.6260693 × 1 0 -34 J·s

Speed of light in a vacuum c 2.997925 × 1 0 8 m/s

Page 71: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

970 Reference Tables

Reference Tables

Table R-5 Names and Charges of Polyatomic Ions1-

Acetate, C H 3 CO O -

Amide, N H 2 -

Astatate, At O 3 -

Azide, N 3 -

Benzoate, C 6 H 5 CO O -

Bismuthate, Bi O 3 -

Bromate, Br O 3 -

Chlorate, Cl O 3 -

Chlorite, Cl O 2 -

Cyanide, C N -

Formate, HCO O -

Hydroxide, O H -

Hypobromite, Br O -

Hypochlorite, Cl O -

Hypophosphite, H 2 P O 2 -

Iodate, I O 3 -

Nitrate, N O 3 -

Nitrite, N O 2 -

Perbromate, Br O 4 -

Perchlorate, Cl O 4 -

Periodate, I O 4 -

Permanganate, Mn O 4 -

Perrhenate, Re O 4 -

Thiocyanate, SC N -

Vanadate, V O 3 -

2-

Carbonate, C O 3 2-

Chromate, Cr O 4 2-

Dichromate, C r 2 O 7 2-

Hexachloroplatinate, PtC l 6 2-

Hexafluorosilicate, Si f 6 2-

Molybdate, Mo O 4 2-

Oxalate, C 2 O 4 2-

Peroxide, O 2 2-

Peroxydisulfate, S 2 O 8 2-

Ruthenate, Ru O 4 2-

Selenate, Se O 4 2-

Selenite, Se O 3 2-

Silicate, Si O 3 2-

Sulfate, S O 4 2-

Sulfite, S O 3 2-

Tartrate, C 4 H 4 O 6 2-

Tellurate, Te O 4 2-

Tellurite, Te O 3 2-

Tetraborate, B 4 O 7 2-

Thiosulfate, S 2 O 3 2-

Tungstate, W O 4 2-

3-

Arsenate, As O 4 3-

Arsenite, As O 3 3-

Borate, B O 3 3-

Citrate, C 6 H 5 O 7 3-

Hexacyanoferrate (III), Fe(CN ) 6 3-

Phosphate, P O 4 3-

Phosphite, P O 3 3-

4-

Hexacyanoferrate (II), Fe(CN ) 6 4-

Orthosilicate, Si O 4 4-

Diphosphate, P 2 O 7 4-

1+

Ammonium, N H 4 +

Neptunyl(V), Np O 2 +

Plutonyl(V), Pu O 2 +

Uranyl(V), U O 2 +

Vanadyl(V), V O 2 +

2+

Mercury(I), H g 2 2+

Neptunyl(VI), Np O 2 2+

Plutonyl(VI), Pu O 2 2+

Uranyl(VI), U O 2 2+

Vanadyl(IV), V O 2+

Table R-6 Ionization Constants

SubstanceIonizationConstant

SubstanceIonizationConstant

SubstanceIonizationConstant

HCOOH 1.77 × 1 0 -4 C H 3 COOH 1.75 × 1 0 -5 C H 2 ClCOOH 1.36 × 1 0 -3 CHC l 2 COOH 4.47 × 1 0 -2 CC l 3 COOH 3.02 × 1 0 -1 HOOCCOOH 5.36 × 1 0 -2 HOOCCO O - 1.55 × 1 0 -4 C H 3 C H 2 COOH 1.34 × 1 0 -5 C 6 H 5 COOH 6.25 × 1 0 -5 H 3 As O 4 6.03 × 1 0 -3 H 2 As O 4 - 1.05 × 1 0 -7 H 3 B O 3 5.75 × 1 0 -10 H 2 B O 3 - 1.82 × 1 0 -13

HB O 3 -2 1.58 × 1 0 -14 H 2 C O 3 4.5 × 1 0 -7 HC O 3 - 4.68 × 1 0 -11 HCN 6.17 × 1 0 -10 HF 6.3 × 1 0 -4 HN O 2 5.62 × 1 0 -4 H 3 P O 4 7.08 × 1 0 -3 H 2 P O 4 - 6.31 × 1 0 -8 HP O 4 2- 4.17 × 1 0 -13 H 3 P O 3 5.01 × 1 0 -2 H 2 P O 2 - 2.00 × 1 0 -7 H 3 P O 2 5.89 × 1 0 -2 H 2 S 9.1 × 1 0 -8

H S - 1.00 × 1 0 -19 HS O 4 - 1.02 × 1 0 -2 H 2 S O 3 1.29 × 1 0 -2 HS O 3 - 6.17 × 1 0 -8 HSe O 4 - 2.19 × 1 0 -2 H 2 Se O 3 2.29 × 1 0 -3 HSe O 3 - 4.79 × 1 0 -9 HBrO 2.51 × 1 0 -9 HClO 2.9 × 1 0 -8 HIO 3.16 × 1 0 -11 N H 3 5.62 × 1 0 -10 H 2 NN H 2 7.94 × 1 0 -9 H 2 NOH 1.15 × 1 0 -6

Page 72: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Reference Tables

Reference Tables 971

Tab

le R

-7 P

rop

ert

ies

of

Ele

men

ts

Actin

ium

Ac89

[227

]10

5033

0010

.07

---

499

(3+

)-2.

1314

0.12

040

0--

-3+

Alum

inum

Al13

26.9

8153

966

0.32

2519

2.7

143

577.

5(3

+)-

1.68

10.7

890.

897

294

8.2

3+Am

eric

ium

Am95

[243

]11

7626

0713

.67

---

578

(3+

)-2.

0714

.39

0.11

0--

---

-2+

, 3+

, 4+

Antim

ony

Sb51

121.

760

630.

615

876.

697

140

834

(3+

)+0.

1519

.79

0.20

768

2 ×

1 0 -

5 3+

, 5+

Argo

nAr

1839

.948

-18

9.3

-18

5.8

0.00

1784

9815

21--

-1.

180.

520

6.43

1.5

× 1

0 -4

---

Arse

nic

As33

74.9

2160

817

614

5.72

712

094

7(3

+)+

0.24

24.4

40.

329

32.4

2.1

× 1

0 -4

3+, 5

+

Asta

tine

At85

[210

]30

2--

---

-14

092

0(1

-)+

0.2

6--

-40

---

1-, 5

+

Bariu

mBa

5613

7.32

772

718

703.

5122

250

2.9

(2+

)-2.

927.

120.

204

140

0.03

42+

Berk

eliu

mBk

97[2

47]

986

---

14.7

8--

-60

1(3

+)-

2.01

---

---

---

---

3+, 4

+

Bery

llium

Be4

9.01

2182

1287

2469

1.84

811

289

9.5

(2+

)-1.

977.

895

1.82

529

72

× 1

0 -4

2+Bi

smut

hBi

8320

8.98

040

271.

315

649.

7815

070

3(3

+)+

0.31

711

.145

0.12

215

13

× 1

0 -7

3+, 5

+

Bohr

ium

Bh10

7[2

64]

---

---

---

---

---

---

---

---

---

---

---

Boro

nB

510

.811

2076

3927

2.46

8580

0.6

(3+

)-0.

8950

.21.

026

480

9 ×

1 0 -

4 3+

Brom

ine

Br35

79.9

04–7

.359

3.11

911

411

39.9

(1-

)+1.

065

10.5

70.

474

29.9

63

× 1

0 -4

1-, 1

+, 3

+, 5

+

Cadm

ium

Cd48

112.

411

321.

0776

78.

6515

186

7.8

(2+

)-0.

4025

6.21

0.23

299

.87

1.5

× 1

0 -5

2+Ca

lciu

mCa

2040

.078

842

1484

1.55

197

589.

8(2

+)-

2.84

8.54

0.64

715

55.

002+

Calif

orni

umCf

98[2

51]

900

---

15.1

---

608

(3+

)-1.

93--

---

---

---

-3+

, 4+

Carb

onC

612

.010

735

2740

272.

267

7710

86.5

(4-

)+0.

132

117

0.70

971

50.

018

4-, 2

+, 4

+

Ceriu

mCe

5814

0.11

679

533

606.

689

---

534.

4(3

+)-

2.34

5.46

0.19

235

00.

006

3+, 4

+

Cesi

umCs

5513

2.90

5451

28.4

671

1.87

926

537

5.7

(1+

)-2.

923

2.09

0.24

265

1.9

× 1

0 -4

1+Ch

lorin

eCl

1735

.453

-10

1.5

-34

0.00

310

012

51.2

(1-

)+1.

358

6.40

0.47

920

.41

0.01

71-

, 1+

, 3+

, 5+

Chro

miu

mCr

2451

.996

119

0726

717.

1412

865

2.9

(3+

)-0.

7421

.00.

449

339

0.01

42+

, 3+

, 6+

Coba

ltCo

2758

.933

214

9529

278.

912

576

0.4

(2+

)-0.

2816

.06

0.42

137

50.

003

2+, 3

+

Copp

erCu

2963

.546

1084

.62

2927

8.92

128

745.

5(2

+)+

0.34

12.9

30.

385

300

0.00

681+

, 2+

Curiu

mCm

96[2

47]

1340

3110

13.5

1--

-58

1(3

+)-

2.06

---

---

---

---

3+, 4

+

Darm

stad

tium

Ds11

0[2

81]

---

---

---

---

---

---

---

---

---

---

---

Dubn

ium

Db10

5[2

62]

---

---

---

---

---

---

---

---

---

---

---

Dysp

rosi

umDy

6616

2.5

1407

2567

8.55

1--

-57

3(3

+)-

2.29

11.0

60.

173

280

6 ×

1 0 -

4 2+

, 3+

Eins

tein

ium

Es99

[252

]86

0--

---

---

-61

9(3

+)-

2--

---

---

---

-3+

Erbi

umEr

6816

7.25

914

9728

689.

066

---

589.

3(3

+)-

2.32

19.9

0.16

828

53

× 1

0 -4

3+Eu

ropi

umEu

6315

1.96

482

615

275.

244

---

547.

1(3

+)-

1.99

9.21

0.18

217

51.

8 ×

1 0 -

4 2+

, 3+

Ferm

ium

Fm10

0[2

57]

1527

---

---

---

627

(3+

)-1.

96--

---

---

---

-2+

, 3+

Fluo

rine

F9

18.9

9840

32-

219.

62-

188.

120.

0016

9671

1681

(1-

)+2.

870.

510.

824

6.62

0.05

41-

Fran

cium

Fr87

[223

]--

---

---

-27

038

0(1

+)-

2.92

2--

-65

---

1+G

adol

iniu

mG

d64

157.

2513

1232

507.

901

---

593.

4(3

+)-

2.28

10.0

0.23

630

55.

2 ×

1 0 -

4 3+

Gal

lium

Ga

3169

.723

29.7

622

045.

904

135

578.

8(3

+)-

0.53

5.57

60.

373

254

0.00

191+

, 3+

Ger

man

ium

Ge

3272

.64

938.

328

205.

323

122

762

(4+

)+0.

124

36.9

40.

320

334

1.4

× 1

0 -4

2+, 4

+

Gol

dAu

7919

6.96

6569

1064

2856

19.3

144

890.

1(3

+)+

1.52

12.7

20.

129

324

3 ×

1 0 -

7 1+

, 3+

*[ ]

indi

cate

s m

ass

of lo

nges

t-liv

ed is

otop

e

Major Oxidation States

Abundance in Earth’s Crust

Enthalpy of Vaporization

Specific Heat

Enthalpy of Fusion

Standard Reduction Potential (V)

(for elements from or to oxidation

state indicated)

First Ionization Energy (kJ/mol)

Atomic Radius (pm)

Density (g/ cm 3 ) (gases measured at STP)

Boiling Point (°C)

Melting Point (°C)

Atomic Mass* (amu)

Atomic Number

Symbol

Element

Page 73: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

972 Reference Tables

Reference Tables

Tab

le R

-7 P

rop

ert

ies

of

Ele

men

ts (

con

tin

ued

)

Hafn

ium

Hf72

178.

4922

3346

0313

.31

159

658.

5(4

+)-

1.70

27.2

0.14

463

03

× 1

0 -4

4+Ha

ssiu

mHs

108

[277

]-

272.

2--

-0.

0001

785

---

2372

.3--

---

---

-0.

083

5.5

× 1

0 -4

---

Heliu

mHe

24.

0026

02-

269.

7 (2

536

kPa)

-26

8.93

0.00

0178

4731

2372

---

0.02

15.

193

0.08

---

---

Holm

ium

Ho67

164.

9303

214

6127

208.

795

---

581

(3+

)-2.

3317

.00.

165

265

1.2

× 1

0 -4

3+Hy

drog

enH

I1.

0079

4-

259.

14-

252.

870.

0000

899

3713

12(1

+)0

.000

0.12

14.3

040.

900.

151-

, 1+

Indi

umIn

4911

4.81

815

6.6

2072

7.31

167

558.

3(3

+)-

0.33

823.

281

0.23

323

01.

6 ×

1 0 -

5 1+

, 3+

Iodi

neI

5312

6.90

447

113.

718

4.3

4.94

133

1008

.4(1

-)+

0.53

515

.52

0.21

441

.57

4.9

× 1

0 -5

1-, 1

+, 5

+, 7

+

Iridi

umIr

7719

2.21

724

6644

2822

.65

136

880

(4+

)+0.

926

41.1

20.

131

560

4 ×

1 0 -

7 3+

, 4+

, 5+

Iron

Fe26

55.8

4515

3828

617.

874

126

762.

5(3

+)-

0.04

13.8

10.

449

347

6.3

2+, 3

+

Kryp

ton

Kr36

83.7

98-

157.

36-

153.

220.

0037

493

112

1350

.8--

-1.

640.

248

9.08

1.5

× 1

0 -7

---

Lant

hanu

mLa

5713

8.90

5592

034

706.

146

187

538.

1(3

+)-

2.38

6.20

0.19

540

00.

0034

3+La

wre

nciu

mLr

103

[262

]16

27--

---

---

---

-(3

+)-

2--

---

---

---

-3+

Lead

Pb82

207.

232

7.46

1749

11.3

414

671

5.6

(2+

)-0.

1251

4.78

20.

130

179.

50.

001

2+, 4

+

Lith

ium

Li3

6.94

118

0.54

1342

0.53

515

252

0.2

(1+

)-3.

040

3.00

3.58

214

70.

0017

1+Lu

tetiu

mLu

7117

4.96

716

5234

029.

841

160

523.

5(3

+)-

2.3

220.

154

415

5.6

× 1

0 -5

3+M

agne

sium

Mg

1224

.305

650

1090

1.73

816

073

7.7

(2+

)-2.

356

8.48

1.02

312

82.

92+

Man

gane

seM

n25

54.9

3804

512

4620

617.

4712

771

7.3

(2+

)-1.

1812

.91

0.47

922

00.

112+

, 3+

, 4+

, 6+

, 7+

Mei

tner

ium

Mt

109

[268

]--

---

---

---

---

---

---

---

---

---

---

-M

ende

levi

umM

d10

1[2

58]

827

---

---

---

635

(3+

)-1.

7--

---

---

---

-2+

, 3+

Mer

cury

Hg80

200.

59-

38.8

335

6.73

13.6

151

1007

.1(2

+)+

0.85

352.

290.

140

59.1

16.

7 ×

1 0 -

61+

, 2+

Mol

ybde

num

Mo

4295

.94

2623

4639

10.2

813

968

4.3

(6+

)+0.

114

37.4

80.

251

600

1.1

× 1

0 -4

4+, 5

+, 6

+

Neo

dym

ium

Nd

6014

4.24

1024

3100

6.8

---

533.

1(3

+)-

2.32

7.14

0.19

028

50.

0033

2+,3

+

Neo

nN

e10

20.1

797

-24

8.59

-24

6.08

0.00

0899

971

2080

.7--

-0.

328

1.03

01.

71--

---

-N

eptu

nium

Np

93[2

37]

637

4000

20.4

5--

-60

4.5

(4+

)-1.

303.

200.

120

335

---

2+, 3

+, 4

+, 5

+, 6

+

Nic

kel

Ni

2858

.693

414

5529

138.

908

124

737.

1(2

+)-

0.25

717

.04

0.44

437

80.

009

2+, 3

+, 4

+

Nio

bium

Nb

4192

.906

3824

7747

448.

5714

665

2.1

(5+

)-0.

6530

0.26

569

00.

0017

4+, 5

+

Nitr

ogen

N7

14.0

067

-21

0.1

-19

5.79

0.00

1250

675

1402

.3(2

-)-

0.23

0.71

1.04

05.

570.

002

3-, 2

-,

1-, 1

+, 2

+,

3+, 4

+, 5

+

Nob

eliu

mN

o10

2[2

59]

827

---

---

---

642

(2+

)-2.

5--

---

---

---

-2+

, 3+

Osm

ium

Os

7619

0.23

3033

5012

22.6

113

584

0(4

+)+

0.68

757

.85

0.13

063

01.

8 ×

1 0 -

7 4+

, 6+

, 8+

Oxy

gen

08

15.9

994

-21

8.3

-18

2.9

0.00

1429

7313

13.9

(2-

)+1.

230.

440.

918

6.82

46.0

2-, 1

-

Palla

dium

Pd46

106.

4215

54.9

2963

12.0

2313

780

4.4

(2+

)+0.

915

16.7

40.

246

380

6.3

× 1

0 -7

2+, 4

+

Phos

phor

usP

1530

.973

462

44.2

277

1.82

311

010

11.8

(3-

)-0.

063

0.66

0.76

912

.40.

103-

, 3+

, 5+

Plat

inum

Pt78

195.

078

1768

.338

2521

.09

138

870

(4+

)+1.

1522

.17

0.13

349

03.

7 ×

1 0 -

7 2+

, 4+

Plut

oniu

mPu

94[2

44]

639.

432

3019

.816

---

584.

7(4

+)-

1.25

2.82

0.13

032

5--

-3+

, 4+

, 5+

, 6+

Polo

nium

Po84

[209

]25

496

29.

196

168

812.

1(4

+)+

0.73

13--

-10

0--

-2-

, 2+

, 4+

, 6+

*[ ]

indi

cate

s m

ass

of lo

nges

t-liv

ed is

otop

e

Major Oxidation States

Abundance in Earth’s Crust

Enthalpy of Vaporization

Specific Heat

Enthalpy of Fusion

Standard Reduction Potential (V)

(for elements from or to oxidation

state indicated)

First Ionization Energy (kJ/mol)

Atomic Radius (pm)

Density (g/ cm 3 ) (gases measured at STP)

Boiling Point (°C)

Melting Point (°C)

Atomic Mass* (amu)

Atomic Number

Symbol

Element

Page 74: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Reference Tables

Reference Tables 973

Tab

le R

-7 P

rop

ert

ies

of

Ele

men

ts (

con

tin

ued

)Po

tass

ium

K19

39.0

983

63.3

875

90.

856

227

418.

8(1

+)-

2.92

52.

330.

757

76.9

1.50

1+Pr

aseo

dym

ium

Pr59

140.

9076

593

532

906.

64--

-52

7(3

+)-

2.35

6.89

0.19

333

08.

7 ×

1 0 -

43+

, 4+

Prom

ethi

umPm

61[1

45]

1100

3000

7.26

4--

-54

0(3

+)-

2.29

7.7

---

290

---

3+Pr

otac

tiniu

mPa

9123

1.03

588

1568

---

15.3

7--

-56

8(5

+)-

1.19

12.3

4--

-47

0tr

ace

3+, 4

+, 5

+

Radi

umRa

88[2

26]

700

1737

522

050

9.3

(2+

)-2.

916

80.

095

125

trac

e2+

Rado

nRn

86[2

22]

-71

-61

.70.

0097

314

010

37--

-3

0.09

417

---

3+Rh

eniu

mRe

7518

6.20

731

8655

9621

.02

137

760

(7+

)+0.

415

60.4

30.

137

705

2.6

× 1

0 -7

3+, 4

+,

6+, 7

+

Rhod

ium

Rh45

102.

9055

1964

3695

12.4

513

471

9.7

(3+

)+0.

7626

.59

0.24

349

57

× 1

0 -8

3+, 4

+, 5

+

Roen

tgen

ium

Rg11

1[2

72]

---

---

---

---

---

---

---

---

---

---

---

Rubi

dium

Rb37

85.4

678

39.3

168

81.

532

248

403

(1+

)-2.

924

2.19

0.36

372

0.00

61+

Ruth

eniu

mRu

4410

1.07

2334

4150

12.3

713

471

0.2

(4+

)+0.

6838

.59

0.23

858

01

× 1

0 -7

2+, 3

+,

4+, 5

+

Ruth

erfo

rdiu

mRf

104

[261

]--

---

---

---

---

---

---

---

---

---

---

-Sa

mar

ium

Sm62

150.

3610

7218

037.

353

---

544.

5(3

+)-

2.3

8.62

0.19

717

56

× 1

0 -4

2+, 3

+

Scan

dium

Sc21

44.9

5591

1541

2830

2.98

516

263

3.1

(3+

)-2.

0314

.10.

568

318

0.00

263+

Seab

orgi

umSg

106

[266

]--

---

---

---

---

---

---

---

---

---

---

-Se

leni

umSe

3478

.96

221

685

4.81

911

994

1(1

-)-

0.11

6.69

0.32

195

.48

5 ×

1 0 -

6 2-

, 2+

, 4+

, 6+

Silic

onSi

1428

.058

814

1429

002.

3311

878

6.5

(4-

)-0.

143

50.2

10.

712

359

27.0

2+, 4

+

Silv

erAg

4710

7.86

8296

1.78

2162

10.4

914

473

1(1

+)+

0.79

9111

.28

0.23

525

58

× 1

0 -6

1+So

dium

Na

1122

.989

769

97.7

288

30.

968

186

495.

8(1

+)-

2.71

32.

601.

228

97.7

2.3

1+St

ront

ium

Sr38

87.6

277

713

822.

6321

554

9.5

(2+

)-2.

897.

430.

306

137

0.03

62+

Sulfu

rS

1632

.065

115.

244

4.7

1.96

103

999.

6(2

-)-

0.14

1.72

0.70

845

0.04

22-

, 4+

, 6+

Tant

alum

Ta73

180.

9479

3017

5458

16.6

514

676

1(5

+)-

0.81

36.5

70.

140

735

1.7

× 1

0 -4

4+, 5

+

Tech

netiu

mTc

43[9

8]21

5742

6511

.513

670

2(6

+)+

0.83

33.2

90.

240

550

---

2+, 4

+,

6+, 7

+

Tellu

rium

Te52

127.

6044

9.51

988

6.24

142

869.

3(2

-)-

1.14

17.4

90.

202

114.

11

× 1

0 -7

2-, 2

+,

4+, 6

+

Terb

ium

Tb65

158.

9253

413

5632

308.

219

---

565.

8(3

+)-

2.31

10.1

50.

182

295

1 ×

1 0 -

4 3+

, 4+

Thal

lium

Tl81

204.

3822

304

1473

11.8

517

058

9.4

(1+

)-0.

3363

4.14

0.12

916

55.

3 ×

1 0 -

51+

, 3+

Thor

ium

Th90

232.

0381

1842

4820

11.7

2--

-58

7(4

+)-

1.83

13.8

10.

118

530

6 ×

1 0 -

4 4+

Thul

ium

Tm69

168.

9342

115

4519

509.

321

---

596.

7(3

+)-

2.32

16.8

40.

160

250

5 ×

1 0 -

5 --

-Ti

nSn

5011

8.71

023

1.93

2602

7.31

140

708.

6(4

+)+

0.15

7.17

30.

227

290

2.2

× 1

0 -4

2+, 4

+

Tita

nium

Ti22

47.8

6716

6832

874.

507

147

658.

8(4

+)-

0.86

14.1

50.

523

425

0.66

2+, 3

+, 4

+

Tung

sten

W74

183.

8434

2255

5519

.25

139

770

(6+

)-0.

0952

.31

0.13

280

01.

1 ×

1 0 -

4 4+

, 5+

, 6+

Unu

nbiu

mU

ub11

2[2

85]

---

---

---

---

---

---

---

---

---

---

---

Unu

nhex

ium

Uuh

116

[291

]--

---

---

---

---

---

---

---

---

---

---

-U

nuno

ctiu

mU

uo11

8[2

94]

---

---

---

---

---

---

---

---

---

---

---

Unu

npen

tium

Uup

115

[288

]--

---

---

---

---

---

---

---

---

---

---

-U

nunq

uadi

umU

uq11

4[2

89]

---

---

---

---

---

---

---

---

---

---

---

Unu

ntriu

mU

ut11

3[2

84]

---

---

---

---

---

---

---

---

---

---

---

Ura

nium

U92

238.

0289

111

32.2

3927

19.0

5--

-59

7.6

(4+

)-1.

389.

140.

116

420

1.8

× 1

0 -4

3+, 4

+,

5+, 6

+

Vana

dium

V23

50.9

415

1910

3407

6.11

134

650.

9(5

+)-

0.23

621

.50.

489

453

0.01

92+

, 3+

, 4+

, 5+

Xeno

nXe

5413

1.29

3-

111.

7-

108

0.00

5897

113

111

70.4

(6+

)+2.

122.

270.

158

12.5

7tr

ace

---

Ytte

rbiu

mYb

7017

3.04

824

1196

6.57

---

603.

4(3

+)-

2.22

7.66

0.15

516

02.

8 ×

1 0 -

4 2+

, 3+

Yttr

ium

Y39

88.9

0585

1526

3336

4.47

218

060

0(3

+)-

2.37

11.4

0.29

838

00.

0029

3+Zi

ncZn

3065

.409

419.

5390

77.

1413

490

6.4

(2+

)-0.

7926

7.06

80.

388

119

0.00

792+

Zirc

oniu

mZr

4091

.224

1855

4409

6.51

116

064

0.1

(4+

)-1.

5521

.00

0.27

858

00.

013

4+

*[ ]

indi

cate

s m

ass

of lo

nges

t-liv

ed is

otop

e

Page 75: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

974 Reference Tables

Reference Tables

Table R-8 Solubility GuidelinesA substance is considered soluble if more than three grams of the substance dissolves in 100 mL of water. The more common rules are listed below.1. All common salts of the group 1 elements and ammonium ions are soluble.2. All common acetates and nitrates are soluble.3. All binary compounds of group 17 elements (other than F) with metals are soluble except those of silver, mercury(I),

and lead.4. All sulfates are soluble except those of barium, strontium, lead, calcium, silver, and mercury(I).5. Except for those in Rule 1, carbonates, hydroxides, oxides, sulfides, and phoshates are insoluble.

Solubility of Compounds in Water

Aluminum S S — S S — I S S I S I S D

Ammonium S S S S S S S S S — S S S S

Barium S S P S S I S S S S S I I D

Calcium S S P S S S S S S P S P P P

Copper(II) S S — S S — I — S I S I S I

Hydrogen S S — S S — — S S S S S S S

Iron(II) — S P S S — I S S I S I S I

Iron(III) — S — S S I I S S I S P P D

Lead(II) S S — S S I P P S P S I P I

Lithium S S S S S ? S S S S S P S S

Magnesium S S P S S S I S S I S P S D

Manganese(II) S S P S S — I S S I S P S I

Mercury(I) P I I S I P — I S I S I P I

Mercury(II) S S — S S P I P S P S I D I

Potassium S S S S S S S S S S S S S S

Silver P I I S I P — I S P S I P I

Sodium S S S S S S S S S D S S S S

Strontium S S P S S P S S S S S I P S

Tin(II) D S — S S O S D I S I S I

Tin(IV) S S — — S S I D — I S — S I

Zinc S S P S S P P S S P S I S I

S – soluble P – partially soluble I – insoluble D – decomposes

Hydr

oxid

eIo

dide

Nitr

ate

Oxi

de

Perc

hlor

ate

Phos

phat

eSu

lfate

Sufid

e

Chro

mat

e

Chlo

ride

Chlo

rate

Carb

onat

e

Brom

ide

Acet

ate

Page 76: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Reference Tables

Reference Tables 975

Table R-9 Specific Heat Values (J/g·K)Substance c Substance c Substance c

AI F 3 0.8948BaTi O 3 0.79418BeO 1.020Ca C 2 0.9785CaS O 4 0.7320CC l 4 0.85651C H 3 OH 2.55C H 2 OHC H 2 OH 2.413C H 3 C H 2 OH 2.4194CdO 0.3382CuS O 4 ·5 H 2 O 1.12

F e 3 C 0.5898FeW O 4 0.37735HI 0.22795 K 2 C O 3 0.82797MgC O 3 0.8957Mg(OH ) 2 1.321MgS O 4 0.8015MnS 0.5742N a 2 C O 3 1.0595NaF 1.116

NaV O 3 1.540Ni(CO ) 4 1.198Pb l 2 0.1678S F 6 0.6660SiC 0.6699Si O 2 0.7395SrC l 2 0.4769T b 2 O 3 0.3168TiC l 4 0.76535 Y 2 O 3 0.45397

Table R-10 Molal Freezing Point Depression and Boiling Point Elevation Constants

K fp Freezing Point K bp Boiling PointSubstance (C°kg/mol) (°C) (C°kg/mol) (°C)

A cetic acid 3.90 16.66 3.22 117.90Benzene 5.12 5.533 2.53 80.100Camphor 37.7 178.75 5.611 207.42Cyclohexane 20.0 6.54 2.75 80.725Cyclohexanol 39.3 25.15 --- ---Nitrobenzene 6.852 5.76 5.24 210.8Phenol 7.40 40.90 3.60 181.839Water 1.86 0.000 0.512 100.000

Table R-11 Heat of Formation Values∆ H f

(kJ/mol) (concentration of aqueous solutions is 1M)

Substance ∆H f

Ag(s) 0AgCl(s) -127.0AgCN(s) 146.0A l 2 O 3 -1675.7BaC l 2 (aq) -855.0BaS O 4 -1473.2BeO(s) -609.4BiC l 3 (s) -379.1B i 2 S 3 (s) -143.1B r 2 0CC l 4 (I) -128.2C H 4 (g) -74.6 C 2 H 2 (g) 227.4 C 2 H 4 (g) 52.4 C 2 H 6 (g) -84.0CO(g) -110.5C O 2 (g) -393.5C S 2 (I) 89.0Ca(s) 0CaC O 3 (s) -1206.9CaO(s) -634.9Ca(OH ) 2 (s) -985.2C l 2 (g) 0C o 3 O 4 (s) -891.0CoO(s) -237.9C r 2 O 3 (s) -1139.7

Substance ∆H f

CsCl(s) -443.0C s 2 S O 4 (s) -1443.0Cul(s) -67.8CuS(s) -53.1C u 2 S(s) -79.5CuS O 4 (s) -771.4 F 2 (g) 0FeC l 3 (s) -399.49FeO(s) -272.0FeS(s) -100.0F e 2 O 3 (s) -824.2F e 3 O 4 (s) -1118.4H(g) 218.0 H 2 (g) 0HBr(g) -36.3HCl(g) -92.3HCl(aq) -167.159HCN(aq) 108.9HCHO -108.6HCOOH -425.0HF(g) -273.3Hl(g) 26.5 H 2 O(I) -285.8 H 2 O(g) -241.8 H 2 O 2 (I) -187.8 H 3 P O 2 (I) -595.4

Substance ∆H f

H 3 P O 4 (aq) -1271.7 H 2 S(g) -20.6 H 2 S O 3 (aq) -608.8 H 2 S O 4 (aq) -814.0HgC l 2 (s) -224.3H g 2 C l 2 (s) -265.4H g 2 S O 4 (s) -743.1 l 2 (s) 0K(s) 0KBr(s) -393.8KMn O 4 (s) -837.2KOH -424.6LiBr(s) -351.2LiOH(s) -487.5Mn(s) 0MnC l 2 (aq) -555.0Mn(N O 3 ) 2 (aq) -635.5Mn O 2 (s) -520.0MnS(s) -214.2 N 2 (g) 0N H 3 (g) -45.9N H 4 Br(s) -270.8NO(g) 91.3N O 2 (g) 33.2 N 2 O(g) 81.6Na(s) 0

Substance ∆H f

NaBr(s) -361.1NaCl(s) -411.2NaHC O 3 (s) -950.8NaN O 3 (s) -467.9NaOH(s) -425.8N a 2 C O 3 (s) -1130.7N a 2 S(s) -364.8N a 2 S O 4 (s) -1387.1N H 4 Cl(s) -314.4 O 2 (g) 0 P 4 O 6 (s) -1640.1 P 4 O 10 (s) -2984.0PbB r 2 (s) -278.7PbC l 2 (s) -359.4S F 6 (g) -1220.5S O 2 (g) -296.8S O 3 (g) -454.5SrO(s) -592.0Ti O 2 (s) -944.0Tll(s) -123.8UC l 4 (s) -1019.2UC l 6 (s) -1092.0Zn(s) 0ZnC l 2 (aq) -415.1ZnO(s) -350.5ZnS O 4 (s) -982.8

Page 77: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

976 Supplemental Practice Problems

Chapter 2Section 2.1 1. The density of a substance is 48 g/mL. What is the volume of a sample that

is 19.2 g?

2. A 2.00-mL sample of Substance A has a density of 18.4 g/mL, and a 5.00-mL sample of Substance B has a density of 35.5 g/mL. Do you have an equal mass of Substances A and B?

Section 2.2 3. Express the following quantities in scientific notation.

a. 5,453,000 m e. 34,800 s

b. 300.8 kg f. 332,080,000 cm

c. 0.00536 ng g. 0.0002383 ms

d. 0.0120325 km h. 0.3048 mL

4. Solve the following problems. Express your answers in scientific notation.

a. 3 × 1 0 2 m + 5 × 1 0 2 m

b. 8 × 1 0 −5 m + 4 × 1 0 −5 m

c. 6.0 × 1 0 5 m + 2.38 × 1 0 6 m

d. 2.3 × 1 0 -3 L + 5.78 × 1 0 -2 L

e. 2.56 × 1 0 2 g - 1.48 × 1 0 2 g

f. 5.34 × 1 0 -3 L - 3.98 × 1 0 -3 L

g. 7.623 × 1 0 5 nm - 8.32 × 1 0 4 nm

h. 9.052 × 1 0 -2 s - 3.61 × 1 0 -3 s

5. Solve the following problems. Express your answers in scientific notation.

a. (8 × 1 0 3 m) × (1 × 1 0 5 m)

b. (4 × 1 0 2 m) × (2 × 1 0 4 m)

c. (5 × 1 0 -3 m) × (3 × 1 0 4 m)

d. (3 × 1 0 -4 m) × (3 × 1 0 -2 m)

e. (8 × 1 0 4 g) ÷ (4 × 1 0 3 mL)

f. (6 × 1 0 -3 g) ÷ (2 × 1 0 -1 mL)

g. (1.8 × 1 0 -2 g) ÷ (9 × 1 0 -5 mL)

h. (4 × 1 0 -4 g) ÷ (1 × 1 0 3 mL)

6. Perform the following conversions.

a. 96 kg to g e. 188 dL to L

b. 155 mg to g f. 3600 m to km

c. 15 cg to kg g. 24 g to pg

d. 584 µs to s h. 85 cm to nm

7. How many minutes are there in 5 days?

8. A car is traveling at 118 km/h. What is its speed in Mm/h?

Section 2.3 9. Three measurements of 34.5 m, 38.4 m, and 35.3 m are taken. If the accepted value of the measurement is 36.7 m, what is the percent error for each measurement?

10. Three measurements of 12.3 mL, 12.5 mL, and 13.1 mL are taken. The accepted value for each measurement is 12.8 mL. Calculate the percent error for each measurement.

Page 78: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 977

11. Determine the number of significant figures in each measurement.

a. 340,438 g e. 1.040 s

b. 87,000 ms f. 0.0483 m

c. 4080 kg g. 0.2080 mL

d. 961,083,110 m h. 0.0000481 g

12. Write the following in three significant figures.

a. 0.0030850 km c. 5808 mL

b. 3.0823 g d. 34.654 mg

13. Write the answers in scientific notation.

a. 0.005832 g c. 0.0005800 km

b. 386,808 ns d. 2086 L

14. Use rounding rules when you complete the following.

a. 34.3 m + 35.8 m + 33.7 m

b. 0.056 kg + 0.0783 kg + 0.0323 kg

c. 309.1 mL + 158.02 mL + 238.1 mL

d. 1.03 mg + 2.58 mg + 4.385 mg

e. 8.376 km - 6.153 km

f. 34.24 s - 12.4 s

g. 804.9 dm - 342.0 dm

h. 6.38 × 1 0 2 m - 1.57 × 1 0 2 m

15. Complete the following calculations. Round off the answers to the correct number of significant figures.

a. 34.3 cm × 12 cm d. 45.5 g ÷ 15.5 mL

b. 0.054 mm × 0.3804 mm e. 35.43 g ÷ 24.84 mL

c. 45.1 km × 13.4 km f. 0.0482 g ÷ 0.003146 mL

Chapter 3Section 3.2 1. A 3.5-kg iron shovel is left outside through the winter. The shovel, now

orange with rust, is rediscovered in the spring. Its mass is 3.7 kg. How much oxygen combined with the iron?

2. When 5.0 g of tin reacts with hydrochloric acid, the mass of the products, tin chloride and hydrogen, totals 8.1 g. How many grams of hydrochloric acid were used?

Section 3.4 3. A compound is analyzed and found to be 50.0% sulfur and 50.0% oxygen. If the total amount of the sulfur oxide compound is 12.5 g, how many grams of sulfur are there?

4. Two unknown compounds are analyzed. Compound I contains 5.63 g of tin and 3.37 g of chlorine, while Compound II contains 2.5 g of tin and 2.98 g of chlorine. Are the compounds the same?

Chapter 4Section 4.3 1. How many protons and electrons are in each of the following atoms?

a. gallium d. calcium

b. silicon e. molybdenum

c. cesium f. titanium

Page 79: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

978 Supplemental Practice Problems

Supplemental Practice Problems

2. What is the atomic number of each of the following elements?

a. an atom that contains 37 electrons

b. an atom that contains 72 protons

c. an atom that contains 1 electron

d. an atom that contains 85 protons

3. Use the periodic table to write the name and the symbol for each element identified in Question 2.

4. An isotope of copper contains 29 electrons, 29 protons, and 36 neutrons. What is the mass number of this isotope?

5. An isotope of uranium contains 92 electrons and 144 neutrons. What is the mass number of this isotope?

6. Use the periodic table to write the symbols for each of the following elements. Then, determine the number of electrons, protons, and neutrons each contains.

a. yttrium-88 d. bromine-79

b. arsenic-75 e. gold-197

c. xenon-129 f. helium-4

7. An element has two naturally occurring isotopes: 14 X and 15 X. 14 X has a mass of 14.00307 amu and a relative abundance of 99.63%. 15 X has a mass of 15.00011 amu and a relative abundance of 0.37%. Identify the unknown element.

8. Silver has two naturally occurring isotopes. Ag-107 has an abundance of 51.82% and a mass of 106.9 amu. Ag-109 has a relative abundance of 48.18% and a mass of 108.9 amu. Calculate the atomic mass of silver.

Chapter 5Section 5.1 1. What is the frequency of an electromagnetic wave that has a wavelength of

4.55 × 1 0 −3 m? 1.00 × 1 0 −12 m?

2. Calculate the wavelength of an electromagnetic wave with a frequency of 8.68 × 1 0 16 Hz; 5.0 × 1 0 14 Hz; and 1.00 × 1 0 6 Hz.

3. What is the energy of a quantum of visible light having a frequency of 5.45 × 1 0 14 s −1 ?

4. An X ray has a frequency of 1.28 × 1 0 18 s −1 . What is the energy of a quan-tum of the X ray?

Section 5.3 5. Write the ground-state electron configuration for the following.

a. nickel c. boron

b. cesium d. krypton

6. What element has the following ground-state electron configuration [He]2 s 2 ? [Xe]6 s 2 4 f 14 5 d 10 6 p 1 ?

7. Which element in period 4 has four electrons in its electron-dot structure?

8. Which element in period 2 has six electrons in its electron-dot structure?

9. Draw the electron-dot structure for each element in Question 5.

Page 80: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 979

Chapter 6Section 6.2 1. Identify the group, period, and block of an atom with the following elec-

tron configurations.

a. [He]2 s 2 2 p 1 b. [Kr]5 s 2 4 d 5 c. [Xe]6 s 2 5 f 14 6 d 5

2. Write the electron configuration for the element fitting each of the following descriptions.

a. a noble gas in the first period

b. a group 4 element in the fifth period

c. a group 14 element in the sixth period

d. a group 1 element in the seventh period

Section 6.3 3. Using the periodic table, rank each group of elements in order of increasing size.

a. calcium, magnesium, and strontium

b. oxygen, lithium, and fluorine

c. fluorine, cesium, and calcium

d. selenium, chlorine, and tellurium

e. iodine, krypton, and beryllium

Chapter 7Section 7.2 1. Explain the formation of an ionic compound from zinc and chlorine.

2. Explain the formation of an ionic compound from barium and nitrogen.

Section 7.3 3. Write the chemical formula of an ionic compound composed of the follow-ing pairs of ions.

a. calcium and arsenide

b. iron(III) and chloride

c. magnesium and sulfide

d. barium and iodide

e. gallium and phosphide

4. Determine the formula for ionic compounds composed of the following ions.

a. copper(II) and acetate c. calcium and hydroxide

b. ammonium and phosphate d. gold(III) and cyanide

5. Name the following compounds.

a. Co(OH ) 2 c. N a 3 P O 4 e. Sr I 2

b. Ca(Cl O 3 ) 2 d. K 2 C r 2 O 7 f. Hg F 2

Chapter 8Section 8.1 1. Draw the Lewis structure for each of the following molecules.

a. CC l 2 H 2 b. HF c. PC l 3 d. C H 4

Section 8.2 2. Name the following binary compounds.

a. S 4 N 2 c. S F 6 e. Si O 2

b. OC l 2 d. NO f. I F 7

3. Name the following acids: H 3 P O 4 , HBr, HN O 3 .

Page 81: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

980 Supplemental Practice Problems

Supplemental Practice Problems

Section 8.3 4. Draw the Lewis structure for each of the following.

a. CO c. N 2 O e. Si O 2

b. C H 2 O d. OC l 2 f. AlB r 3

5. Draw the Lewis resonance structure for C O 3 2− .

6. Draw the Lewis resonance structure for C H 3 C O 2 − .

7. Draw the Lewis structure for NO and I F 4 − .

Section 8.4 8. Determine the molecular geometry, bond angles, and hybrid of each molecule in Question 4.

Section 8.5 9. Determine whether each of the following molecules is polar or nonpolar.

a. C H 2 O b. B F 3 c. Si H 4 d. H 2 S

Chapter 9Section 9.1 Write skeleton equations for the following reactions.

1. Solid barium and oxygen gas react to produce solid barium oxide.

2. Solid iron and aqueous hydrogen sulfate react to produce aqueous iron(III) sulfate and gaseous hydrogen.

Write balanced chemical equations for the following reactions.

3. Liquid bromine reacts with solid phosphorus ( P 4 ) to produce solid diphosphorus pentabromide.

4. Aqueous lead(II) nitrate reacts with aqueous potassium iodide to produce solid lead(II) iodide and aqueous potassium nitrate.

5. Solid carbon reacts with gaseous fluorine to produce gaseous carbon tetrafluoride.

6. Aqueous carbonic acid reacts to produce liquid water and gaseous carbon dioxide.

7. Gaseous hydrogen chloride reacts with gaseous ammonia to produce solid ammonium chloride.

8. Solid copper(II) sulfide reacts with aqueous nitric acid to produce aqueous copper(II) sulfate, liquid water, and nitrogen dioxide gas.

Section 9.2 Classify each of the following reactions into as many types as possible.

9. 2Mo(s) + 3 O 2 (g) → 2Mo O 3 (s)

10. N 2 H 4 (l) + 3 O 2 (g) → 2N O 2 (g) + 2 H 2 O(l)

Write balanced chemical equations for the following decomposition reactions.

11. Aqueous hydrogen chlorite decomposes to produce water and gaseous chlorine(III) oxide.

12. Calcium carbonate(s) decomposes to produce calcium oxide(s) and carbon dioxide(g).

Use the activity series to predict whether each of the following single-replacement reactions will occur.

13. Al(s) + FeC l 3 (aq) → AlC l 3 (aq) + Fe(s)

Page 82: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 981

14. B r 2 (l) + 2LiI(aq) → 2LiBr(aq) + I 2 (aq)

15. Cu(s) + MgS O 4 (aq) → Mg(s) + CuS O 4 (aq)

Write chemical equations for the following chemical reactions.

16. Bismuth(III) nitrate(aq) reacts with sodium sulfide(aq), yielding bismuth(III) sulfide(s) plus sodium nitrate(aq).

17. Magnesium chloride(aq) reacts with potassium carbonate(aq), yielding magnesium carbonate(s) plus potassium chloride(aq).

Section 9.3 Write net ionic equations for the following reactions.

18. Aqueous solutions of barium chloride and sodium fluoride are mixed to form a precipitate of barium fluoride.

19. Aqueous solutions of copper(I) nitrate and potassium sulfide are mixed to form insoluble copper(I) sulfide.

20. Hydrobromic acid reacts with aqueous lithium hydroxide.

21. Perchloric acid reacts with aqueous rubidium hydroxide.

22. Nitric acid reacts with aqueous sodium carbonate.

23. Hydrochloric acid reacts with aqueous lithium cyanide.

Chapter 10Section 10.1 1. Determine the number of atoms in 3.75 mol of Fe.

2. Calculate the number of formula units in 12.5 mol of CaC O 3 .

3. How many moles of CaC l 2 contain 1.26 × 1 0 24 formula units of CaC l 2 ?

4. How many moles of Ag contain 4.59 × 1 0 25 atoms of Ag?

Section 10.2 5. Determine the mass in grams of 0.0458 mol of sulfur.

6. Calculate the mass in grams of 2.56 × 1 0 −3 mol of iron.

7. Determine the mass in grams of 125 mol of neon.

8. How many moles of titanium are contained in 71.4 g?

9. How many moles of lead are equivalent to 9.51 × 1 0 3 g of Pb?

10. Determine the number of moles of arsenic in 1.90 g of As.

11. Determine the number of atoms in 4.56 × 1 0 −2 g of sodium.

12. How many atoms of gallium are in 2.85 × 1 0 3 g of gallium?

13. Determine the mass in grams of 5.65 × 1 0 24 atoms of Se.

14. What is the mass in grams of 3.75 × 1 0 21 atoms of Li?

Section 10.3 15. How many moles of each element are in 0.0250 mol of K 2 Cr O 4 ?

16. How many moles of ammonium ions are in 4.50 mol of (N H 4 ) 2 C O 3 ?

17. Determine the molar mass of silver nitrate.

18. Calculate the molar mass of acetic acid (C H 3 COOH).

Page 83: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

982 Supplemental Practice Problems

Supplemental Practice Problems

19. Determine the mass of 8.57 mol of sodium dichromate (N a 2 C r 2 O 7 ).

20. Calculate the mass of 42.5 mol of potassium cyanide.

21. Determine the number of moles present in 456 g of Cu(N O 3 ) 2 .

22. Calculate the number of moles in 5.67 g of potassium hydroxide.

23. Calculate the number of each atom in 40.0 g of methanol (C H 3 OH).

24. What mass of sodium hydroxide contains 4.58 × 1 0 23 formula units?

Section 10.4 25. What is the percent by mass of each element in sucrose ( C 12 H 22 O 11 )?

26. Which compound has a greater percent by mass of chromium, K 2 Cr O 4 or K 2 C r 2 O 7 ?

27. Analysis of a compound indicates the percent composition 42.07% Na, 18.89% P, and 39.04% O. Determine its empirical formula.

28. A colorless liquid was found to contain 39.12% C, 8.76% H, and 52.12% O. Determine the empirical formula of the substance.

29. Analysis of a compound used in cosmetics reveals the compound contains 26.76% C, 2.21% H, 71.17% O and has a molar mass of 90.04 g/mol. Determine the molecular formula for this substance.

30. Eucalyptus leaves are the food source for panda bears. Eucalyptol is an oil found in these leaves. Analysis of eucalyptol indicates it has a molar mass of 154 g/mol and contains 77.87% C, 11.76% H, and 10.37% O. Determine the molecular formula of eucalyptol.

31. Beryl is a hard mineral that occurs in a variety of colors. A 50.0-g sample of beryl contains 2.52 g Be, 5.01 g Al, 15.68 g Si, and 26.79 g O. Determine its empirical formula.

32. Analysis of a 15.0-g sample of a compound used to leach gold from low-grade ores is 7.03 g Na, 3.68 g C, and 4.29 g N. Determine the empirical formula for this substance.

Section 10.5 33. Analysis of a hydrate of iron(III) chloride revealed that in a 10.00-g sample of the hydrate, 6.00 g is anhydrous iron(III) chloride and 4.00 g is water. Determine the formula and name of the hydrate.

34. When 25.00 g of a hydrate of nickel(II) chloride was heated, 11.37 g of water was released. Determine the name and formula of the hydrate.

Chapter 11Section 11.1 Interpret the following balanced chemical equations in terms of particles,

moles, and mass.

1. Mg + 2HCl → MgC l 2 + H 2

2. 2Al + 3CuS O 4 → A l 2 (S O 4 ) 3 + 3Cu

3. Cu(N O 3 ) 2 + 2KOH → Cu(OH ) 2 + 2KN O 3

4. Write and balance the equation for the decomposition of aluminum carbonate. Determine the possible mole ratios.

Page 84: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 983

5. Write and balance the equation for the formation of magnesium hydroxide and hydrogen from magnesium and water. Determine the possible mole ratios.

Section 11.2 6. Some antacid tablets contain aluminum hydroxide. The aluminum hydroxide reacts with stomach acid according to the equation: Al(OH ) 3 + 3HCl → AlC l 3 + 3 H 2 O. Determine the moles of acid neutralized if a tablet contains 0.200 mol of Al(OH ) 3 .

7. Chromium reacts with oxygen according to the equation: 4Cr + 3 O 2 → 2C r 2 O 3 . Determine the moles of chromium(III) oxide produced when 4.58 mol of chromium is allowed to react.

8. Space vehicles use solid lithium hydroxide to remove exhaled carbon dioxide according to the equation: 2LiOH + C O 2 → L i 2 C O 3 + H 2 O. Determine the mass of carbon dioxide removed if the space vehicle carries 42.0 mol of LiOH.

9. Some of the sulfur dioxide released into the atmosphere is converted to sulfuric acid according to the equation: 2S O 2 + 2 H 2 O + O 2 → 2 H 2 S O 4 . Determine the mass of sulfuric acid formed from 3.20 mol of sulfur dioxide.

10. How many grams of carbon dioxide are produced when 2.50 g of sodium hydrogen carbonate reacts with excess citric acid according to the equa-tion: 3NaHC O 3 + H 3 C 6 H 5 O 7 → N a 3 C 6 H 5 O 7 + 3C O 2 + 3 H 2 O?

11. Aspirin ( C 9 H 8 O 4 ) is produced when salicylic acid ( C 7 H 6 O 3 ) reacts with acetic anhydride ( C 4 H 6 O 3 ) according to the equation: C 7 H 6 O 3 + C 4 H 6 O 3 → C 9 H 8 O 4 + H C 2 H 3 O 2 . Determine the mass of aspi-rin produced when 150.0 g of salicylic acid reacts with an excess of acetic anhydride.

Section 11.3 12. Chlorine reacts with benzene to produce chlorobenzene and hydrogen chloride, C l 2 + C 6 H 6 → C 6 H 5 Cl + HCl. Determine the limiting reactant if 45.0 g of benzene reacts with 45.0 g of chlorine, the mass of the excess reactant after the reaction is complete, and the mass of chlorobenzene produced.

13. Nickel reacts with hydrochloric acid to produce nickel(II) chloride and hydrogen according to the equation: Ni + 2HCl → NiC l 2 + H 2 . If 5.00 g of Ni and 2.50 g of HCl react, determine the limiting reactant, the mass of the excess reactant after the reaction is complete, and the mass of nickel(II) chloride produced.

Section 11.4 14. Tin(IV) iodide is prepared by reacting tin with iodine. Write the balanced chemical equation for the reaction. Determine the theoretical yield if a 5.00-g sample of tin reacts in an excess of iodine. Determine the percent yield if 25.0 g of Sn I 4 was recovered.

15. Gold is extracted from gold-bearing rock by adding sodium cyanide in the presence of oxygen and water, according to the reaction: 4Au(s) + 8NaCN(aq) + O 2 (g) + 2 H 2 O(l) → 4NaAu(CN ) 2 (aq) + NaOH(aq). Determine the theoretical yield of NaAu(CN ) 2 if 1000.0 g of gold-bearing rock is used, which contains 3.00% gold by mass. Determine the percent yield of NaAu(CN ) 2 if 38.790 g of NaAu(CN ) 2 is recovered.

Page 85: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

984 Supplemental Practice Problems

Supplemental Practice Problems

Chapter 12Section 12.1 1. Calculate the ratio of effusion rates for methane (C H 4 ) and nitrogen.

2. Calculate the molar mass of butane. Butane’s rate of diffusion is 3.8 times slower than that of helium.

3. What is the total pressure in a canister that contains oxygen gas at a partial pressure of 804 mm Hg, nitrogen at a partial pressure of 220 mm Hg, and hydrogen at a partial pressure of 445 mm Hg?

4. Calculate the partial pressure of neon in a flask that has a total pressure of 1.87 atm. The flask contains krypton at a partial pressure of 0.77 atm and helium at a partial pressure of 0.62 atm.

Chapter 13Section 13.1 1. The pressure of air in a 2.25-L container is 1.20 atm. What is the new

pressure if the sample is transferred to a 6.50-L container? Temperature is constant.

2. The volume of a sample of hydrogen gas at 0.997 atm is 5.00 L. What will be the new volume if the pressure is decreased to 0.977 atm? Temperature is constant.

3. A gas at 55.0°C occupies a volume of 3.60 L. What volume will it occupy at 30.0°C? Pressure is constant.

4. The volume of a gas is 0.668 L at 66.8°C. At what Celsius temperature will the gas have a volume of 0.942 L, assuming pressure remains constant?

5. The pressure in a bicycle tire is 1.34 atm at 33.0°C. At what temperature will the pressure inside the tire be 1.60 atm? Volume is constant.

6. If a sample of oxygen gas has a pressure of 810 torr at 298 K, what will be its pressure if its temperature is raised to 330 K?

7. Air in a tightly sealed bottle has a pressure of 0.978 atm at 25.5°C. What will be its pressure if the temperature is raised to 46.0°C?

8. Hydrogen gas at a temperature of 22.0°C that is confined in a 5.00-L cylinder exerts a pressure of 4.20 atm. If the gas is released into a 10.0-L reaction vessel at a temperature of 33.6°C, what will be the pressure inside the reaction vessel?

9. A sample of neon gas at a pressure of 1.08 atm fills a flask with a volume of 250 mL at a temperature of 24.0°C. If the gas is transferred to another flask at 37.2°C and a pressure of 2.25 atm, what is the volume of the new flask?

Section 13.2 10. What volume of beaker contains exactly 2.23 × 1 0 -2 mol of nitrogen gas at STP?

11. How many moles of air are in a 6.06-L tire at STP?

12. How many moles of oxygen are in a 5.5-L canister at STP?

13. What mass of helium is in a 2.00-L balloon at STP?

14. What volume will 2.3 kg of nitrogen gas occupy at STP?

Page 86: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 985

15. Calculate the number of moles of gas that occupy a 3.45-L container at a pressure of 150 kPa and a temperature of 45.6°C.

16. What is the pressure in torr that a 0.44-g sample of carbon dioxide gas will exert at a temperature of 46.2°C when it occupies a volume of 5.00 L?

17. What is the molar mass of a gas that has a density of 1.02 g/L at 0.990 atm pressure and 37°C?

18. Calculate the grams of oxygen gas present in a 2.50-L sample kept at 1.66 atm pressure and a temperature of 10.0°C.

Section 13.3 19. What volume of oxygen gas is needed to completely combust 0.202 L of butane gas ( C 4 H 10 )?

20. Determine the volume of methane gas (C H 4 ) needed to react completely with 0.660 L of O 2 gas to form methanol (C H 3 OH).

21. Calculate the mass of hydrogen peroxide needed to obtain 0.460 L of oxygen gas at STP. 2 H 2 O 2 (aq) → 2 H 2 O(l) + O 2 (g)

22. When potassium chlorate is heated in the presence of a catalyst such as manganese dioxide, it decomposes to form solid potassium chloride and oxygen gas: 2KCl O 3 (s) → 2KCl(s) + 3 O 2 (g). How many liters of oxygen will be produced at STP if 1.25 kg of potassium chlorate decomposes completely?

Chapter 14Section 14.2 1. What is the percent by mass of a sample of ocean water that is found to

contain 1.36 g of magnesium ions per 1000 g?

2. What is the percent by mass of iced tea containing 0.75 g of aspartame in 250 g of water?

3. A bottle of hydrogen peroxide is labeled 3%. If you pour out 50 mL of hydrogen peroxide solution, what volume is hydrogen peroxide?

4. If 50 mL of pure acetone is mixed with 450 mL of water, what is the per-cent volume?

5. Calculate the molarity of 1270 g of K 3 P O 4 in 4.0 L aqueous solution.

6. What is the molarity of 90.0 g of N H 4 Cl in 2.25 L aqueous solution?

7. Which is more concentrated, 25 g of NaCl dissolved in 500 mL of water or a 10% solution of NaCl (percent by mass)?

8. Calculate the mass of NaOH required to prepare a 0.343M solution dissolved in 2500 mL of water.

9. Calculate the volume required to dissolve 11.2 g of CuS O 4 to prepare a 0.140M solution.

10. How would you prepare 500 mL of a solution that has a new concentration of 4.5M if the stock solution is 11.6M?

11. Caustic soda is 19.1M NaOH and is diluted for household use. What is the household concentration if 10 mL of the concentrated solution is diluted to 400 mL?

Page 87: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

986 Supplemental Practice Problems

Supplemental Practice Problems

12. What is the molality of a solution containing 63.0 g of HN O 3 in 0.500 kg of water?

13. What is the molality of an acetic acid solution containing 0.500 mol of H C 2 H 3 O 2 in 0.800 kg of water?

14. What mass of ethanol ( C 2 H 5 OH) will be required to prepare a 2.00m solution in 8.00 kg of water?

15. Determine the mole fraction of nitrogen in a gas mixture containing 0.215 mol N 2 , 0.345 mol O 2 , 0.023 mol C O 2 , and 0.014 mol S O 2 . What is the mole fraction of N 2 ?

16. A necklace contains 4.85 g of gold, 1.25 g of silver, and 2.40 g of copper. What is the mole fraction of each metal?

Section 14.3 17. Calculate the mass of gas dissolved at 150.0 kPa, if 0.35 g of the gas dis-solves in 2.0 L of water at 30.0 kPa.

18. At which depth, 10 m or 40 m, will a scuba diver have more nitrogen dissolved in the bloodstream?

Section 14.4 19. Calculate the freezing point and boiling point of a solution containing 6.42 g of sucrose ( C 12 H 22 O 11 ) in 100.0 g of water.

20. Calculate the freezing point and boiling point of a solution containing 23.7 g of copper(II) sulfate in 250.0 g of water.

21. Calculate the freezing point and boiling point of a solution containing 0.15 mol of the molecular compound naphthalene in 175 g of benzene ( C 6 H 6 ).

Chapter 15Section 15.1 1. What is the equivalent in joules of 126 Calories?

2. Convert 455 kilojoules to kilocalories.

3. How much heat is required to warm 122 g of water by 23.0°C?

4. The temperature of 55.6 grams of a material decreases by 14.8°C when it loses 3080 J of heat. What is its specific heat?

5. What is the specific heat of a metal if the temperature of a 12.5-g sample increases from 19.5°C to 33.6°C when it absorbs 37.7 J of heat?

Section 15.2 6. A 75.0-g sample of a metal is placed in boiling water until its temperature is 100.0°C. A calorimeter contains 100.00 g of water at a temperature of 24.4°C. The metal sample is removed from the boiling water and immediately placed in water in the calorimeter. The final temperature of the metal and water in the calorimeter is 34.9°C. Assuming that the calo-rimeter provides perfect insulation, what is the specific heat of the metal?

Section 15.3 7. Use Table 15.4 to determine how much heat is released when 1.00 mol of gaseous methanol condenses to a liquid.

8. Use Table 15.4 to determine how much heat must be supplied to melt 4.60 g of ethanol.

Page 88: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 987

Section 15.4 9. Calculate ∆ H rxn for the reaction 2C(s) + 2 H 2 (g) → C 2 H 4 (g), given the following thermochemical equations:

2C O 2 (g) + 2 H 2 O(l) → C 2 H 4 (g) + 3 O 2 (g) ∆H = 1411 kJ

C(s) + O 2 (g) → C O 2 (g) ∆H = −393.5 kJ

2 H 2 (g) + O 2 (g) → 2 H 2 O(l) ∆H = −572 kJ

10. Calculate ∆ H rxn for the reaction HCl(g) + N H 3 (g) → N H 4 Cl(s), given the following thermochemical equations:

H 2 (g) + C l 2 (g) → 2HCl(g) ∆H = −184 kJ

N 2 (g) + 3 H 2 (g) → 2N H 3 (g) ∆H = −92 kJ

N 2 (g) + 4 H 2 (g) + C l 2 (g) → 2N H 4 Cl(s) ∆H = −628 kJ

Use standard enthalpies of formation from Table 15.5 and Table R-11 to calculate ∆ H° rxn for each of the following reactions.

11. 2HF(g) → H 2 (g) + F 2 (g)

12. 2 H 2 S(g) + 3 O 2 (g) → 2 H 2 O(l) + 2S O 2 (g)

Section 15.5 Predict the sign of ∆ S system for each reaction or process.

13. FeS(s) → F e 2+ (aq) + S 2− (aq)

14. S O 2 (g) + H 2 O(l) → H 2 S O 3 (aq)

Determine if each of the following processes or reactions is spontaneous or nonspontaneous.

15. ∆ H system = 15.6 kJ, T = 415 K, ∆ S system = 45 J/K

16. ∆ H system = 35.6 kJ, T = 415 K, ∆ S system = 45 J/K

Chapter 16Section 16.1 1. In the reaction A → 2B, suppose that [A] changes from 1.20 mol/L

at time = 0 to 0.60 mol/L at time = 3.00 min and that [B] = 0.00 mol/L at time = 0.

a. What is the average rate at which A is consumed in mol/(L∙min)?

b. What is the average rate at which B is produced in mol/(L∙min)?

Section 16.3 2. What are the overall reaction orders in Practice Problems 19 to 22 on page 577?

3. If halving [A] in the reaction A → B causes the initial rate to decrease to one-fourth its original value, what is the probable rate law for the reaction?

4. Use the data below and the method of initial rates to determine the rate law for the reaction 2NO(g) + O 2 (g) → 2N O 2 (g).

Formation of N O 2 Data

TrialInitial [NO]

(M)Initial [ O 2 ]

(M)Initial Rate (mol/(L·s))

1 0.030 0.020 0.0041

2 0.060 0.020 0.0164

3 0.030 0.040 0.0082

Page 89: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

988 Supplemental Practice Problems

Supplemental Practice Problems

Section 16.4 5. The rate law for the reaction in which 1 mol of cyclobutane ( C 4 H 8 ) decomposes to 2 mol of ethylene ( C 2 H 4 ) at 1273 K is Rate = (87 s −1 )[ C 4 H 8 ]. What is the instantaneous rate of this reaction when

a. [ C 4 H 8 ] = 0.0100 mol/L?

b. [ C 4 H 8 ] = 0.200 mol/L?

Chapter 17Section 17.1 Write equilibrium constant expressions for the following equilibria.

1. N 2 (g) + O 2 (g) 2NO

2. 3 O 2 (g) 2 O 3 (g)

3. P 4 (g) + 6 H 2 (g) 4P H 3 (g)

4. CC l 4 (g) + HF(g) CFC l 2 (g) + HCl(g)

5. 4N H 3 (g) + 5 O 2 (g) 4NO(g) + 6 H 2 O(g)

Write equilibrium constant expressions for the following equilibria.

6. N H 4 Cl(s) N H 3 (g) + HCl(g)

7. S O 3 (g) + H 2 O(l) H 2 S O 4 (l)

8. 2N a 2 O 2 (s) + 2C O 2 (g) 2N a 2 C O 3 (s) + O 2 (g)

Calculate K eq for the following equilibria.

9. H 2 (g) + I 2 (g) 2HI(g)

[ H 2 ] = 0.0109, [ I 2 ] = 0.00290, [HI] = 0.0460

10. I 2 (s) I 2 (g)

[ I 2 (g)] = 0.0665

Section 17.3 11. At a certain temperature, K eq = 0.0211 for the equilibrium PC l 5 (g) PC l 3 (g) + C l 2 (g).

a. What is [C l 2 ] in an equilibrium mixture containing 0.865 mol/L PC l 5 and 0.135 mol/L PC l 3 ?

b. What is [PC l 5 ] in an equilibrium mixture containing 0.100 mol/L PC l 3 and 0.200 mol/L C l 2 ?

12. Use the K sp value for zinc carbonate given in Table 17.4 to calculate its molar solubility at 298 K.

13. Use the K sp value for iron(II) hydroxide given in Table 17.4 to calculate its molar solubility at 298 K.

14. Use the K sp value for silver carbonate given in Table 17.4 to calculate [A g + ] in a saturated solution at 298 K.

15. Use the K sp value for calcium phosphate given in Table 17.4 to calculate [C a 2+ ] in a saturated solution at 298 K.

16. Does a precipitate form when equal volumes of 0.0040M MgC l 2 and 0.0020M K 2 C O 3 are mixed? If so, identify the precipitate.

17. Does a precipitate form when equal volumes of 1.2 × 1 0 -4 M AlC l 3 and 2.0 × 1 0 -3 M NaOH are mixed? If so, identify the precipitate.

Page 90: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 989

Chapter 18Section 18.1 1. Write the balanced formula equation for the reaction between zinc and

nitric acid.

2. Write the balanced formula equation for the reaction between magnesium carbonate and sulfuric acid.

3. Identify the base in the reaction H 2 O(l) + C H 3 N H 2 (aq) → O H - (aq) + C H 3 N H 3 + (aq).

4. Identify the conjugate base described in the reaction in Practice Problems 1 and 2.

5. Write the steps in the complete ionization of hydrosulfuric acid.

6. Write the steps in the complete ionization of carbonic acid.

Section 18.2 7. Write the acid ionization equation and ionization constant expression for formic acid (HCOOH).

8. Write the acid ionization equation and ionization constant expression for the hydrogen carbonate ion (HC O 3− ).

9. Write the base ionization constant expression for ammonia.

10. Write the base ionization expression for aniline ( C 6 H 5 N H 2 ).

Section 18.3 11. Is a solution in which [ H + ] = 1.0 × 1 0 −5 M acidic, basic, or neutral?

12. Is a solution in which [O H - ] = 1.0 × 1 0 −11 M acidic, basic, or neutral?

13. What is the pH of a solution in which [ H + ] = 4.5 × 1 0 −4 M?

14. Calculate the pH and pOH of a solution in which [O H - ] = 8.8 × 1 0 −3 M.

15. Calculate the pH and pOH of a solution in which [ H + ] = 2.7 × 1 0 −6 M.

16. What is [ H + ] in a solution having a pH of 2.92?

17. What is [O H - ] in a solution having a pH of 13.56?

18. What is the pH of a 0.00067M H 2 S O 4 solution?

19. What is the pH of a 0.000034M NaOH solution?

20. The pH of a 0.200M HBrO solution is 4.67. What is the acid’s K a ?

21. The pH of a 0.030M C 2 H 5 COOH solution is 3.20. What is the acid’s K a ?

Section 18.4 22. Write the formula equation for the reaction between hydriodic acid and beryllium hydroxide.

23. Write the formula equation for the reaction between perchloric acid and lithium hydroxide.

24. In a titration, 15.73 mL of 0.2346M HI solution neutralizes 20.00 mL of a LiOH solution. What is the molarity of the LiOH?

25. What is the molarity of a caustic soda (NaOH) solution if 35.00 mL of solution is neutralized by 68.30 mL of 1.250M HCl?

Page 91: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

990 Supplemental Practice Problems

Supplemental Practice Problems

26. Write the chemical equation for the hydrolysis reaction that occurs when sodium hydrogen carbonate is dissolved in water. Is the resulting solution acidic, basic, or neutral?

27. Write the chemical equation for any hydrolysis reaction that occurs when cesium chloride is dissolved in water. Is the resulting solution acidic, basic, or neutral?

Chapter 19Section 19.1 Identify the following information for each problem. What element is

oxidized? Reduced? What is the oxidizing agent? Reducing agent?

1. 2P + 3C l 2 → 2PC l 3

2. C + H 2 O → CO + H 2

3. Cl O 3 − + As O 2 − → As O 4 3− + C l −

4. Determine the oxidation number for each element in the following compounds.

a. N a 2 Se O 3

b. HAuC l 4

c. H 3 B O 3

5. Determine the oxidation number for the following compounds or ions.

a. P 4 O 8

b. N a 2 O 2 (Hint: This is like H 2 O 2 .)

c. As O 4 −3

Section 19.2 6. How many electrons will be lost or gained in each of the following half-reactions? Identify whether each is an oxidation or reduction.

a. Cr → C r 3+

b. O 2 → O 2−

c. F e +2 → F e 3+

7. Balance the following reaction by the oxidation number method: Mn O 4 − + C H 3 OH → Mn O 2 + HCHO (acidic). (Hint: Assign the oxida-tion of hydrogen and oxygen as usual, and solve for the oxidation number of carbon.)

8. Balance the following reaction by the oxidation number method: Zn + HN O 3 → ZnO + N O 2 + N H 3

9. Use the oxidation number method to balance these net ionic equations.

a. Se O 3 2− + I − → Se + I 2 (acidic solution)

b. Ni O 2 + Se O 3 2− → Ni(OH ) 2 + S O 3 2− (acidic solution)

Use the half-reaction method to balance the following redox equations.

10. Zn(s) + HCl(aq) → ZnC l 2 (aq) → H 2 (g)

11. Mn O 4 − (aq) + H 2 S O 3 (aq) → M n 2+ (aq) + HS O 4 − (aq) + H 2 O(l) (acidic solution)

12. N O 2 (aq) + O H − (aq) → N O 2 − (aq) + N O 3 − (aq) + H 2 O(l) (basic solution)

13. H S − (aq) + I O 3 − (aq) → I − (aq) + S(s) + H 2 O(l) (acidic solution)

Page 92: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Supplemental Practice Problems

Supplemental Practice Problems 991

Chapter 20Section 20.1 1. Calculate the cell potential for each of the following.

a. C o 2+ (aq) + Al(s) → Co(s) + A l 3+ (aq)

b. H g 2+ (aq) + Cu(s) → C u 2+ (aq) + Hg(s)

c. Zn(s) + B r 2 (l) → B r 1− (aq) + Z n 2+ (aq)

2. Calculate the cell potential to determine whether the reaction will occur spontaneously or not spontaneously. For each reaction that is not spontaneous, correct the reactants or products so that a reaction would occur spontaneously.

a. N i 2+ (aq) + Al(s) → Ni(s) + A l 3+ (aq)

b. A g + (aq) + H 2 (g) → Ag(s) + H + (aq)

c. F e 2+ (aq) + Cu(s) → Fe(s) + C u 2+ (aq)

Chapter 21Section 21.2 1. Draw the structure of the following branched alkanes.

a. 2,2,4-trimethylheptane

b. 4-isopropyl-2-methylnonane

2. Draw the structure of each of the following cycloalkanes.

a. 1-ethyl-2-methylcyclobutane

b. 1,3-dibutylcyclohexane

Section 21.3 3. Draw the structure of each of the following alkenes.

a. 1,4-hexadiene c. 4-propyl-1-octene

b. 2,3-dimethyl-2-butene d. 2,3-diethylcyclohexene

Chapter 22Section 22.1 1. Draw the structures of the following alkyl halides.

a. chloroethane d. 1,3-dibromocyclohexane

b. chloromethane e. 1,2-dibromo-3-chloropropane

c. 1-fluoropentane

Chapter 24Section 24.2 1. Write balanced equations for each of the following decay processes.

a. alpha emission of 96 244 Cm c. beta emission of 83

210 Bi

b. positron emission of 33 70 As d. electron capture by 51

116 Sb

2. 20 47 Ca → β + ?

3. 95 240 Am + ? → 97

243 Bk + n

4. How much time has passed if 1/8 of an original sample of radon-222 is left? Use Table 24.5 for half-life information.

5. If a basement air sample contains 3.64 μg of radon-222, how much radon will remain after 19 days?

6. Cobalt-60, with a half-life of 5 years, is used in cancer radiation treatments. If a hospital purchases 30.0 g, how much would be left after 15 years?

Page 93: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

992 Solutions to Selected Practice Problems

Chapter 1No practice problems

Chapter 2 1. No; the density of aluminum is 2.7 g/c m 3 ; the density

of the cube is 20g

_ 5c m 3

= 4 g/c m 3 .

3. volume = mass

_ density

= 147 g

_ 7.00 g/mL

= 21.0 mL

volume = 20.0 mL + 21.0 mL = 41.0 mL

11. a. 7 × 1 0 2 e. 5.4 × 1 0 -3

b. 3.8 × 1 0 4 f. 6.87 × 1 0 -6

c. 4.5 × 1 0 6 g. 7.6 × 1 0 -8

d. 6.85 × 1 0 11 h. 8 × 1 0 -10

13. a. 7 × 1 0 −5 c. 2 × 1 0 2

b. 3 × 1 0 8 d. 5 × 1 0 -12

15. a. (4 × 1) × 1 0 2 + 8 = 4 × 1 0 10

b. (2 × 3) × 1 0 -4 + 2 = 6 × 1 0 -2

c. (6 ÷ 2) × 1 0 2 - 1 = 3 × 1 0 1

d. (8 ÷ 4) × 1 0 4 - 1 = 2 × 1 0 3

17. a. 16 g salt

__ 100 g solution

; 100 g solution

__ 16 g salt

b. 1.25 g

_ 1 mL

; 1 mL _

1.25 g

c. 25 m _

1 s ;

1s _

25 m

19. a. 360 s × 1000 ms

_ 1 s

= 360,000 ms

b. 4800 g × 1 kg

_ 1000 g

= 4.8 kg

c. 5600 dm × 1 m _

10 dm = 560 m

d. 72 g × 1000 mg

_ 1 g

= 72,000 mg

e. 2.45 × 1 0 2 ms × 1 s _

1000 ms = 0.245 s

f. 5 μm × 1 mm _

1000 μm × 1 m

_ 1000 mm

× 1 km _

1000 m

= 5 × 1 0 −9 km

g. 6.800 × 1 0 3 cm × 1 m _

100 cm × 1 km

_ 1000 m

= 6.800 × 1 0 -2 km

h. 2.5 × 1 0 1 kg × 1 Mg

__ 1000 kg

= 0.025 Mg

21. 65 mi _

1 h × 1 km

_ 0.62 mi

= 105 km/h

23. mass = (volume)(density) = (185 mL)(1.02 g/mL)

mass = 189 g vinegar

(189 g vinegar) ( 5.00 g acetic acid

__ 100 g vinegar

) = 9.45 g acetic acid

33. 0.11 _

1.59 × 100 = 6.92%

0.10 _

1.59 × 100 = 6.29%

0.12 _

1.59 × 100 = 7.55%

Note: The answers are reported in three significant

figures because student error is the difference between

the actual value (1.59 g/c m 3 ) and the measured value.

35. a. 4 b. 7 c. 5 d. 3

37. two significant figures: 1.0 × 1 0 1 , 1.0 × 1 0 2 , 1.0 × 1 0 3

three significant figures: 1.00 × 1 0 1 , 1.00 × 1 0 2 ,

1.00 × 1 0 3

four significant figures: 1.000 × 1 0 1 , 1.000 × 1 0 2 ,

1.000 × 1 0 3

39. a. 5.482 × 1 0 -4 g c. 3.087 × 1 0 8 mm

b. 1.368 × 1 0 5 kg d. 2.014 mL

41. a. 4.32 × 1 0 3 cm - 1.6 × 1 0 6 mm

= 4.32 × 1 0 3 cm - 16 × 1 0 6 cm

= 4.32 × 1 0 3 cm - 16,000 × 1 0 3 cm

= −15,995.68 × 1 0 3 cm = -16.0 × 1 0 6 cm

b. 2.12 × 1 0 7 mm + 1.8 × 1 0 3 cm

= 2.12 × 1 0 7 mm + 1.8 × 1 0 4 mm

= 2120 × 1 0 4 mm + 1.8 × 1 0 4 mm

= 2121.8 × 1 0 4 mm = 2.12 × 1 0 7 mm

43. a. 2.0 m/s c. 2.00 m/s

b. 3.00 m/s d. 2.9 m/s

Chapter 3 5. amount of bromine that reacted = 100.0 - 8.5 = 91.5 g

amount of compound formed = 100.0 + 10.3 - 8.5

= 101.8 g

7. mas s reactants = mas s products

mas s sodium + mas s chlorine = mas s sodium chloride

mas s sodium = 15.6 g

mas s sodium chloride = 39.7 g

Substituting and solving for mas s chlorine yields

15.6 g + mas s chlorine = 39.7 g

mas s chlorine = 39.7 g - 15.6 g = 24.1 g used in the

reaction.

Because the sodium reacts with excess chlorine,

all of the sodium is used in the reaction; that is,

15.6 g of sodium are used in the reaction.

9. 157.5 g - 106.5 g = 51.0 g

Yes. Mass of reactants equals mass of products.

19. percent by mass hydrogen = mass hydrogen

_ mass compound × 100

percent by mass hydrogen = 12.4 g

_ 78.0 g

× 100 = 15.9%

Page 94: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Solutions to Selected Practice Problems

Solutions to Selected Practice Problems 993

21. mas s xy = 3.50 g + 10.5 g = 14.0 g

percent by mas s x = mas s x

_ mas s xy × 100

percent by mas s x = 3.50 g

_ 14.0 g

× 100 = 25.0%

percent by mas s y = mas s y

_ mas s xy × 100

percent by mas s y = 10.5 g

_ 14.0 g

× 100 = 75.0%

23. No, you cannot be sure. Having the same mass per-

centage of a single element does not guarantee that

the composition of each compound is the same.

Chapter 4 13. dysprosium 15. Yes. 9

17. 25 protons, 25 electrons, 30 neutrons, manganese

19. N-14 is more abundant because the atomic mass is

closer to 14 than 15.

Chapter 5 1. c = λν

ν = c / λ

ν = 3.00 × 1 0 8 m/s

__ 4.90 × 1 0 -7 m

= 6.12 × 1 0 14 Hz

3. 3.00 × 1 0 8 m/s

5. a. E photon = λν = (6.626 × 1 0 -34 J·s)(6.32 × 1 0 20 s -1 )

= 4.19 × 1 0 -13 J

b. E photon = λν = (6.626 × 1 0 -34 J·s)(9.50 × 1 0 13 s -1 )

= 6.29 × 1 0 -20 J

c. E photon = λν = (6.626 × 1 0 -34 J·s)(1.05 × 1 0 16 s -1 )

= 6.96 × 1 0 -18 J

7. E photon = hc / λ

E photon = (6.626 × 1 0 -34 J·s)(3.00 × 1 0 8 m/s)

___ 1.25 × 1 0 -1 m

= 1.59 × 1 0 -24 J

21. a. bromine (35 electrons): [Ar]4 s 2 3 d 10 4 p 5

b. strontium (38 electrons): [Kr]5 s 2

c. antimony (51 electrons): [Kr]5 s 2 4 d 10 5 p 3

d. rhenium (75 electrons): [Xe]6 s 2 4 f 14 5 d 5

e. terbium (65 electrons): [Xe]6 s 2 4 f 9

f. titanium (22 electrons): [Ar]4 s 2 3 d 2

23. Sulfur (15 electrons) has the electron configuration

[Ne]3 s 2 3 p 4 . Therefore, 6 electrons are in orbitals

related to the third energy level of the sulfur atom.

25. [Xe]6 s 2 ; barium

27. aluminum; 3 electrons

Chapter 6 9. a. Sc, Y, La, Ac c. Ne, Ar, Kr, Xe, Rn

b. N, P, As, Sb, Bi

17. B. The atomic radius increases when going down a

group so helium is the smallest and radon is the biggest.

19. a. the element in period 2, group 1

b. the element in period 5, group 2

c. the element in period 6, group 15

d. the element in period 4, group 18

Chapter 7 7. Three Na atoms each lose 1 e-, forming 1+ ions. One

N atom gains 3 e-, forming a 3- ion. The ions attract,

forming Na3N.

3 Na ions ( 1+

_ Na ion

) + 1 N ion ( 3-

_ N ion

)

= 3(1+) + 1(3-) = 0

The overall charge on one formula unit of N a 3 N is zero.

9. One Sr atom loses 2 e-, forming a 2+ ion. Two

F atoms each gain 1 e-, forming 1- ions. The ions

attract, forming Sr F 2 .

1 Sr ion ( 2+

_ Sr ion

) + 2 F ions ( 1-

_ F ion

)

= 1(2+) + 2(1-) = 0

The overall charge on one formula unit of Sr F 2 is zero.

11. Three group 1 atoms lose 1 e-, forming 1+ ions.

One group 15 atom gains 3 e-, forming a 3- ion. The

ions attract, forming X 3 Y, where X represents a group

1 atom and Y represents a group 15 atom.

19. KI 21. AlB r 3

23. The general formula is X Y 2 , where X represents the

group 2 element and Y represents the group 17 element.

25. Ca(Cl O 3 ) 2

27. MgC O 3 ; answers will vary

29. calcium chloride 31. copper(II) nitrate

33. ammonium perchlorate

Chapter 8 1.

H H H H —

H

H

P P++ + →

——

3. H H — Cl+ →Cl

Page 95: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

994 Solutions to Selected Practice Problems

Solutions to Selected Practice Problems

5.

H H H H —

H

H

H Si Si — H

— —

++ + + →

15. sulfur dioxide

17. carbon tetrachloride

19. hydroiodic acid

21. chlorous acid

23. hydrosulfuric acid

25. AgCl 27. Cl F 3

29. strontium acetate is ionic, not molecular: Sr( C 2 H 3 O 2 ) 2

37.

HH

H

B — —

— 39.

C=C

H H

H H

— —

41. 1+

NH H

H

H

43. N

O O

1-

NO

1-

O

45. O

OO

OO O

47. ClF

F

F

49.

S

F

F

F

FF

F

57. bent, 104.5°, s p 3 59. tetrahedral, 109°, s p 3

Chapter 9 1. H 2 (g) + B r 2 (g) → HBr(g)

3. KCl O 3 (s) → KCl(s) + O 2 (g)

5. C S 2 (l) + 3 O 2 (g) → C O 2 (g) + 2S O 2 (g)

15. H 2 O(l) + N 2 O 5 (g) → 2HN O 3 (aq); synthesis

17. H 2 S O 4 (aq) + 2NaOH(aq) → N a 2 S O 4 (aq) + 2 H 2 O(l)

19. Ni(OH ) 2 (s) → NiO(s) + H 2 O(l)

21. Yes. K is above Zn in the metal activity series.

2K(s) + ZnC l 2 (aq) → Zn(s) + 2KCl(aq)

23. No. Fe is below Na in the metal activity series.

25. LiI(aq) + AgN O 3 (aq) → AgI(s) + LiN O 3 (aq)

27. N a 2 C 2 O 4 (aq) + Pb(N O 3 ) 2 (aq) →

Pb C 2 O 4 (s) + 2NaN O 3 (aq)

35. chemical equation: KI(aq) + AgN O 3 (aq) →

KN O 3 (aq) + AgI(s)

complete ionic equation:

K + (aq) + I - (aq) + A g + (aq) + N O 3 - (aq) →

K + (aq) + N O 3 - (aq) + AgI(s)

net ionic equation: I - (aq) + A g + (aq) → AgI(s)

37. chemical equation: AlC l 3 (aq) + 3NaOH(aq) →

Al(OH ) 3 (s) + 3NaCl(aq)

complete ionic equation:

A l 3+ (aq) + 3C l - (aq) + 3N a + (aq) + 3O H 2 (aq) →

Al(OH ) 3 (s) + 3 Na + (aq) + 3C l - (aq)

net ionic equation: A l 3+ (aq) + 3O H - (aq) →

Al(OH ) 3 (s)

39. chemical equation: 5N a 2 C O 3 (aq) + 2MnC l 5 (aq) →

10NaCl(aq) + M n 2 (C O 3 ) 5 (s)

complete ionic equation:

10N a + (aq) + 5C O 3 2- (aq) + 2M n 5+ (aq) + 10C l - (aq) →

10N a + (aq) + 10C l - (aq) + M n 2 (C O 3 ) 5 (s)

net ionic equation: 5C O 3 2- (aq) + 2M n 5+ (aq) →

M n 2 (C O 3 ) 5 (s)

net ionic equation: 2 H + (aq) + 2O H - (aq) →

2 H 2 O(l) or H + (aq) + O H - (aq) → H 2 O(l)

41. chemical equation: 2HCl(aq) + Ca(OH ) 2 (aq) →

2 H 2 O(l) + CaC l 2 (aq)

complete ionic equation:

2 H + (aq) + 2C l - (aq) + C a 2+ (aq) + 2O H - (aq) →

2 H 2 O(l) + C a 2+ (aq) + 2C l - (aq)

net ionic equation: H + (aq) + O H - (aq) → H 2 O(l)

43. chemical equation: H 2 S(aq) + 1 Ca(OH ) 2 (aq) →

2 H 2 O(l) + CaS(aq)

complete ionic equation:

2 H + (aq) + S 2- (aq) + C a 2+ (aq) + 2O H - (aq) →

2 H 2 O(l) + C a 2+ (aq) + S 2- (aq)

net ionic equation: H + (aq) + O H - (aq) → H 2 O(l)

45. chemical equation: 2HCl O 4 (aq) + K 2 C O 3 (aq) →

H 2 O(l) + C O 2 (g) + 2KCl O 4 (aq)

complete ionic equation:

2 H + (aq) + 2Cl O 4 - (aq) + 2 K + (aq) + C O 3 2- (aq) →

H 2 O(l) + C O 2 (g) + 2 K + (aq) + 2Cl O 4 - (aq)

net ionic equation: 2 H + (aq) + C O 3 2- (aq) →

H 2 O(l) + C O 2 (g)

47. chemical equation: 2HBr(aq) + (N H 4 ) 2 C O 3 (aq) →

H 2 O(l) + C O 2 (g) + 2N H 4 Br(aq)

Page 96: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Solutions to Selected Practice Problems

Solutions to Selected Practice Problems 995

complete ionic equation:

2 H + (aq) + 2B r - (aq) + 2N H 4 + (aq) + C O 3 2- (aq) →

H 2 O(l) + C O 2 (g) + 2N H 4 + (aq) + 2B r - (aq)

net ionic equation: 2 H + (aq) + C O 3 2- (aq) →

H 2 O(l) + C O 2 (g)

49. chemical equation: 2KI(aq) + Pb(N O 3 ) 2 (aq) →

2KN O 3 (aq) + Pb I 2 (s)

complete ionic equation:

2 K + (aq) + 2 I - (aq) + P b 2+ (aq) + 2N O 3 - (aq) →

2 K + (aq) + 2N O 3 - (aq) + Pb I 2 (s)

net ionic equation: P b 2+ (aq) + 2 I - (aq) → Pb I 2 (s)

Chapter 10 1. 2.50 mol Zn ×

6.02 × 1 0 23 atoms __

1 mol

= 1.51 × 1 0 24 atoms of Zn

3. 3.25 mol AgN O 3 × 6.02 × 1 0 23 formula units

__ 1 mol

= 1.96 × 1 0 24 formula units of AgN O 3

5. a. 5.75 × 1 0 24 atoms Al × 1 mol __

6.02 × 1 0 23 atoms

= 9.55 mol Al

b. 2.50 × 1 0 20 atoms Fe × 1 mol __

6.02 × 1 0 23 atoms

= 4.15 × 1 0 -4 mol Fe

15. a. 3.57 mol Al × 26.98 g Al

_ 1 mol Al

= 96.3 g Al

b. 42.6 mol Si × 28.09 g Si

_ 1 mol Si

= 1.20 × 1 0 3 g Si

17. a. 25.5 g Ag × 1 mol Ag

_ 107.9 g Ag

= 0.236 mol Ag

b. 300.0 g S × 1 mol S

_ 32.07 g S

= 9.355 mol S

19. a. 55.2 g Li × 1 mol Li

_ 6.94 g Li

× 6.02 × 1 0 23 atoms

__ 1 mol

= 4.79 × 1 0 24 atoms Li

b. 0.230 g Pb × 1 mol Pb

_ 6.94 g Pb

× 6.02 × 1 0 23 atoms

__ 1 mol

= 6.68 × 1 0 20 atoms Pb

c. 11.5 g Hg × 1 mol Hg

_ 200.6 g Hg

× 6.02 × 1 0 23 atoms

__ 1 mol

= 3.45 × 1 0 22 atoms Hg

21. a. 4.56 × 1 0 3 g Si × 1 mol Si

_ 28.09 g Si

× 6.02 × 1 0 23 atoms

__ 1 mol

= 9.77 × 1 0 25 atoms Si

b. 0.120 kg Ti × 1000 g Ti

_ 1 kg Ti

× 1 mol Ti

_ 47.87 g Ti

× 6.02 × 1 0 23 atoms

__ 1 mol

= 1.51 × 1 0 24 atoms Ti

29. 2.50 mol ZnC l 2 × 2 mol C l -

_ 1 mol ZnC l 2

= 5.00 mol C l -

31. 3.00 mol F e 2 ( SO 4 ) 3 × 3 mol S O 4 2-

__ 1 mol F e 2 (S O 4 ) 3

= 9.00 mol S O 4 2-

33. 1.15 × 1 0 1 mol H 2 O × 2 mol H

_ 1 mol H 2 O

= 23.0 mol H

= 2.30 × 1 0 1 mol H

35. a. 2 mol C × 12.01 g C

_ 1 mol C

= 24.02 g

6 mol H × 1.008 g H

_ 1 mol H

= 6.048 g

1 mol O × 16.00 g O

_ 1 mol O

= 16.00 g

molar mass C 2 H 5 OH = 46.07 g/mol

b. 1 mol H × 1.008 g H

_ 1 mol H

= 1.008 g

1 mol C × 12.01 g C

_ 1 mol C

= 12.01 g

1 mol N × 14.01 g N

_ 1 mol N

= 14.01 g

molar mass HCN = 27.03 g/mol

c. 1 mol C × 12.01 g C

_ 1 mol C

= 12.01 g

4 mol Cl × 35.45 g Cl

_ 1 mol Cl

= 141.80 g

molar mass CC l 4 = 153.81 g/mol

37. Step 1: Find the molar mass of H 2 S O 4 .

2 mol H × 1.008 g H

_ 1 mol H

= 2.016 g

1 mol S × 32.07 g S

_ 1 mol S

= 32.07 g

4 mol O × 16.00 g O

_ 1 mol O

= 64.00 g

molar mass H 2 S O 4 = 98.09 g/mol

Step 2: Make mole → mass conversion.

3.25 mol H 2 S O 4 × 98.09 g H 2 S O 4

__ 1 mol H 2 S O 4

= 319 g H 2 S O 4

39. Potassium permanganate has a formula of KMn O 4 .

Step 1: Find the molar mass of KMn O 4 .

1 mol K × 39.10 g K

_ 1 mol K

= 39.10 g

1 mol Mn × 54.94 g Mn

_ 1 mol Mn

= 54.94 g

4 mol O × 16.00 g O

_ 1 mol O

= 64.00 g

molar mass KMn O 4 = 158.04 g/mol

Step 2: Make mole → mass conversion.

2.55 mol KMn O 4 × 158.04 g KMn O 4

__ 1 mol KMn O 4

= 403 g KMn O 4

Page 97: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

996 Solutions to Selected Practice Problems

Solutions to Selected Practice Problems

41. a. ionic compound

Step 1: Find the molar mass of F e 2 O 3 .

2 mol Fe × 55.85 g Fe

_ 1 mol Fe

= 111.70 g

3 mol O × 16.00 g O

_ 1 mol O

= 48.00 g

molar mass F e 2 O 3 = 159.70 g/mol

Step 2: Make mass → mole conversion.

2500 g F e 2 O 3 × 1 mol F e 2 O 3

__ 159.70 g F e 2 O 3

= 15.7 × 10 1 mol F e 2 O 3

b. ionic compound

Step 1: Find the molar mass of PbC l 4 .

1 mol Pb × 207.2 g Pb

_ 1 mol Pb

= 207.2 g

4 mol Cl × 35.45 g Cl

_ 1 mol Cl

= 141.80 g

molar mass PbC l 4 = 349.0 g/mol

Step 2: Make mass → mole conversion.

254 g PbC l 4 × 1 mol PbC l 4

__ 349.0 g PbC l 4

= 0.728 mol PbC l 4

43. a. Step 1: Find the molar mass of N a 2 S O 3

2 mol Na × 22.99 g Na

_ 1 mol Na

= 45.98 g

1 mol S × 32.07 g S

_ 1 mol S

= 32.07 g

3 mol O × 16.00 g O

_ 1 mol O

= 48.00 g

molar mass N a 2 S O 3 = 126.05 g/mol

Step 2: Make mass → mole conversion.

2.25 g N a 2 S O 3 × 1 mol N a 2 S O 3

__ 126.05 g N a 2 S O 3

= 0.0179 mol N a 2 S O 3

Step 3: Make mole → formula unit conversion.

0.0179 mol N a 2 S O 3 × 6.02 × 1 0 23 formula units

__ 1 mol N a 2 S O 3

= 1.08 × 1 0 22 formula units N a 2 S O 3

Step 4: Determine the number of N a + ions.

1.08 × 1 0 22 formula units N a 2 S O 3 ×

2 N a + ions __

1 formula unit N a 2 S O 3 = 2.16 × 1 0 22 N a + ions

b. 1.08 × 1 0 22 formula units N a 2 S O 3 ×

1 S O 3 2- ion

__ 1 formula unit N a 2 S O 3

= 1.08 × 1 0 22 S O 3 2- ions

c. 126.08 g N a 2 S O 3

__ 1 mol N a 2 S O 3

× 1 mol N a 2 S O 3

___ 6.02 × 1 0 23 formula unit N a 2 S O 3

= 2.09 × 1 0 -22 g N a 2 S O 3 /formula unit

45. Step 1: Find the number of moles of NaCl.

4.59 × 1 0 24 formula units NaCl ×

1 mol NaCl

___ 6.02 × 1 0 23 formula unit NaCl

= 7.62 mol NaC l 2

Step 2: Find the molar mass of NaCl.

1 mol Na × 22.99 g Na

_ 1 mol Na

= 22.99 g

1 mol Cl × 35.45 g Cl

_ 1 mol Cl

= 35.45 g

molar mass NaCl = 58.44 g/mol

Step 3: Make mole → mass conversion.

7.62 mol NaCl × 58.44 g NaCl

_ 1 mol NaCl

= 445 g NaCl

55. Steps 1 and 2: Assume 1 mole; calculate molar mass of

H 2 S O 3 .

2 mol H × 1.008 g H

_ 1 mol H

= 2.016 g

1 mol S × 32.06 g S

_ 1 mol S

= 32.06 g

3 mol O × 16.00 g O

_ 1 mol O

= 48.00 g

molar mass H 2 S O 3 = 82.08 g/mol

Step 3: Determine percent by mass of S.

percent S = 32.06 g S

__ 82.08 g H 2 S O 3

× 100 = 39.06% S

Repeat steps 1 and 2 for H 2 S 2 O 8 . Assume 1 mole;

calculate molar mass of H 2 S 2 O 8 .

2 mol H × 1.008 g H

_ 1 mol H

= 2.016 g

2 mol S × 32.06 g S

_ 1 mol S

= 64.12 g

8 mol O × 16.00 g O

_ 1 mol O

= 128.00 g

molar mass H 2 S 2 O 8 = 194.14 g/mol

Step 3: Determine percent by mass of S.

percent S = 64.12 g S

__ 194.14 g H 2 S 2 O 8

× 100 = 33.03% S

H 2 S O 3 has a larger percent by mass of S.

57. a. sodium, sulfur, and oxygen; N a 2 S O 4

b. ionic

c. Steps 1 and 2: Assume 1 mole; calculate molar

mass of N a 2 S O 4 .

2 mol Na × 22.99 g Na

_ 1 mol Na

= 45.98 g

1 mol S × 32.07 g S

_ 1 mol S

= 32.07 g

4 mol O × 16.00 g O

_ 1 mol O

= 64.00 g

molar mass N a 2 S O 4 = 142.05 g/mol

Page 98: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Solutions to Selected Practice Problems

Solutions to Selected Practice Problems 997

Step 3: Determine percent by mass of each element.

percent Na = 45.98 g Na

__ 142.05 g N a 2 S O 4

× 100 = 32.37% Na

percent S = 32.07 g S

__ 142.05 g N a 2 S O 4

× 100 = 22.58% S

percent O = 64.00 g O

__ 142.05 g N a 2 S O 4

× 100 = 45.05% O

59. Step 1: Assume 100 g sample; calculate moles of each

element.

35.98 g Al × 1 mol Al

_ 26.98 g Al

= 1.334 mol Al

64.02 g S × 1 mol S

_ 32.06 g S

= 1.996 mol S

Step 2: Calculate mole ratios.1.334 mol Al_1.334 mol Al

=1.000 mol Al_1.000 mol Al

=1 mol Al_1 mol Al

1.996 mol S _

1.334 mol Al =

1.500 mol S _

1.000 mol Al =

1.5 mol S _

1 mol Al

The simplest ratio is 1 mol Al: 1.5 mol S.

Step 3: Convert decimal fraction to whole number.

In this case, multiply by 2 because 1.5 × 2 = 3.

Therefore, the empirical formula is A l 2 S 3 .

61. Step 1: Assume 100 g sample; calculate moles of each

element.

60.00 g C ×1 mol C_

12.01 g C= 5.00 mol C

4.44 g H × 1 mol H

_ 1.008 g H

= 4.40 mol H

35.56 g O ×1 mol O_

16.00 g O= 2.22 mol O

Step 2: Calculate mole ratios.

5.00 mol C_2.22 mol O

=2.25 mol C_1.00 mol O

=2.25 mol C_

1 mol O

4.40 mol H _

2.22 mol O =

1.98 mol H _

1.00 mol O =

2 mol H _

1 mol O

2.22 mol O_2.22 mol O

=1.00 mol O_1.00 mol O

=1 mol O_1 mol O

The simplest ratio is 2.25 mol C: 2 mol H: 1 mol O.

Step 3: Convert decimal fraction to whole number.

In this case, multiply by 4 because 2.25 × 4 = 9.

Therefore, the empirical formula is C 9 H 8 O 4 .

63. Step 1: Assume 100 g sample; calculate moles of each

element.

46.68 g N × 1 mol N

_ 14.01 g N

= 3.332 mol N

53.32 g O ×1 mol O_

16.00 g O= 3.333 mol O

Step 2: Calculate mole ratios.

3.332 mol N_3.332 mol N

=1.000 mol N_1.000 mol N

=1 mol N_1 mol N

3.333 mol O _

3.332 mol N =

1.000 mol O _

1.000 mol N =

1 mol O _

1 mol N

The simplest ratio is 1 mol N: 1 mol O.

The empirical formula is NO.

Step 3: Calculate the molar mass of the empirical

formula.

1 mol N × 14.01 g N

_ 1 mol N

= 14.01 g

1 mol O × 16.00 g O

_ 1 mol O

= 16.00 g

molar mass NO = 30.01 g/mol

Step 4: Determine whole number multiplier.

60.01 g/mol

_ 30.01 g/mol

= 2.000

The molecular formula is N 2 O 2 .

65. Step 1: Assume 100 g sample; calculate moles of each

element.

65.45 g C × 1 mol C

_ 12.01 g C

= 5.450 mol C

5.45 g H × 1 mol H

_ 1.008 g H

= 5.41 mol H

29.09 g O × 1 mol O

_ 16.00 g O

= 1.818 mol O

Step 2: Calculate mole ratios.

5.450 mol C _

1.818 mol O =

3.000 mol C _

1.000 mol O =

3 mol C _

1 mol O

5.41 mol H _

1.818 mol O =

2.97 mol H _

1.00 mol O =

3 mol H _

1 mol O

1.818 mol O _

1.818 mol O =

1.000 mol O _

1.000 mol O =

1 mol O _

1 mol O

The simplest ratio is 3 mol C: 3 mol H: 1 mol O.

Therefore, the empirical formula is C 3 H 3 O.

Step 3: Calculate the molar mass of the empirical

formula.

3 mol C × 12.01 g C

_ 1 mol C

= 36.03 g

3 mol H × 1.008 g H

_ 1 mol H

= 3.024 g

1 mol O × 16.00 g O

_ 1 mol O

= 16.00 g

molar mass C 3 H 3 O = 55.05 g/mol

Step 4: Determine whole number multiplier.

110.00 g/mol

__ 55.05 g/mol

= 1.998, or 2

The molecular formula is C 6 H 6 O 2 .

75. Step 1: Calculate the mass of CoC l 2 remaining.

0.0712 mol CoC l 2 × 129.83 g CoC l 2

__ 1 mol CoC l 2

= 9.24 g CoC l 2

Step 2: Calculate the mass of water driven off.

mass of hydrated compound - mass of anhydrous

compound remaining

= 11.75 g CoC l 2 ·x H 2 O - 9.24 g CoC l 2 = 2.51 g H 2 O

Page 99: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

998 Solutions to Selected Practice Problems

Solutions to Selected Practice Problems

Step 3: Calculate moles of each component.

9.24 g CoC l 2 × 1 mol CoC l 2

__ 129.83 g CoC l 2

= 0.0712 mol CoC l 2

2.51 g H 2 O × 1 mol H 2 O

_ 18.02 g H 2 O

= 0.139 mol H 2 O

Step 4: Calculate mole ratios.

0.0712 mol CoC l 2

__ 0.0712 mol CoC l 2

= 1.00 mol CoC l 2

__ 1.00 mol CoC l 2

= 1 mol CoC l 2

_ 1 mol CoC l 2

0.139 mol H 2 O

__ 0.0712 mol CoC l 2

= 1.95 mol H 2 O

__ 1.00 mol CoC l 2

= 2 mol H 2 O

_ 1 mol CoC l 2

The formula of the hydrate is CoC l 2 ·2 H 2 O. Its name

is cobalt(II) chloride dehydrate.

Chapter 11 1. a. 1 molecule N 2 + 3 molecules H 2 →

2 molecules N H 3

1 mole N 2 + 3 moles H 2 → 2 moles N H 3

28.02 g N 2 + 6.06 g H 2 → 34.08 g N H 3

b. 1 molecule HCl + 1 formula unit KOH → 1 formula unit KCl + 1 molecule H 2 O

1 mole HCl + 1 mole KOH → 1 mole KCl + 1 mole H 2 O

36.46 g HCl + 56.11 g KOH → 74.55 g KCl + 18.02 g H 2 O

c. 2 atoms Mg + 1 molecule O 2 → 2 formula units MgO

2 moles Mg + 1 mole O 2 → 2 moles MgO

48.62 g Mg + 32.00 g O 2 → 80.62 g MgO

3. a. 4 mol Al _

3 mol O 2

3 mol O 2 _

2 mol A l 2 O 3

2 mol A l 2 O 3 _

4 mol Al

3 mol O 2

_ 4 mol Al

2 mol A l 2 O 3

_ 3 mol O 2

4 mol Al

_ 2 mol A l 2 O 3

b. 3 mol Fe _

4 mol H 2 O

3 mol Fe _

4 mol H 2

3 mol Fe _

1 mol F e 3 O 4

4 mol H 2 O

_ 3 mol Fe

4 mol H 2

_ 3 mol Fe

1 mol F e 3 O 4

_ 3 mol Fe

1 mol F e 3 O 4

_ 4 mol H 2

1 mol F e 3 O 4

_ 4 mol H 2 O

4 mol H 2 O

_ 4 mol H 2

4 mol H 2

_ 1 mol F e 3 O 4

4 mol H 2 O

_ 1 mol F e 3 O 4

4 mol H 2

_ 4 mol H 2 O

c. 2 mol HgO

_ 2 mol Hg

1 mol O 2

_ 2 mol Hg

1 mol O 2

_ 2 mol HgO

2 mol Hg

_ 2 mol HgO

2 mol Hg

_ 1 mol O 2

2 mol HgO

_ 1 mol O 2

11. a. 2C H 4 (g) + S 8 (s) → 2C S 2 (l) + 4 H 2 S(g)

b. 1.50 mol S 8 × 2 mol C S 2

_ 1 mol S 8

= 3.00 mol C S 2

c. 1.50 mol S 8 × 4 mol H 2 S

_ 1 mol S 8

= 6.00 mol H 2 S

13. Step 1: Balance the chemical equation.

2NaCl(s) → 2Na(s) + C l 2 (g)

Step 2: Make mole → mole conversion.

2.50 mol NaCl × 1 mol C l 2

_ 2 mol NaCl

= 1.25 mol C l 2

Step 3: Make mole → mass conversion.

1.25 mol C l 2 × 70.9 g C l 2

_ 1 mol C l 2

= 88.6 g C l 2

15. 2Na N 3 (s) → 2Na(s) + 3 N 2 (g)

Step 1: Make mass → mole conversion.

100.0 g Na N 3 × 1 mol Na N 3

_ 65.02 g Na N 3

= 1.538 mol Na N 3

Step 2: Make mole → mole conversion.

1.538 mol Na N 3 × 3 mol N 2

_ 2 mol Na N 3

= 2.307 mol N 2

Step 3: Make mole → mass conversion.

2.307 mol N 2 × 28.02 g N 2

_ 1 mol N 2

= 64.64 g N 2

23. Step 1: Make mass → mole conversion.

100.0 g Na × 1 mol Na

_ 22.99 g Na

= 4.350 mol Na

100.0 g F e 2 O 3 × 1 mol F e 2 O 3

__ 159.7 g F e 2 O 3

= 0.6261 mol F e 2 O 3

Step 2: Make mole ratio comparison.

0.6261 mol F e 2 O 3

__ 4.350 mol Na

compared to 1 mol F e 2 O 3

_ 6 mol Na

0.1439 compared to 0.1667

a. The actual ratio is less than the needed ratio, so

iron(III) oxide is the limiting reactant.

b. Sodium is the excess reactant.

c. Step 1: Make mole → mole conversion.

0.6261 mol F e 2 O 3 × 2 mol Fe

_ 1 mol F e 2 O 3

= 1.252 mol Fe

Step 2: Make mole → mass conversion.

1.252 mol Fe × 55.85 g Fe

_ 1 mol Fe

= 69.92 g Fe

d. Step 1: Make mole → mole conversion.

0.6261 mol F e 2 O 3 × 6 mol Na

_ 1 mol F e 2 O 3

= 3.757 mol Na needed

Step 2: Make mole → mass conversion.

3.757 mol Na × 22.9 g Na

_ 1 mol Na

= 86.37 g Na needed

100.0 g Na given - 86.37 g Na needed

= 13.6 g Na in excess

29. a. Step 1: Write the balanced chemical equation.

Zn(s) + I 2 (s) → Zn I 2 (s)

Step 2: Make mass → mole conversion.

125.0 g Zn × 1 mol Zn

_ 65.38 g Zn

= 1.912 mol Zn

Page 100: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Solutions to Selected Practice Problems

Solutions to Selected Practice Problems 999

Step 3: Make mole → mole conversion.

1.912 mol Zn × 1 mol Zn I 2

_ 1 mol Zn

= 1.912 mol Zn I 2

Step 4: Make mole → mass conversion.

1.912 mol Zn I 2 × 319.2 g Zn I 2

_ 1 mol Zn I 2

= 610.3 g Zn I 2

610.3 g of Zn I 2 is the theoretical yield.

b. % yield = 515.6 g Zn I 2

___ 610.3 g Zn I 2

× 100

= 84.48% yield of Zn I 2

Chapter 12

1. Rat e nitrogen

_ Rat e neon

= √

20.2 g/mol

_ 28.0 g/mol

= √ 0.721 = 0.849

3. Rearrange Graham’s law to solve for Rat e A .

Rat e A = Rat e B × √

molar mas s B

_ molar mas s A

Rat e B = 3.6 mol/min

molar mas s B

_ molar mas s A

= 0.5

Rat e A = 3.6 mol/min × √ 0.5 = 3.6 mol/min × 0.71 = 2.5 mol/min

5. P total = 5.00 kPa + 4.56 kPa + 3.02 kPa + 1.20 kPa = 13.78 kPa

7. N 2 = 590 mm Hg; O 2 = 160 mm Hg; Ar = 8 mm Hg

Chapter 13 1. V 2 =

V 1 P 1 _

P 2 =

(300.0 mL)(99.0 kPa) __

188 kPa = 158 mL

3. P 2 = 1.08 atm + (1.08 atm × 0.25) = 1.35 atm

V 2 = V 1 P 1

_ P 2

= (145.7 mL)(1.08 atm)

__ 1.35 atm

= 117 mL

5. T 1 = 89°C + 273 = 362 K

T 2 = T 1 V 2

_ V 1

= (362 K)(1.12 L)

__ 0.67 L

= 605 K

605 - 273 = 332°C = 330°C

7. V 2 = 0.67 L - (0.67 L × 0.45) = 0.37 L

T 2 = T 1 V 2

_ V 1

= (350 K)(0.37 L)

__ 0.67 L

= 190 K

9. T 2 = 36.5°C + 273 = 309.5 K

T 1 = T 2 P 1

_ P 2

= (309.5 K)(1.12 atm)

__ 2.56 atm

= 135 K

135 K - 273 = -138°C

11. T 1 = 22.0°C + 273 = 295 K

T 2 = 100.0°C + 273 = 373 K

V 1 = V 2 T 1 P 2

_ T 2 P 1

= (0.224 mL)(295 K)(1.23 atm)

___ (373 K)(1.02 atm)

= 0.214 mL

13. T 1 = 0.00°C + 273 = 273 K

T 2 = 30.0°C + 273 = 303 K

V 2

_ V 1

= P 1 T 2

_ P 2 T 1

= (1.00 atm)(303 K)

__ (1.20 atm)(273 K)

= 0.92

This is a ratio, so there are no units. The final volume

is less than the original volume, so the piston will

move down.

21. 1.0 L × 1 mol

_ 22.4 L

= 0.045 mol

0.045 mol × 44.0 g

_ 1 mol

= 2.0 g

23. 0.416 g × 1 mol

_ 83.80 g

= 0.00496 mol

0.00496 mol × 22.4 L

_ 1 mol

= 0.111 L

25. 0.860 g - 0.205 g = 0.655 g He remaining

Set up the problem as a ratio.

V _

0.655 g =

19.2 L _

0.860 g

Solve for V.

V = (19.2 L)(0.655 g)

__ 0.860 g

= 14.6 L

27. V = nRT

_ P

=

(0.323 mol) (0.0821 L·atm

_ mol·K

) (265 K)

___ 0.900 atm

= 7.81 L

29. n = PV

_ RT

= (3.81 atm)(0.44 L)

__ (0.0821

L·atm _

mol·K ) (298 K)

= 6.9 × 1 0 -3 mol

39. 2 H 2 (g) + O 2 (g) → 2 H 2 O(g)

5.00 L O 2 × 2 volumes H 2

__ 1 volume O 2

= 10.0 L H 2

41. N 2 + O 2 = N 2 O

2 N 2 + O 2 = 2 N 2 O

34 L N 2 O × 1 volume O 2

__ 2 volumes N 2

= 17 L O 2

43. 2.38 kg × 1000 g

_ 1 kg

× 1 mol CaC O 3

__ 100.09 g

× 1 mol C O 2

__ 1 mol CaC O 3

× 22.4 L

_ 1 mol

= 533 L C O 2

45. Molecular mass of sodium bicarbonate = 83.9 g/mol

28 g NaHC O 3 × 1 mol NaHC O 3

__ 83.9 g

= 0.33 mol NaHC O 3

For each mole of sodium bicarbonate, one mole of

C O 2 is produced, so 0.33 mol NaHC O 3 will produce

0.33 mol C O 2 .

For an ideal gas, molar volume is 22.4 L at 273 K and

1 atm.

T = 20°C + 273 = 293 K

0.33 mol C O 2 × 22.4 L

_ 1 mol

× 293 K

_ 273 K

= 7.9 L of C O 2

Page 101: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1000 Solutions to Selected Practice Problems

Solutions to Selected Practice Problems

Chapter 14 9. 600.0 mL H 2 O × 1.0 g/mL = 600.0 g H 2 O

20.0 g NaHC O 3

___ 600.0 g H 2 O + 20.0 g NaHC O 3

× 100 = 3%

11. 1500.0 g - 54.3 g = 1445.7 g solvent

13. 35 mL __

155 mL + 35 mL × 100 = 18%

15. 15% = 18 mL

__ x mL solution

× 100 = 120 mL

17. mol KBr = 1.55 g × 1 mol

_ 119.0 g

= 0.0130 mol KBr

molarity = mol KBr

__ 1.60 L solution

= 0.0130 mol

_ 1.60 L

= 8.13 × 1 0 -3 M

19. 0.25M = x mol Ca(OH ) 2

__ 1.5 L solution

x = 0.38 mol Ca(OH ) 2

0.38 mol Ca(OH ) 2 × 74.08 g

_ 1 mol

= 28 g Ca(OH ) 2

21. mol CaC l 2 = 500.0 mL × 1 L _

1000 mL × 0.20M

= 500.0 mL × 1 L _

1000 mL ×

0.20 mol _

1 L = 0.10 mol

mass CaC l 2 = 0.10 mol CaC l 2 × 110.98 g

_ 1 mol

=11 g

23. 100 mL × 1 L _

1000 mL ×

0.15 mol ethanol __

1 L solution ×

46 g ethanol __

1 mol ethanol

× 1 mL ethanol

__ 0.7893 g ethanol

= 0.87 mL

25. (5.0M) V 1 = (0.25M)(100.0 mL)

V 1 = (0.25M)(100.0 mL)

__ 5.0M

= 5.0 mL

27. mol N a 2 S O 4 = 10.0 g N a 2 S O 4 × 1 mol __

142.04 g N a 2 S O 4

= 0.0704 mol N a 2 S O 4

molality = 0.0704 mol N a 2 S O 4

__ 1.0000 kg H 2 O

= 0.0704m

29. 22.8% = mass NaOH

__ mass NaOH + mass H 2 O

× 100

Assume 100.0 g sample.

Then, mass NaOH = 22.8 g

mass H 2 O = 100.0 g - (mass NaOH) = 77.2 g

mol NaOH = 22.8 g × 1 mol

_ 40.00 g

= 0.570 mol NaOH

mol H 2 O = 77.2 g × 1 mol

_ 18.02 g

= 4.28 mol H 2 O

mol fraction NaOH = mol NaOH

__ mol NaOH + mol H 2 O

= 0.570 mol NaOH

___ 0.570 mol NaOH + 4.28 mol H 2 O

= 0.570

_ 4.85

= 0.118

The mole fraction of NaOH is 0.118.

37. S 2 = 1.5 g

_ 1.0 L

= 1.5 g/L

P 2 = P 1 × S 2

_ S 1

= 10.0 atm × 1.5 g/L

_ 0.66 g/L

= 23 atm

45. ∆ T b = 0.512°C/m × 0.625m = 0.320°C

T b = 100°C + 0.320°C = 100.320°C

∆ T f = 1.86°C/m × 0.625m = 1.16°C

T f = 0.0°C − 1.16°C = −1.16°C

47. K f = ∆ T f

_ m

= 0.080°C

_ 0.045 m

= 1.8°C/m

It is most likely water because the calculated value is

closest to 1.86°C/m.

Chapter 15 1. 142 Calories = 142 kcal

142 kcal × 1000 cal

_ 1 kcal

= 142,000 cal

3. Unit X = 0.1 cal

1 cal = 4.184 J

X = (0.1 cal)(4.184 J/cal) = 0.4184 J

1 cal = 0.001 Calorie

X = (0.1 cal)(1 Cal/1000 cal) = 0.0001 Calorie

5. q = c × m × ∆T

5696 J = c × 155 g × 15.0°C

c = 2.45 J/(g·°C)

The specific heat is very close to the value for ethanol.

13. q = c × m × ∆T

5650 J = 4.184 J/(g·°C) × m × 26.6°C

m = 50.8 g

15. q = c × m × ∆T

9750 J = 4.184 J/(g·ºC) × 335 g × ∆T

∆T = 6.96°C

Because the water lost heat, let ∆T = −6.96°C.

∆T = −6.96°C = T f − 65.5°C

T f = 58.5°C

23. 25.7 g C H 3 OH × 1 mol C H 3 OH

__ 32.04 g C H 3 OH

× 3.22 kJ

__ 1 mol C H 3 OH

= 2.58 kJ

25. 12,880 kJ = m × 1 mol C H 4

_ 16.04 g C H 4

× 891 kJ

_ 1 mol C H 4

m = 12,880 kJ × 16.04 g C H 4

_ 1 mol C H 4

× 1 mol C H 4

_ 891 kJ

Page 102: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Solutions to Selected Practice Problems

Solutions to Selected Practice Problems 1001

m = 232 g C H 4

33. a. 4Al(s) + 3 O 2 (g) → 2A l 2 O 3 (s) ∆H = -3352 kJ

b. ∆H for Equation b = -x kJ

Add Equation a to Equation b reversed and tripled.

4Al(s) + 3 O 2 (g) → 2A l 2 O 3 (s) ∆H = -3352 kJ

3Mn O 2 (s) → 3Mn(s) + 3 O 2 (g) ∆H = 3x kJ

4Al(s) + 3Mn O 2 (s) → 2A l 2 O 3 (s) + 3Mn(s)

-1789 kJ = 3x kJ + (-3352 kJ)

3x kJ = -1789 kJ + 3352 kJ = +1563 kJ

x = 1563 kJ

_ 3 = +521 kJ

Because the direction of Equation b was changed,

∆H for Equation b = -521 kJ.

35. ∆ H rxn 0 = [4(33.18 kJ) + 6(-285.83 kJ)] -

4(-46.11) kJ = -1397.82

37. Reverse Equation a and change the sign of ∆ H f 0 to

obtain Equation c.

Add equation b.

c. NO(g) → Ω N 2 (g) + Ω O 2 (g) ∆ H f 0 = -91.3 kJ

b. Ω N 2 (g) + O 2 (g) → N O 2 (g) ∆ H f 0 = ?

Add the equations.

NO(g) + Ω O 2 (g) → N O 2 (g)

∆ H rxn 0 = -58.1 kJ = ∆ H f

0 (c) + ∆ H f 0 (b)

−58.1 kJ = -91.3 kJ + ∆ H f 0 (b)

∆ H f 0 (b) = -58.1 kJ + 91.3 kJ = 33.2 kJ

45. The states of the two reactants are the same on both

sides of the equation, so it is impossible from the

equation alone to predict the sign of ∆ S system .

47. Calculate T when ∆ G system = 0.

-36.8 J/K × 1 kJ

_ 1000 J

= -0.0368 kJ/K

∆ G system = ∆ H system - T∆ S system

-144 kJ - (T × (−0.0368 kJ/K)) = -144 kJ +

0.0368T kJ/K = 0

T = 144 kJ

_ 0.0368 kJ/K

= 3910 K

At any temperature above 3910 K, the reaction is

spontaneous.

Chapter 16 1. H 2 is consumed. Average reaction rate expression

should be negative.

Average reaction rate =

- [ H 2 ] at time t 2 - [ H 2 ] at time t 1

___ t 2 − t 1

= - ∆[ H 2 ]

_ ∆t

Average reaction rate = - 0.020M - 0.030M

__ 4.00 s - 0.00 s

= - -0.010M

_ 4.00 s

= 0.0025 mol/(L·s)

3. HCl is formed so the average rate expression should

be positive.

Average reaction rate =

[HCl] at time t 2 - [HCl] at time t 1

___ t 2 - t 1

= 0.0050 mol/(L·s)

[HCl ] at time t 2 =

(0.0050 mol/(L·s))( t 2 - t 1 ) + [HCl ] at time t 1

= (0.0050 mol/L·s)(4.00 s - 0.00 s) + 0.00 s

= 0.020M

19. Rate = k[A ] 3

21. Examining trials 1 and 2, doubling [A] has no effect

on the rate; therefore, the reaction is zero order in A.

Examining trials 2 and 3, doubling [B] doubles the

rate; therefore, the reaction is first order in B. Rate =

k[A ] 0 [B] = k[B]

31. [NO] = 0.00500M

[ H 2 ] = 0.00200M

k = 2.90 × 1 0 2 L 2 /(mo l 2 ·s)

Rate = k [NO ] 2 [ H 2 ]

= [2.90 × 1 0 2 L 2 /(mo l 2 ·s)](0.00500M ) 2 (0.00200M)

= [2.90 × 1 0 2 L 2 /(mo l 2 ·s)](0.00500 mol/k ) 2

(0.00200 mol/L)

= 1.45 × 1 0 -5 mol/(L·s)

33. Rate = k [NO ] 2 [ H 2 ]

[NO] = √

Rate _

k[ H 2 ] = √

9.00 × 1 0 -5 mol/(L × s)

___ (2.90 × 1 0 2 )(0.00300mol/L)

= 1.02 × 1 0 -2 M

Chapter 17 1. a. K eq =

[N O 2 ] 2 _

[ N 2 O 4 ] d. K eq =

[NO ] 4 [ H 2 O ] 6 __

[N H 3 ] 4 [ O 2 ] 5

b. K eq = [ H 2 ] 2 [ S 2 ]

_ [ H 2 S ] 2

e. K eq = [C S 2 ][ H 2 ] 4

_ [C H 4 ][ H 2 S ] 2

c. K eq = [C H 4 ][ H 2 O]

_ [CO][ H 2 ] 3

3. a. K eq = [ C 10 H 8 (g)] d. K eq = [CO(g)][ H 2 (g)]

__ [ H 2 O(g)]

b. K eq = [ H 2 O(g)] e. K eq = [C O 2 (g)]

_ [CO(g)]

c. K eq = [C O 2 (g)]

5. K eq = [N O 2 ] 2

_ [ N 2 O 4 ]

= 0.062 7 2

_ 0.0185

= 0.213

7. [CO][C l 2 ]

_ [COC l 2 ]

= 8.2 × 1 0 -2

Page 103: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1002 Solutions to Selected Practice Problems

Solutions to Selected Practice Problems

(0.150)(0.150)

__ [COC l 2 ]

= 8.2 × 1 0 -2

[COC l 2 ] = (0.150)(0.150)

__ 8.2 × 1 0 -2

= 0.28M

19. According to the stoichiometry of the equation, the

concentration of B is 0.450M; C and D are 1.00 -

0.450 = 0.550M.

K eq = (0.550)(0.550)

__ (0.450)(0.450)

= 1.49

21. K sp = [P b 2+ ][C O 3 2- ] = 7.40 × 1 0 -14

(s)(s) = 7.40 × 1 0 -14

s = √ 7.40 × 1 0 -14 = 2.72 × 1 0 -7 M

s = 2.72 × 1 0 -7 mol/L × 267.2 g/mol

= 7.27 × 1 0 -5 g/L

23. K sp = [A g + ] 3 [P O 4 3- ] = 2.6 × 1 0 -18

[P O 4 3- ] = s, [A g + ] = 3s

(3s ) 3 (s) = (27 s 3 )(s) = 27 s 4 = 2.6 × 1 0 −18

s = 4

2.6 × 1 0 -18

_ 27

= 1.8 × 1 0 -5 mol/L

25. a. Pb F 2 (s) P b 2+ (aq) + 2 F - (aq)

Q sp = [P b 2+ ][ F - ] 2 = (0.050M)(0.015M ) 2

= 1.12 × 1 0 -5

K sp = 3.3 × 1 0 -8

Q sp > K sp, so a precipitate of Pb F 2 will form.

b. A g 2 S O 4 (s) 2A g + (aq) + S O 4 2- (aq)

Q sp = [A g + ] 2 [S O 4 2- ] = (0.0050M ) 2 (0.125M)

= 3.1 × 1 0 -6

K sp = 1.2 × 1 0 -5

Q sp < K sp , so a precipitate will not form.

Chapter 18 1. a. 2Al(s) + 3 H 2 S O 4 (aq) → A l 2 (S O 4 ) 3 (aq) + 3 H 2 (g)

b. CaC O 3 (s) + 2HBr(aq) →

CaB r 2 (aq) + H 2 O(l) + C O 2 (g)

3. Acid Conjugate

baseBase Conjugate

acid

a. N H 4 + N H 3 O H - H 2 O

b. HBr B r - H 2 O H 3 O +

c. H 2 O O H - C O 3 2- HC O 3 -

13. H 2 Se O 3 (aq) + H 2 O(l) HSe O 3 - (aq) + H 3 O + (aq)

HSe O 3 - (aq) + H 2 O(l) Se O 3 2- (aq) + H 3 O + (aq)

15. a. C 6 H 13 N H 2 (aq) + H 2 O(l)

C 6 H 13 N H 3 - (aq ) + O H − (aq)

K b = [ C 6 H 13 N H 3 + ][O H - ]

__ [ C 6 H 13 N H 2 ]

b. C 3 H 7 N H 2 (aq) + H 2 O(l)

C 3 H 7 N H 3 - (aq) + O H - (aq)

K b = [ C 3 H 7 N H 3 + ][O H - ]

__ [ C 3 H 7 N H 2 ]

c. C O 3 2- (aq) + H 2 O(l) HC O 3 - (aq) + O H - (aq)

K b = [HC O 3 - ][O H - ]

__ [C O 3 2- ]

d. HS O 3 - (aq) + H 2 O(l) H 2 S O 3 (aq) + O H - (aq)

K b = [ H 2 S O 3 - ][O H - ]

__ [HS O 3 - ]

23. At 298 K, [ H + ] = [O H − ] = 1.0 × 1 0 −7 M

Mol H + = 1.0 × 1 0 −7 mol

__ 1 L

× 1 L _

1000 mL × 300 mL =

3.0 × 1 0 −8 mol

3.0 × 1 0 −8 mol H + ions × 6.02 × 1 0 23 H + ions

__ 1 mol

=

1.8 × 1 0 16 H + ions

Number of H + = number of O H − = 1.8 × 1 0 16 ions

25. a. [ H + ] = 0.0055M b. [ H + ] = 0.000084M

pH = −log [ H + ] pH = −log [ H + ]

pH = −log 0.0055 pH = −log 0.000084

pH = 2.26 pH = 4.08

27. a. [O H − ] = 1.0 × 1 0 −6 M

pOH = −log [O H − ]

pOH = −log(1.0 × 1 0 −6 )

pOH = 6.00

pH = 14.00 − pOH = 14.00 − 6.00 = 8.00

b. [O H − ] = 6.5 × 1 0 −4 M

pOH = −log [O H − ]

pOH = −log(6.5 × 1 0 −4 )

pOH = 3.19

pH = 14.00 − pOH = 14.00 − 3.19 = 10.81

c. [ H + ] = 3.6 × 1 0 −9 M

pH = −log [ H + ]

pH = −log(3.6 × 1 0 −9 )

pH = 8.44

pOH = 14.00 − pH = 14.00 − 8.44 = 5.56

d. [ H + ] = 2.5 × 1 0 −2 M

pH = −log(−2.5 × 1 0 −2 )

pH = 1.60

pOH = 14.00 − pH = 14.00 − 1.60 = 12.40

29. [HCl] = [ H + ] = 1.0 × 1 0 −3 mol

__ 5.0 L

= 0.00020M =

2.0 × 1 0 −4 M

pH = −log(2.0 × 1 0 −4 ) = −(−3.70) = 3.70

pOH = 14.00 − 3.70 = 10.30

Page 104: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Solutions to Selected Practice Problems

Solutions to Selected Practice Problems 1003

31. [O H − ] = antilog (−pOH)

[O H − ] = antilog (−5.60) = 2.5 × 1 0 −6 M

pH = 14.00 − 5.60 = 8.40

[ H + ] = antilog (−8.40) = 4.0 × 1 0 −9 M

33. a. pH = 14.00 − pOH

pH = 14.00 − 10.70 = 3.30

[ H + ] = antilog (−pH)

[ H + ] = antilog (−3.30) = 5.0 × 1 0 −4 M

[ C 6 H 5 CO O − ] = [ H + ] = 5.0 × 1 0 −4 M

[ C 6 H 5 COOH] = 0.0040M − 5.0 × 1 0 −4 M =

0.0035M

K a = [ H + ][ C 6 H 5 CO O − ]

__ [ C 6 H 5 COOH]

= (5.0 × 1 0 −4 )(5.0 × 1 0 −4 )

__ (3.5 × 1 0 −3 )

K a = 7.1 × 1 0 −5

b. pH = 14.00 − pOH

pH = 14.00 − 11.00 = 3.00

[ H + ] = antilog (−pH)

[ H + ] = antilog (−3.00) = 1.0 × 1 0 −3 M

[CN O − ] = [ H + ] = 1.0 × 1 0 −3 M

[HCNO] = 0.100 − 1.0 × 1 0 −3 M = 0.099M

K a = [ H + ][CN O − ]

__ [HCNO]

= (1.0 × 1 0 −3 )(1.0 × 1 0 −3 )

__ (0.099)

K a = 1.0 × 1 0 −5

c. pH = 14.00 − pOH

pH = 14.00 − 11.18 = 2.82

[ H + ] = antilog (−pH)

[ H + ] = antilog (−2.82) = 1.5 × 1 0 −3 M

[ C 3 H 7 CO O − ] = [ H + ] = 1.5 × 1 0 −3 M

[ C 3 H 7 COOH] = 0.150M − 1.5 × 1 0 −3 M = 0.149M

K a = [ H + ][ C 3 H 7 CO O − ]

__ [ C 3 H 7 COOH]

= (1.5 × 1 0 −3 )(1.5 × 1 0 −3 )

__ (0.149)

K a = 1.5 × 1 0 −5

45. 49.90 mL HCl × 1 L _

1000 mL ×

0.5900 mol HCl __

1 L HCl =

2.944 × 1 0 −2 mol HCl

2.944 × 1 0 −2 mol HCl × 1 mol N H 3

_ 1 mol HCl

= 2.944 ×

1 0 −2 mol N H 3

M N H 3 = 2.944 × 1 0 −2 mol N H 3

__ 0.02500 L N H 3

= 1.178M

47. a. N H 4 + (aq) + H 2 O(l) N H 3 (aq) + H 3 O + (aq)

The solution is acidic.

b. S O 4 2− (aq) + H 2 O(l) HS O 4 − (aq) + O H − (aq)

The solution is neutral.

c. C H 3 CO O − (aq) + H 2 O(l)

C H 3 COOH(aq) + O H − (aq)

The solution is basic.

d. C O 3 2− (aq) + H 2 O(l) HC O 3 − (aq) + O H − (aq)

The solution is basic.

Chapter 19 1. a. reduction c. oxidation

b. oxidation d. reduction

3. A g + is the oxidizing agent, Fe is the reducing agent;

A g + is reduced, Fe is oxidized

5. a. +7 b. +5 c. +3

7. a. -3 b. -3 c. -2

15. 3(+2)

2(–3)

HCl + HNO3 → HOCl + NO + H2O+1 -1 +1 +5 -2 +1 -2 +1 +2 -2 +1 -2

3HCl + 2HN O 3 → 3HOCl + 2NO + H 2 O

17. 4(+3)(2)

3(–4)(2)

NH3(g) + NO2(g) → N2(g) + H2O(l)-3 +1 +4 -2 0 +1 -2

8N H 3 (g) + 6N O 2 (g) → 7 N 2 (g) + 12 H 2 O(l)

19. 3(+2)

2(–3)

H2S(g) + NO3-(aq) → S(s) + NO(g)

+1 -2 +5 -2 +2 -20

2 H + (aq) + 3 H 2 S(g) + 2N O 3 - (aq) →

3S(s) + 2NO(g) + 4 H 2 O(l)

21. +2

(–1)

Zn + 2NO3- + 4H+

→ Zn2+ + 2NO2 + 2H2O+4 -2+5 -2 +20

Zn + 2N O 3 - + 4 H + → Z n 2+ + 2N O 2 + 2 H 2 O

23. 2 I - (aq) → I 2 (s) + 2 e - (oxidation)

14 H + (aq) + 6 e - + C r 2 O 7 2- (aq) →

2C r 3+ (aq) + 7 H 2 O(l) (reduction)

Multiply oxidation half-reaction by 3 and add to

reduction half-reaction.

14 H + (aq) + 6 e - + Cr O 7 2- (aq) + 6 I - (aq) →

3 I 2 (s) + 2C r 3+ (aq) + 7 H 2 O(l) + 6 e -

14 H + (aq) + Cr O 7 2- (aq) + 6 I - (aq) →

3 I 2 (s) + 2C r 3+ (aq) + 7 H 2 O(l)

25. 6O H - (aq) + N 2 O(g) →

2N O 2 - (aq) + 4 e - + 3 H 2 O(l) (oxidation)

Cl O - (aq) + 2 e - + H 2 O(l) →

C l - (aq) + 2O H - (aq) (reduction)

Page 105: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1004 Solutions to Selected Practice Problems

Solutions to Selected Practice Problems

Multiply reduction half-reaction by 2 and add to oxi-

dation half-reaction.

6O H - (aq) + N 2 O(g) + 2Cl O - (aq) + 4 e - + 2 H 2 O(l) →

2N O 2 - (aq) + 4 e - + 3 H 2 O(l) + 2C l - (aq) + 4O H - (aq)

N 2 O(g) + 2Cl O - (aq) + 2O H - (aq) →

2N O 2 - (aq) + 2C l - (aq) + H 2 O(l)

Chapter 20 1. P t 2+ (aq) + Sn(s) → Pt(s) + S n 2+ (aq)

E cell 0

= +1.18 V - (-0.1375 V)

E cell 0

= +1.32 V

Sn|S n 2+ ||P t 2+ |Pt

3. H g 2+ (aq) + Cr(s) → Hg(l) + C r 2+ (aq)

E cell 0

= +0.851 V - (-0.913 V)

E cell 0

= +1.764 V

Cr|C r 2+ ||H g 2+ |Hg

5. E cell 0

= +0.3419 V - (-0.1375 V)

E cell 0

= +0.4794 V

E cell 0

> 0 spontaneous

7. E cell 0

= 0.920 V - (+1.507 V)

E cell 0

= -0.587 V

E cell 0

< 0 not spontaneous

9. Al|A l 3+ ||H g 2+ |H g 2 2+

2Al(s) + 6H g 2+ (aq) → 2A l 3+ (aq) + 3H g 2 2+ (aq)

E cell 0

= 0.920 V - (-1.662 V) = +2.582 V

The reaction is spontaneous.

Chapter 21 9. a. CH3

CH3CHCHCH2CH(CH2)4CH3

C3H7

CH3

b. C2H5 C2H5

CH3CH2CHCHCHCH2CH2CH3

— —

C2H5

11. a. C2H5

C3H7

b. CH3

CH3

CH3

CH3

17. a. 4-methyl-2-pentene b. 2,2,6-trimethyl-3-octene

31. a. propylbenzene

b. 1-ethyl-2-methylbenzene

c. 1-ethyl-2,3-dimethylbenzene

Chapter 22 1. 2,3-difluorobutane

3. 1,3-dibromo-2-chlorobenzene

Chapter 23No practice problems

Chapter 24 7. 90

229 Th → 2

4 He + 88

225 Ra

Alpha decay

9. For one half-life, amount remaining = (initial

amount) ( 1 _ 2 )

n

= (10.0 mg) ( 1 _ 2 )

1 = 5.00 mg.

For two half-lives, amount remaining = (initial

amount) ( 1 _ 2 )

n

= (10.0 mg) ( 1 _ 2 )

2 = 2.50 mg.

For three half-lives, amount remaining = (initial

amount) ( 1 _ 2 )

n

= (10.0 mg) ( 1 _ 2 )

3 = 1.25 mg.

11. Sample A will have 16.2 grams remaining after two

half-lives, or 10.54 years. For Sample B, amount

remaining = (initial amount) ( 1 _ 2 )

t _

T = (58.4 g) ( 1 _

2 )

10.54y

_ 12.32y

≈ 32.3 g

For Sample C, amount remaining =

(initial amount ) t _

T = (37.6 g) ( 1 _

2 )

10.54y

_ 28.79y

≈ 29.2 g

19. 13

27 Al + n → 11

24 Na + 2 4 He

21. Let T = target and I = unstable isotope. Then,

n + T = I and I = β + 48 110 Cd

Balancing the second equation gives:

47 110 Ag = β + 48

110 Cd

The first equation must then be: n + T = 47 110 Ag

Balancing this equation gives: n + 47 109 Ag = 47

110 Ag

The target, then, was silver-109, and the unstable

isotope was silver-110.

Page 106: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1005

AEnglish Español

a . . . . . . . . . . . . . . back (BAK)

ay . . . . . . . . . . . . . day (DAY)

ah . . . . . . . . . . . . . father (FAH thur)

ow . . . . . . . . . . . . . flower (FLOW ur)

ar . . . . . . . . . . . . . . car (CAR)

e . . . . . . . . . . . . . . less (LES)

ee . . . . . . . . . . . . . leaf (LEEF)

ih . . . . . . . . . . . . . . trip (TRIHP)

i (i+con+e). . . . . . idea, life (i DEE uh, life)

oh . . . . . . . . . . . . . go (GOH)

aw . . . . . . . . . . . . . soft (SAWFT)

or . . . . . . . . . . . . . orbit (OR but)

oy . . . . . . . . . . . . . coin (COYN)

oo . . . . . . . . . . . . . foot (FOOT)

ew . . . . . . . . . . . . . food (FEWD)

yoo . . . . . . . . . . . . pure (PYOOR)

yew . . . . . . . . . . . . few (FYEW)

uh . . . . . . . . . . . . . comma (CAHM uh)

u (+con) . . . . . . . . rub (RUB)

sh . . . . . . . . . . . . . shelf (SHELF)

ch . . . . . . . . . . . . . nature (NAY chur)

g . . . . . . . . . . . . . . gift (GIHFT)

j . . . . . . . . . . . . . . . gem (JEM)

ing . . . . . . . . . . . . sing (SING)

zh . . . . . . . . . . . . . vision (VIHZH un)

k . . . . . . . . . . . . . . cake (KAYK)

s . . . . . . . . . . . . . . . . seed, cent (SEED, SENT)

z . . . . . . . . . . . . . . . . zone, raise (ZOHN, RAYZ)

absolute zero (p. 445) Zero on the Kelvin scale which repre-sents the lowest possible theoretical temperature; atoms are all in the lowest possible energy state.

accuracy (p. 47) Refers to how close a measured value is to an accepted value.

acid-base indicator (p. 662) A chemical dye whose color is affected by acidic and basic solutions.

acidic solution (p. 636) Contains more hydrogen ions than hydroxide ions.

acid ionization constant (p. 647) The value of the equilib-rium constant expression for the ionization of a weak acid.

actinide series (p. 180) In the periodic table, the f-block ele-ments from period 7 that follow the element actinium.

activated complex (p. 564) A short-lived, unstable arrange-ment of atoms that can break apart and re-form the reac-tants or can form products; also sometimes referred to as the transition state.

activation energy (p. 564) The minimum amount of energy required by reacting particles in order to form the acti-vated complex and lead to a reaction.

active site (p. 830) The pocket or crevice to which a sub-strate binds in an enzyme-catalyzed reaction.

cero absoluto (pág. 445) Equivale a cero grados en la escala de Kelvin y representa la temperatura teórica más fría posible; a esta temperatura todos los átomos se encuen-tran en el menor estado energético posible.

exactitud (pág. 47) Se refiere a la cercanía entre un valor medido y el valor aceptado.

indicador ácido-base (pág. 662) tinción química cuyo color cambia al entrar en contacto con soluciones ácidas y básicas.

solución ácida (pág. 636) Solución que contiene más iones hidrógeno que iones hidróxido.

constante ácida de ionización (pág. 647) Valor de la expre-sión de la constante de equilibrio para la ionización de un ácido débil.

serie de actínidos (pág. 180) Elementos del bloque F del período 7 de la tabla periódica que aparecen después del elemento actinio.

complejo activado (pág. 564) Complejo efímero e inestable de átomos que se puede romper para volver a formar los reactivos o para formar los productos; a veces también se le llama estado de transición.

energía de activación (pág. 564) La cantidad mínima de energía que requieren las partículas de una reacción para formar el complejo activado y producir la reacción.

sitio activo (pág. 830) Saliente o hendidura a la que se enlaza un sustrato durante una reacción catalizada por enzimas.

A multilingual science glossary at glencoe.com includes Arabic, Bengali, Chinese, English, Haitian Creole, Hmong, Korean, Portuguese, Russian, Tagalog, Urdu, and Vietnamese.

Pronunciation KeyUse the following key to help you sound out words in the glossary.

Como usar el glosario en espanol:

1. Busca el termino en ingles que desees encontrar.

2. El termino en espanol, junto con la defi nicion,

se encuentran en la columna de la derecha.

Page 107: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1006 Glossary/Glosario

Glossary/Glosario

actual yield (p. 385) The amount of product produced when a chemical reaction is carried out.

addition polymerization (p. 811) Occurs when all the atoms present in the monomers are retained in the polymer product.

addition reaction (p. 804) A reaction that occurs when other atoms bond to each of two atoms bonded by double or triple covalent bonds.

alcohol (p. 792) An organic compound in which a hydroxyl group replaces a hydrogen atom of a hydrocarbon.

aldehyde (p. 796) An organic compound containing the structure in which a carbonyl group at the end of a car-bon chain is bonded to a carbon atom on one side and a hydrogen atom on the other side.

aliphatic compounds (a luh FA tihk • KAHM pownd) (p. 771) Nonaromatic hydrocarbons, such as the alkanes, alkenes, and alkynes.

alkali metals (p. 177) Group 1 elements, except for hydro-gen, they are reactive and usually exist as compounds with other elements.

alkaline earth metals (p. 177) Group 2 elements in the mod-ern periodic table and are highly reactive.

alkane (p. 750) Hydrocarbon that contains only single bonds between atoms.

alkene (p. 759) An unsaturated hydrocarbon, such as eth-ene ( C 2 H 4 ), with one or more double covalent bonds between carbon atoms in a chain.

alkyl halide (p. 787) An organic compound containing a halogen atom covalently bonded to an aliphatic carbon atom.

alkyne (p. 763) An unsaturated hydrocarbon, such as ethyne ( C 2 H 2 ), with one or more triple bonds between carbon atoms in a chain.

allotrope (p. 422) One of two or more forms of an element with different structures and properties when they are in the same state—solid, liquid, or gas.

alloy (p. 227) A mixture of elements that has metallic prop-erties; most commonly forms when the elements are either similar in size (substitutional alloy) or the atoms of one element are much smaller than the atoms of the other (interstitial alloy).

alpha particle (p. 123) A particle with two protons and two neutrons, with a 2+ charge; is equivalent to a helium-4 nucleus, can be represented as α; and is emitted during radioactive decay.

alpha radiation (p. 123) Radiation that is made up of alpha particles; is deflected toward a negatively charged plate when radiation from a radioactive source is directed between two electrically charged plates.

amide (AM ide) (p. 800) An organic compound in which the -H group of a carboxylic acid is replaced by a nitro-gen atom bonded to other atoms.

amines (A meen) (p. 795) Organic compounds that con-tain nitrogen atoms bonded to carbon atoms in aliphatic chains or aromatic rings and have the general formula RN H 2 .

amino acid (p. 826) An organic molecule that has both an amino group (-N H 2 ) and a carboxyl group (-COOH).

rendimiento real (pág. 385) Cantidad de producto que se obtiene al realizar una reacción química.

polimerización de adición (pág. 811) Ocurre cuando todos los átomos presentes en los monómeros forman parte del producto polimérico.

reacción de adición (pág. 804) Reacción que ocurre cuando dos átomos unidos entre sí por enlaces covalentes dobles o triples se unen con otros átomos.

alcohol (pág. 792) Compuesto orgánico en el que un grupo hidroxilo reemplaza a un átomo de hidrógeno de un hidrocarburo.

aldehído (pág. 796) Compuesto orgánico que contiene una estructura en la que un grupo carbonilo, situado al final de una cadena de carbonos, se une a un átomo de carbono por un lado y a un átomo de hidrógeno por el lado opuesto.

compuestos alifáticos (pág. 771) Hidrocarburos no aromáti-cos como los alcanos, los alquenos y los alquinos.

metales alcalinos (pág. 177) Incluyen los elementos del grupo 1, a excepción del hidrógeno. Son reactivos y gene-ralmente existen como compuestos con otros elementos.

metales alcalinotérreos (pág. 177) Elementos altamente reactivos del grupo 2 de la tabla periódica moderna.

alcano (pág. 750) Hidrocarburo que sólo contiene enlaces sencillos entre sus átomos.

alqueno (pág. 759) Hidrocarburo no saturado, como el eteno ( C 2 H 4 ), que tiene uno o más enlaces covalentes dobles entre los átomos de carbono en una cadena.

haluro de alquilo (pág. 787) Compuesto orgánico que con-tiene un átomo de halógeno enlazado covalentemente a un átomo de carbono alifático.

alquino (pág. 763) Hidrocarburo no saturado, como el ace-tileno ( C 2 H 2 ), que tiene uno o más enlaces triples entre los átomos de carbono en una cadena.

alótropos (pág. 422) Formas de un elemento que tienen estructura y propiedades distintas cuando están en el mismo estado: sólido, líquido o gaseoso.

aleación (pág. 227) Mezcla de elementos que posee propie-dades metálicas; en general se forman cuando los elemen-tos tienen un tamaño similar (aleación de sustitución) o cuando los átomos de un elemento son mucho más pequeños que los átomos del otro (aleación intersticial).

partícula alfa (pág. 123) Partícula con dos protones y dos neutrones que tiene una carga 2+ ; equivale a un núcleo de helio 4, se puede representar como α y es emitida durante la desintegración radiactiva.

radiación alfa (pág. 123) Radiación compuesta de partículas alfa; si la radiación proveniente de una fuente radiactiva es dirigida hacia dos placas cargadas eléctricamente, este tipo de radiación se desvía hacia la placa con carga negativa.

amida (pág. 800) Compuesto orgánico en el que el grupo -H de un ácido carboxílico es sustituido por un átomo de nitrógeno unido a otros átomos.

aminas (pág. 795) Compuestos orgánicos que contienen átomos de nitrógeno unidos a átomos de carbono en cadenas alifáticas o anillos aromáticos; su fórmula gene-ral es RN H 2 .

amino ácido (pág. 826) Molécula orgánica que posee un grupo amino (-N H 2 ) y un grupo carboxilo (-COOH).

actual yield/rendimiento real amino acid/amino ácido

Page 108: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1007

Glossary/Glosario

amorphous solid (p. 424) A solid in which particles are not arranged in a regular, repeating pattern that often is formed when molten material cools too quickly to form crystals.

amphoteric (AM foh TAR ihk) (p. 639) Describes water and other substances that can act as both acids and bases.

amplitude (p. 137) The height of a wave from the origin to a crest, or from the origin to a trough.

anabolism (ah NAB oh lih zum) (p. 844) Refers to the metabolic reactions through which cells use energy and small building blocks to build large, complex molecules needed to carry out cell functions and for cell structures.

anion (AN i ahn) (p. 209) An ion that has a negative charge.

anode (p. 710) In an electrochemical cell, the electrode where oxidation takes place.

applied research (p. 17) A type of scientific investigation that is undertaken to solve a specific problem.

aqueous solution (p. 299) A solution in which the solvent is water.

aromatic compounds (p. 771) Organic compounds that con-tain one or more benzene rings as part of their molecular structure.

Arrhenius model (ah REE nee us • MAH dul) (p. 637)A model of acids and bases; states that an acid is a sub-stance that contains hydrogen and ionizes to produce hydrogen ions in aqueous solution and a base is a sub-stance that contains a hydroxide group and dissociates to produce a hydroxide ion in aqueous solution.

aryl halide (p. 788) An organic compound that contains a halogen atom bonded to a benzene ring or another aro-matic group

asymmetric carbon (p. 768) A carbon atom that has four different atoms or groups of atoms attached to it; occurs in chiral compounds.

atmosphere (p. 407) The unit that is often used to report air pressure.

atom (p. 106) The smallest particle of an element that retains all the properties of that element; is electrically neutral, spherically shaped, and composed of electrons, protons, and neutrons.

atomic emission spectrum (p. 144) A set of frequencies of electromagnetic waves given off by atoms of an element; consists of a series of fine lines of individual colors.

atomic mass (p. 119) The weighted average mass of the iso-topes of that element.

atomic mass unit (amu) (p. 119) One-twelfth the mass of a carbon-12 atom.

atomic number (p. 115) The number of protons in an atom.

atomic orbital (p. 152) A three-dimensional region around the nucleus of an atom that describes an electron’s prob-able location.

ATP (p. 845) Adenosine triphosphate—a nucleotide that functions as the universal energy-storage molecule in living cells.

sólido amorfo (pág. 424) Sólido cuyas partículas no están ordenadas de modo que formen un patrón regular repe-titivo; a menudo se forma cuando el material fundido se enfría demasiado rápido como para formar cristales.

anfotérico (pág. 639) Término que describe al agua y otras sustancias que pueden actuar como ácidos y bases.

amplitud (pág. 137) Altura de una onda desde el origen hasta una cresta o desde el origen hasta un valle.

anabolismo (pág. 844) Reacciones metabólicas en las que las células usan energía y pequeñas unidades básicas para formar las moléculas grandes y complejas que requieren para realizar sus funciones celulares y para construir sus estructuras.

anión (pág. 209) Ion con carga negativa.

ánodo (pág. 710) Electrodo donde sucede la oxidación en una celda electroquímica.

investigación aplicada (pág. 17) Tipo de investigación cientí-fica que se realiza para resolver un problema concreto.

solución acuosa (pág. 299) Solución en la que el agua fun-ciona como disolvente.

compuestos aromáticos (pág. 771) Compuestos orgánicos que contienen uno o más anillos de benceno como parte de su estructura molecular.

modelo de Arrhenius (pág. 637) Modelo de ácidos y bases; establece que un ácido es una sustancia que contiene hidrógeno y se ioniza para producir iones hidrógeno en solución acuosa, y que una base es una sustancia que contiene un grupo hidróxido y se disocia para producir un ion hidróxido en solución acuosa.

haluro de arilo (pág. 788) Compuesto orgánico que con-tiene un átomo de halógeno unido a un anillo de ben-ceno u otro grupo aromático.

carbono asimétrico (pág. 768) Átomo de carbono que está unido a cuatro átomos o grupos de átomos diferentes; se hallan en compuestos quirales.

atmósfera (pág. 407) Unidad que a menudo se usa para reportar la presión atmosférica.

átomo (pág. 106) La partícula más pequeña de un elemento que retiene todas las propiedades de ese elemento; es eléctricamente neutro, de forma esférica y está com-puesto de electrones, protones y neutrones.

espectro de emisión atómica (pág. 144) Conjunto de fre-cuencias de ondas electromagnéticas que emiten los áto-mos de un elemento; consta de una serie de líneas finas de distintos colores.

masa atómica (pág. 119) La masa promedio ponderada de los isótopos de un elemento.

unidad de masa atómica (uma) (pág. 119) La doceava parte de la masa de un átomo de carbono 12.

número atómico (pág. 115) El número de protones en un átomo.

orbital atómico (pág. 152) Región tridimensional alrededor del núcleo de un átomo que describe la ubicación proba-ble de un electrón.

ATP (pág. 845) Trifosfato de adenosina; nucleótido que sirve como la molécula universal de almacenamiento de energía en las células vivas.

amorphous solid/sólido amorfo ATP/ATP

Page 109: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1008 Glossary/Glosario

Glossary/Glosario

aufbau principle (p. 156) States that each electron occupies the lowest energy orbital available.

Avogadro’s number (p. 321) The number 6.0221367 × 1 0 23 ,which is the number of representative particles in a mole, and can be rounded to three significant digits 6.02 × 1 0 23 .

Avogadro’s principle (p. 452) States that equal volumes of gases at the same temperature and pressure contain equal numbers of particles.

principio de aufbau (pág. 156) Establece que cada electrón ocupa el orbital de energía más bajo disponible.

número de Avogadro (pág. 321) Equivale al número 6.0221367 × 1 0 23 ; es el número de partículas representa-tivas en un mol; se puede redondear a tres dígitos signifi-cativos: 6.02 × 1 0 23 .

principio de Avogadro (pág. 452) Establece que los volúmenes iguales de gases, a la misma temperatura y presión, contienen igual número de partículas.

band of stability (p. 866) The region on a graph within which all stable nuclei are found when plotting the num-ber of neutrons versus the number of protons.

barometer (p. 407) An instrument that is used to measure atmospheric pressure.

base ionization constant (p. 649) The value of the equilib-rium constant expression for the ionization of a base.

base unit (p. 33) A defined unit in a system of measurement that is based on an object or event in the physical world and is independent of other units.

basic solution (p. 636) Contains more hydroxide ions than hydrogen ions.

battery (p. 718) One or more electrochemical cells in a single package that generates electrical current.

beta particle (p. 123) A high-speed electron with a 1− charge that is emitted during radioactive decay.

beta radiation (p. 123) Radiation that is made up of beta particles; is deflected toward a positively charged plate when radiation from a radioactive source is directed between two electrically charged plates.

boiling point (p. 427) The temperature at which a liquid’s vapor pressure is equal to the external or atmospheric pressure.

boiling-point elevation (p. 500) The temperature difference between a solution’s boiling point and a pure solvent’s boiling point.

Boyle’s law (p. 442) States that the volume of a fixed amount of gas held at a constant temperature varies inversely with the pressure.

breeder reactor (p. 882) A nuclear reactor that is able to produce more fuel than it uses.

Brønsted-Lowry model (p. 638) A model of acids and bases in which an acid is a hydrogen-ion donor and a base is a hydrogen-ion acceptor.

Brownian motion (p. 477) The erratic, random, movements of colloid particles that results from collisions of particles of the dispersion medium with the dispersed particles.

buffer (p. 666) A solution that resists changes in pH when limited amounts of acid or base are added.

buffer capacity (p. 667) The amount of acid or base a buffer solution can absorb without a significant change in pH.

banda de estabilidad (pág. 866) Región de una gráfica en la que se hallan todos los núcleos estables cuando se grafica el número de neutrones contra el número de protones.

barómetro (pág. 407) Instrumento que se utiliza para medir la presión atmosférica.

constante de ionización básica (pág. 649) El valor de la expresión de la constante de equilibrio para la ionización de una base.

unidad básica (pág. 33) Unidad definida en un sistema de medidas; está basada en un objeto o evento del mundo físico y es independiente de otras unidades.

solución básica (pág. 636) Solución que contiene más iones hidróxido que iones hidrógeno.

batería (pág. 718) Una o más celdas electroquímicas con-tenidas en una sola unidad que genera corriente eléctrica.

partícula beta (pág. 123) Electrón de alta velocidad con una carga 1− que es emitido durante la desintegración radiactiva.

radiación beta (pág. 123) Radiación compuesta de partículas beta; si la radiación proveniente de una fuente radiactiva es dirigida hacia dos placas cargadas eléctricamente, este tipo de radiación se desvía hacia la placa con carga positiva.

punto de ebullición (pág. 427) Temperatura a la cual la pre-sión de vapor de un líquido es igual a la presión externa o atmosférica.

elevación del punto de ebullición (pág. 500) Diferencia de temperatura entre el punto de ebullición de una solución y el punto de ebullición de un disolvente puro.

ley de Boyle (pág. 442) Establece que el volumen de una cantidad dada de gas a temperatura constante varía inversamente según la presión.

reactor generador (pág. 882) Reactor nuclear capaz de pro-ducir más combustible del que utiliza.

modelo de Brønsted-Lowry (pág. 638) Modelo de áci-dos y bases en el que un ácido es un donante de iones hidrógeno y una base es un receptor de iones hidrógeno.

movimiento browniano (pág. 477) Movimientos erráticos, aleatorios de las partículas coloidales, producidos por el choque entre las partículas del medio de dispersión con las partículas dispersas.

amortiguador (pág. 666) Solución que resiste los cambios de pH cuando se agregan cantidades moderadas del ácido o la base.

capacidad amortiguadora (pág. 667) Cantidad de ácido o base que una solución amortiguadora puede absorber sin sufrir un cambio significativo en el pH.

B

aufbau principle/principio de aufbau buffer capacity/capacidad amortiguadora

Page 110: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1009

Glossary/Glosario

calorie (p. 518) The amount of heat required to raise the temperature of one gram of pure water by one degree Celsius.

calorimeter (p. 523) An insulated device that is used to measure the amount of heat released or absorbed during a physical or chemical process.

carbohydrates (p. 832) Compounds that contain multiple hydroxyl groups, plus an aldehyde or a ketone functional group, and function in living things to provide immedi-ate and stored energy.

carbonyl group (p. 796) Arrangement in which an oxygen atom is double-bonded to a carbon atom.

carboxyl group (p. 798) Consists of a carbonyl group bonded to a hydroxyl group.

carboxylic acid (p. 798) An organic compound that contains a carboxyl group and is polar and reactive.

catabolism (kuh TAB oh lih zum) (p. 844) Refers to meta-bolic reactions that break down complex biological mol-ecules for the purpose of forming smaller building blocks and extracting energy.

catalyst (p. 571) A substance that increases the rate of a chemical reaction by lowering activation energies but is not itself consumed in the reaction.

cathode (p. 710) In an electrochemical cell, the electrode where reduction takes place.

cathode ray (p. 108) Radiation that originates from the cathode and travels to the anode of a cathode-ray tube.

cation (KAT i ahn) (p. 207) An ion that has a positive charge.

cellular respiration (p. 846) The process in which glucose is broken down in the presence of oxygen gas to produce carbon dioxide, water, and energy.

Charles’s law (p. 445) States that the volume of a given mass of gas is directly proportional to its kelvin temperature at constant pressure.

chemical bond (p. 206) The force that holds two atoms together; may form by the attraction of a positive ion for a negative ion or by sharing electrons.

chemical change (p. 77) A process involving one or more substances changing into new substances; also called a chemical reaction.

chemical equation (p. 285) A statement using chemical formulas to describe the identities and relative amounts of the reactants and products involved in the chemical reaction.

chemical equilibrium (p. 596) The state in which forward and reverse reactions balance each other because they occur at equal rates.

chemical potential energy (p. 517) The energy stored in a substance because of its composition; most is released or absorbed as heat during chemical reactions or processes.

chemical property (p. 74) The ability or inability of a sub-stance to combine with or change into one or more new substances.

caloría (pág. 518) Cantidad de calor que se requiere para elevar un grado centígrado la temperatura de un gramo de agua pura.

calorímetro (pág. 523) Dispositivo aislado que sirve para medir la cantidad de calor liberada o absorbida durante un proceso físico o químico.

carbohidratos (pág. 832) Compuestos que contienen múlti-ples grupos hidroxilo, además de un grupo funcional aldehído o cetona, cuya función en los seres vivos es pro-porcionar energía inmediata o almacenada.

grupo carbonilo (pág. 796) Grupo formado por un átomo de oxígeno unido por un enlace doble a un átomo de carbono.

grupo carboxilo (pág. 798) Consiste en un grupo carbonilo unido a un grupo hidroxilo.

ácido carboxílico (pág. 798) Compuesto orgánico que con-tiene un grupo carboxilo; es polar y reactivo.

catabolismo (pág. 844) Reacciones metabólicas en las que se desdoblan moléculas biológicas complejas para obtener unidades básicas más pequeñas y energía.

catalizador (pág. 571) Sustancia que aumenta la velocidad de una reacción química al reducir su energía de activación; el catalizador no es consumido durante la reacción.

cátodo (pág. 710) Electrodo donde sucede la reducción en una celda electroquímica.

rayo catódico (pág. 108) Radiación que se origina en el cátodo y viaja hacia el ánodo de un tubo de rayos catódicos.

catión (pág. 207) Ion con carga positiva.

respiración celular (pág. 846) Proceso en el cual la glucosa es desdoblada en presencia del gas oxígeno para producir dióxido de carbono, agua y energía.

Ley de Charles (pág. 445) Establece que el volumen de una masa dada de gas es directamente proporcional a su tem-peratura Kelvin a presión constante.

enlace químico (pág. 206) La fuerza que mantiene a dos áto-mos unidos; puede formarse por la atracción de un ion positivo por un ion negativo compartiendo electrones.

cambio químico (pág. 77) Proceso que involucra una o más sustancias que se transforman en sustancias nuevas; tam-bién se conoce como reacción química.

ecuación química (pág. 285) Expresión que utiliza fórmu-las químicas para describir las identidades y cantidades relativas de los reactivos y productos presentes en una reacción química.

equilibrio químico (pág. 596) Estado en el que se equilibran mutuamente las reacciones en sentido directo e inverso de una reacción química debido a que suceden a tasas iguales.

energía potencial química (pág. 517) La energía almacenada en una sustancia debido a su composición; la mayoría es liberada o absorbida como calor durante reacciones o procesos químicos.

propiedad química (pág. 74) La capacidad de una sustancia de combinarse con una o más sustancias nuevas o de transformarse en una o más sustancias nuevas.

Ccalorie/caloría chemical property/propiedad química

Page 111: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1010 Glossary/Glosario

Glossary/Glosario

chemical reaction (p. 282) The process by which the atoms of one or more substances are rearranged to form differ-ent substances; occurrence can be indicated by changes in temperature, color, odor, and physical state.

chemistry (p. 4) The study of matter and the changes that it undergoes.

chirality (p. 767) A property of a compound to exist in both left (l-) and right (d-) forms; occurs whenever a com-pound contains an asymmetric carbon.

chromatography (p. 83) A technique that is used to separate the components of a mixture based on the tendency of each component to travel or be drawn across the surface of another material.

coefficient (p. 285) In a chemical equation, the number written in front of a reactant or product; in a balanced equation describes the lowest whole-number ratio of the amounts of all reactants and products.

colligative property (kol LIHG uh tihv • PRAH pur tee) (p. 498) A physical property of a solution that depends on the number, but not the identity, of the dissolved sol-ute particles.

collision theory (p. 563) States that atoms, ions, and mol-ecules must collide in order to react.

colloids (p. 477) A heterogeneous mixture of intermediate-sized particles (between atomic-size of solution particles and the size of suspension particles).

combined gas law (p. 449) A single law combining Boyle’s, Charles’s, and Gay-Lussac’s laws that states the relation-ship among pressure, volume, and temperature of a fixed amount of gas.

combustion reaction (p. 290) A chemical reaction that occurs when a substance reacts with oxygen, releasing energy in the form of heat and light.

common ion (p. 620) An ion that is common to two or more ionic compounds.

common ion effect (p. 620) The lowering of the solubility of a substance by the presence of a common ion.

complete ionic equation (p. 301) An ionic equation that shows all the particles in a solution as they realistically exist.

complex reaction (p. 580) A chemical reaction that consists of two or more elementary steps.

compound (p. 85) A chemical combination of two or more different elements; can be broken down into simpler sub-stances by chemical means and has properties different from those of its component elements.

concentration (p. 480) A measure of how much solute is dissolved in a specific amount of solvent or solution.

conclusion (p. 15) A judgment based on the information obtained.

condensation (p. 428) The energy-releasing process by which a gas or vapor becomes a liquid.

condensation polymerization (p. 811) Occurs when mono-mers containing at least two functional groups combine with the loss of a small by-product, usually water.

reacción química (pág. 282) Proceso por el cual los átomos de una o más sustancias se reordenan para formar sus-tancias diferentes; su pueden identificar cuando suceden cambios en temperatura, color, olor o estado físico.

química (pág. 4) El estudio de la materia y los cambios que ésta experimenta.

quiralidad (pág. 767) Propiedad de un compuesto para existir en forma levógira (i-) o dextrógira (d-); ocurre cuando un compuesto contiene un carbono asimétrico.

cromatografía (pág. 83) Técnica que sirve para separar los componentes de una mezcla según la tendencia de cada componente a desplazarse o ser atraído a lo largo de la superficie de otro material.

coeficiente (pág. 285) Número que precede a un reactivo o un producto en una ecuación química; en una ecuación equilibrada, indica la razón más pequeña expresada en números enteros de las cantidades de reactivos y produc-tos en dicha reacción.

propiedad coligativa (pág. 498) Propiedad física de una solución que depende del número, pero no de la identi-dad, de las partículas de soluto disueltas.

teoría de colisión (pág. 563) Establece que los átomos, iones y moléculas deben chocar para reaccionar.

coloides (pág. 477) Mezcla heterogénea de partículas de tamaño intermedio (entre el tamaño atómico de partícu-las en solución y el de partículas en suspensión).

ley combinada de los gases (pág. 449) Ley que combina las leyes de Boyle, Charles y de Gay-Lussac; indica la relación entre la presión, el volumen y la temperatura de una cantidad constante de gas.

reacción de combustión (pág. 290) Reacción química que ocurre al reaccionar una sustancia con el oxígeno, libe-rando energía en forma de calor y luz.

ion común (pág. 620) Ion común a dos o más compuestos iónicos.

efecto del ion común (pág. 620) Disminución de la solu-bilidad de una sustancia debida a la presencia de un ion común.

ecuación iónica total (pág. 301) Ecuación iónica que mues-tra cómo existen realmente todas las partículas en una solución.

reacción compleja (pág. 580) Reacción química que consiste en dos o más pasos elementales.

compuesto (pág. 85) Combinación química de dos o más elementos diferentes; puede ser separado en sustancias más sencillas por medios químicos y exhibe propiedades que difieren de los elementos que lo componen.

concentración (pág. 480) Medida de la cantidad de soluto que se disuelve en una cantidad dada de disolvente o solución.

conclusión (pág. 15) Juicio basado en la información obtenida.

condensación (pág. 428) El proceso de liberación de energía mediante el cual un gas o vapor se convierte en líquido.

polimerización por condensación (pág. 811) Ocurre cuando monómeros que contienen al menos dos grupos funcio-nales se combinan y pierden un producto secundario pequeño, generalmente agua.

chemical reaction/reacción química condensation polymerization/polimerización por condensación

Page 112: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1011

Glossary/Glosario

condensation reaction (p. 801) Occurs when two smaller organic molecules combine to form a more complex molecule, accompanied by the loss of a small molecule such as water.

conjugate acid (p. 638) The species produced when a base accepts a hydrogen ion from an acid.

conjugate acid-base pair (p. 638) Consists of two substances related to each other by the donating and accepting of a single hydrogen ion.

conjugate base (p. 638) The species produced when an acid donates a hydrogen ion to a base.

control (p. 14) In an experiment, the standard that is used for comparison.

conversion factor (p. 44) A ratio of equivalent values used to express the same quantity in different units; is always equal to 1 and changes the units of a quantity without changing its value.

coordinate covalent bond (p. 259) Forms when one atom donates a pair of electrons to be shared with an atom or ion that needs two electrons to become stable.

corrosion (p. 724) The loss of metal that results from an oxi-dation-reduction reaction of the metal with substances in the environment.

covalent bond (p. 241) A chemical bond that results from the sharing of valence electrons.

cracking (p. 748) The process by which heavier fractions of petroleum are converted to gasoline by breaking their large molecules into smaller molecules.

critical mass (p. 880) The minimum mass of a sample of fissionable material necessary to sustain a nuclear chain reaction.

crystal lattice (p. 214) A three-dimensional geometric arrangement of particles in which each positive ion is surrounded by negative ions and each negative ion is surrounded by positive ions; vary in shape due to sizes and relative numbers of the ions bonded.

crystalline solid (p. 420) A solid whose atoms, ions, or molecules are arranged in an orderly, geometric, three-dimensional structure.

crystallization (p. 83) A separation technique that produces pure solid particles of a substance from a solution that contains the dissolved substance.

cyclic hydrocarbon (p. 755) An organic compound that con-tains a hydrocarbon ring.

cycloalkane (p. 755) Cyclic hydrocarbons that contain single bonds only and can have rings with three, four, five, six, or more carbon atoms.

reacción de condensación (pág. 801) Ocurre cuando dos moléculas orgánicas pequeñas se combinan para formar una molécula más compleja; esta reacción es acompañada de la pérdida de una molécula pequeña como el agua.

ácido conjugado (pág. 638) Especie que se produce cuando una base acepta un ion hidrógeno de un ácido.

par ácido-base conjugado (pág. 638) Consiste en dos sus-tancias que se relacionan entre sí mediante la donación y aceptación de un solo ion hidrógeno.

base conjugada (pág. 638) Especie que se produce cuando un ácido dona un ion hidrógeno a una base.

control (pág. 14) Estándar de comparación en un experi-mento.

factor de conversión (pág. 44) Razón de valores equivalentes que sirve para expresar una misma cantidad en unidades diferentes; siempre es igual a 1 y cambia las unidades de una cantidad sin cambiar su valor.

enlace covalente coordinado (pág. 259) Se forma cuando un átomo dona un par de electrones para compartirlos con un átomo o un ion que requieren dos electrones para adquirir estabilidad.

corrosión (pág. 724) Pérdida de metal producida por una reacción de óxido-reducción del metal con sustancias en el ambiente.

enlace covalente (pág. 241) Enlace químico que se produce al compartir electrones de valencia.

cracking (pág. 748) Proceso por el cual las fracciones más pesadas de petróleo son convertidas en gasolina al romper las moléculas grandes en moléculas más pequeñas.

masa crítica (pág. 880) La masa mínima de una muestra de material fisionable que se necesita para sostener una reacción nuclear en cadena.

red cristalina (pág. 214) Ordenamiento geométrico tri-dimensional de partículas en el que cada ion positivo queda rodeado de iones negativos y cada ion negativo queda rodeado de iones positivos; su forma varía según el tamaño y número de iones enlazados.

sólido cristalino (pág. 420) Sólido cuyos átomos, iones o moléculas forman una estructura tridimensional, orde-nada y geométrica.

cristalización (pág. 83) Técnica de separación que produce partículas sólidas puras de una sustancia a partir de una solución que contiene dicha sustancia en solución.

hidrocarburo cíclico (pág. 755) Compuesto orgánico que contiene un anillo de hidrocarburos.

cicloalcano (pág. 755) Hidrocarburos cíclicos que sólo con-tienen enlaces simples; pueden formar anillos con tres, cuatro, cinco, seis o más átomos de carbono.

condensation reaction/reacción de condensación Dalton’s atomic theory/teoría atómica de Dalton

DDalton’s atomic theory (p. 104) States that matter is com-

posed of extremely small particles called atoms; atoms are invisible and indestructable; atoms of a given ele-ment are identical in size, mass, and chemical proper-ties; atoms of a specific element are different from those of another element; different atoms combine in simple whole-number ratios to form compounds; in a chemical reaction, atoms are separated, combined, or rearranged.

teoría atómica de Dalton (pág. 104) Establece que la mate-ria se compone de partículas extremadamente peque-ñas denominadas átomos; los átomos son invisibles e indestructibles; los átomos de un elemento dado son idénticos en tamaño, masa y propiedades químicas; los átomos de un elemento específico difieren de los de otros elementos; átomos diferentes se combinan en razones simples de números enteros para formar compuestos; los átomos se separan, se combinan o se reordenan durante una reacción química.

Page 113: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1012 Glossary/Glosario

Glossary/Glosario

Dalton’s law of partial pressures (p. 408) States that the total pressure of a mixture of gases is equal to the sum of the pressures of all the gases in the mixture.

de Broglie equation (p. 150) Predicts that all moving par-ticles have wave characteristics and relates each particle’s wavelength to its frequency, its mass, and Planck’s con-stant.

decomposition reaction (p. 292) A chemical reaction that occurs when a single compound breaks down into two or more elements or new compounds.

dehydration reaction (p. 803) An elimination reaction in which the atoms removed form water.

dehydrogenation reaction (p. 803) A reaction that elimi-nates two hydrogen atoms, which form a hydrogen mol-ecule of gas.

delocalized electrons (p. 225) The electrons involved in metallic bonding that are free to move easily from one atom to the next throughout the metal and are not attached to a particular atom.

denaturation (p. 829) The process in which a protein’s natu-ral, intricate three-dimensional structure is disrupted.

denatured alcohol (p. 793) Ethanol to which noxious sub-stances have been added in order to make it unfit to drink.

density (p. 36) The amount of mass per unit volume; a physical property.

dependent variable (p. 14) In an experiment, the variable whose value depends on the independent variable.

deposition (p. 429) The energy-releasing process by which a substance changes from a gas or vapor to a solid without first becoming a liquid.

derived unit (p. 35) A unit defined by a combination of base units.

diffusion (p. 404) The movement of one material through another from an area of higher concentration to an area of lower concentration.

dimensional analysis (p. 44) A systematic approach to prob-lem solving that uses conversion factors to move from one unit to another.

dipole-dipole forces (p. 412) The attractions between oppo-sitely charged regions of polar molecules.

disaccharide (p. 833) Forms when two monosaccharides bond together.

dispersion forces (p. 412) The weak forces resulting from temporary shifts in the density of electrons in electron clouds.

disaccharide (p. 82) A technique that can be used to physi-cally separate most homogeneous mixtures based on the differences in the boiling points of the substances.

double-replacement reaction (p. 296) A chemical reaction that involves the exchange of ions between two com-pounds and produces either a precipitate, a gas, or water.

dry cell (p. 718) An electrochemical cell that contains a moist electrolytic paste inside a zinc shell.

ley de Dalton de las presiones parciales (pág. 408) Establece que la presión total de una mezcla de gases es igual a la suma de las presiones de todos los gases en la mezcla.

ecuación de deBroglie (pág. 150) Predice que todas las partículas móviles tienen características ondulatorias y relaciona la longitud de onda de cada partícula con su frecuencia, su masa y la constante de Planck.

reacción de descomposición (pág. 292) Reacción química que ocurre cuando un solo compuesto se divide en dos o más elementos o nuevos compuestos.

reacción de deshidratación (pág. 803) Una reacción de elimi-nación en la que los átomos que se pierden forman agua.

reacción de deshidrogenación (pág. 803) Reacción orgánica en la que se pierden dos átomos de hidrógeno, los cuales se unen y forman una molécula de hidrógeno.

electrones deslocalizados (pág. 225) Los electrones que forman un enlace metálico; estos electrones pasan fácil-mente de un átomo a otro a través del metal y no están unidos a ningún átomo en particular.

desnaturalización (pág. 829) Proceso que afecta la estruc-tura tridimensional, compleja y natural de una proteína.

alcohol desnaturalizado (pág. 793) Etanol al cual se añaden sustancias nocivas para evitar que se pueda beber.

densidad (pág. 36) La cantidad de masa por unidad de volumen; una propiedad física.

variable dependiente (pág. 14) Es la variable de un experi-mento cuyo valor depende de la variable independiente.

depositación (pág. 429) Proceso de liberación de energía por el cual una sustancia cambia de gas o vapor a sólido sin antes convertirse en un líquido.

unidad derivada (pág. 35) Unidad definida por una combi-nación de unidades básicas.

difusión (pág. 404) El movimiento de un material a través de otro en dirección al área de menor concentración.

análisis dimensional (pág. 44) Un enfoque sistemático para resolver un problema en el que se usan factores de con-versión para pasar de una unidad a otra.

fuerzas dipolo-dipolo (pág. 412) La atracción entre regiones con cargas opuestas de moléculas polares.

disacárido (pág. 833) Se forma a partir de la unión de dos monosacáridos.

fuerzas de dispersión (pág. 412) Fuerzas débiles causadas por los cambios temporales en la densidad de electrones en las nubes electrónicas.

destilación (pág. 82) Técnica que se usa para separar física-mente la mayoría de las mezclas homogéneas según las diferencias en los puntos de ebullición de las sustancias.

reacción de sustitución doble (pág. 296) Reacción química en la que dos compuestos intercambian iones positivos, produciendo un precipitado, un gas o agua.

pila seca (pág. 718) Celda electroquímica que contiene una pasta electrolítica húmeda dentro de un armazón de zinc.

elastic collision/choque elásticoDalton’s law of partial pressures/ley de Dalton de las presiones parciales

elastic collision (p. 403) Collision in which no kinetic energy is lost; kinetic energy can be transferred between the colliding particles, but the total kinetic energy of the two particles remains the same.

choque elástico (pág. 403) Colisión en que no se pierde energía cinética; la energía cinética es transferida entre las partículas en choque, pero la energía cinética total de las dos partículas permanece igual.

E

Page 114: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1013

Glossary/Glosario

end point/punto finalelectrochemical cell/celda electroquímica

electrochemical cell (p. 709) An apparatus that uses a redox reaction to produce electrical energy or uses electrical energy to cause a chemical reaction.

electrolysis (p. 728) The process that uses electrical energy to bring about a chemical reaction.

electrolyte (p. 215) An ionic compound whose aqueous solution conducts an electric current.

electrolytic cell (p. 728) An electrochemical cell in which electrolysis occurs.

electromagnetic radiation (p. 137) A form of energy exhib-iting wavelike behavior as it travels through space; can be described by wavelength, frequency, amplitude, and speed.

electromagnetic spectrum (p. 139) Includes all forms of electromagnetic radiation; the types of radiation differ in their frequencies and wavelengths.

electron (p. 108) A negatively charged, fast-moving particle with an extremely small mass that is found in all forms of matter and moves through the empty space surrounding an atom’s nucleus.

electron capture (p. 868) A radioactive decay process that occurs when an atom’s nucleus draws in a surrounding electron, which combines with a proton to form a neu-tron, resulting in an X-ray photon being emitted.

electron configuration (p. 156) The arrangement of elec-trons in an atom, which is prescribed by three rules—the aufbau principle, the Pauli exclusion principle, and Hund’s rule.

electron-dot structure (p. 161) Consists of an element’s symbol, representing the atomic nucleus and inner-level electrons, that is surrounded by dots, representing the atom’s valence electrons.

electron sea model (p. 225) Proposes that all metal atoms in a metallic solid contribute their valence electrons to form a “sea” of electrons, and can explain properties of metal-lic solids such as malleability, conduction, and ductility.

electronegativity (p. 194) Indicates the relative ability of an element’s atoms to attract electrons in a chemical bond.

element (p. 84) A pure substance that cannot be broken down into simpler substances by physical or chemical means.

elimination reaction (p. 802) A reaction of organic com-pounds that occurs when a combination of atoms is removed from two adjacent carbon atoms forming an additional bond between the atoms.

empirical formula (p. 344) A formula that shows the small-est whole-number mole ratio of the elements of a com-pound, and may or may not be the same as the actual molecular formula.

endothermic (p. 247) A chemical reaction or process in which a greater amount of energy is required to break the existing bonds in the reactants than is released when the new bonds form in the product molecules.

end point (p. 663) The point at which the indicator that is used in a titration changes color.

celda electroquímica (pág. 709) Aparato que usa una reac-ción redox para producir energía eléctrica o que utiliza energía eléctrica para causar una reacción química.

electrólisis (pág. 728) Proceso que emplea energía eléctrica para producir una reacción química.

electrolito (pág. 215) Compuesto iónico cuya solución acuosa conduce una corriente eléctrica.

celda electrolítica (pág. 728) Celda electroquímica en donde ocurre la electrólisis.

radiación electromagnética (pág. 137) Forma de energía que exhibe un comportamiento ondulatorio al viajar por el espacio; se puede describir por su longitud de onda, su frecuencia, su amplitud y su rapidez.

espectro electromagnético (pág. 139) Incluye toda forma de radiación electromagnética; los distintos tipos de radiación difirien en sus frecuencias y sus longitudes de onda.

electrón (pág. 108) Partícula móvil rápida, de carga negativa y con una masa extremadamente pequeña. que se encuen-tra en todas las formas de materia y que se mueve a través del espacio vacío que rodea el núcleo de un átomo.

captura electrónica (pág. 868) Proceso de desintegración radiactiva que ocurre cuando el núcleo de un átomo atrae un electrón circundante, que luego se combina con un protón para formar un neutrón, provocando la emi-sión de un fotón de rayos X.

configuración electrónica (pág. 156) El ordenamiento de los electrones en un átomo; está determinado por tres reglas: el principio de Aufbau, el principio de exclusión de Pauli y la regla de Hund.

estructura de puntos de electrones (pág. 161) Consiste en el símbolo del elemento, que representa al núcleo atómico y los electrones de los niveles internos, rodeado por puntos que representan los electrones de valencia del átomo.

modelo del mar de electrones (pág. 225) Propone que todos los átomos de metal en un sólido metálico contribuyen con sus electrones de valencia para formar un “mar” de electrones.

electronegatividad (pág. 194) Indica la capacidad relativa de los átomos de un elemento para atraer electrones en un enlace químico.

elemento (pág. 84) Sustancia pura que no puede separarse en sustancias más sencillas por medios físicos ni quími-cos.

reacción de eliminación (pág. 802) Reacción de compuestos orgánicos que ocurre cuando se pierden un conjunto de átomos en dos átomos adyacentes de carbono, al for-marse un enlace entre dichos átomos de carbono.

fórmula empírica (pág. 344) Fórmula que muestra la pro-porción molar más pequeña expresada en números ente-ros de los elementos de un compuesto; puede ser distinta de la fórmula molecular real.

endotérmica (pág. 247) Reacción o proceso químico que requiere una mayor cantidad de energía para romper los enlaces existentes en los reactivos, que la que se se libera al formarse los enlaces nuevos en las moléculas del producto.

punto final (pág. 663) Punto en el que el indicador que se utiliza en una titulación cambia de color.

Page 115: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1014 Glossary/Glosario

Glossary/Glosario

energy (p. 516) The capacity to do work or produce heat; exists as potential energy, which is stored in an object due to its composition or position, and kinetic energy, which is the energy of motion.

energy sublevels (p. 153) The energy levels contained within a principal energy level.

enthalpy (p. 527) The heat content of a system at constant pressure.

enthalpy (heat) of combustion (p. 529) The enthalpy change for the complete burning of one mole of a given sub-stance.

enthalpy (heat) of reaction (p. 527) The change in enthalpy for a reaction—the difference between the enthalpy of the substances that exist at the end of the reaction and the enthalpy of the substances present at the start

entropy (p. 543) A measure of the number of possible ways that the energy of a system can be distributed; related to the freedom of the system’s particles to move and the number of ways they can be arranged.

enzyme (p. 829) A biological catalyst.equilibrium constant (p. 599) K eq is the numerical value that

describes the ratio of product concentrations to reactant concentrations, with each raised to the power corre-sponding to its coefficient in the balanced equation.

equivalence point (p. 661) The point at which the moles of H + ions from the acid equals moles of O H - ions from the base.

error (p. 48) The difference between an experimental value and an accepted value

ester (p. 799) An organic compound with a carboxyl group in which the hydrogen of the hydroxyl group is replaced by an alkyl group; may be volatile and sweet-smelling and is polar.

ether (p. 794) An organic compound that contains an oxy-gen atom bonded to two carbon atoms.

evaporation (p. 426) The process in which vaporization occurs only at the surface of a liquid.

excess reactant (p. 379) A reactant that remains after a chemical reaction stops.

exothermic (p. 247) A chemical reaction or process in which more energy is released than is required to break bonds in the initial reactants.

experiment (p. 14) A set of controlled observations that test a hypothesis.

extensive property (p. 73) A physical property, such as mass, length, and volume, that is dependent upon the amount of substance present.

energía (pág. 516) Capacidad de realizar trabajo o producir calor; existe como energía potencial (almacenada en un objeto debido a su composición o posición) o como energía cinética (energía del movimiento).

subniveles de energía (pág. 153) Los niveles de energía den-tro de un nivel principal de energía.

entalpía (pág. 527) El contenido de calor en un sistema a presión constante.

entalpía (calor) de combustión (pág. 529) El cambio de entalpía causado por la combustión completa de un mol de una sustancia dada.

entalpía (calor) de reacción (pág. 527) El cambio en la entalpía que ocurre en una reacción; es decir, la diferen-cia entre la entalpía de las sustancias que existen al final de la reacción y la entalpía de las sustancias presentes al comienzo de la misma.

entropía (pág. 543) Una medida de las formas posibles en que se puede distribuir la energía de un sistema; está relacionada con la libertad de movimiento de las partícu-las del sistema y el número de maneras en que éstas se pueden ordenar.

enzima (pág. 829) Catalizador biológico.constante de equilibrio (pág. 599) K eq es el valor numérico

que describe la razón de las concentraciones de los pro-ductos con respecto a las concentraciones de los reac-tivos, cada una de ellas elevada a la potencia correspon-diente a su coeficiente en la ecuación equilibrada.

punto de equivalencia (pág. 661) Punto en el cual los moles de iones H + del ácido equivalen a los moles de iones O H - de la base.

error (pág. 48) La diferencia entre el valor experimental y el valor aceptado.

éster (pág. 799) Compuesto orgánico con un grupo car-boxilo en el que el hidrógeno del grupo de hidroxilo es reemplazado por un grupo alquilo; es polar y puede ser volátil y de olor dulce.

éter (pág. 794) Compuesto orgánico que contiene un átomo de oxígeno unido a dos átomos de carbono.

evaporación (pág. 426) Proceso en el cual la vaporización ocurre sólo en la superficie de un líquido.

reactivo en exceso (pág. 379) Reactivo que sobra luego de finalizar una reacción química.

exotérmica (pág. 247) Reacción o proceso químico en el que se libera más energía que la requerida para romper los enlaces en los reactivos iniciales.

experimento (pág. 14) Conjunto de observaciones controla-das que se realizan para probar una hipótesis.

propiedad extensiva (pág. 73) Propiedades físicas, como la masa, la longitud y el volumen, que dependen de la can-tidad de sustancia presente.

fatty acid/ácido grasoenergy/energía

fatty acid (p. 835) A long-chain carboxylic acid that usually has between 12 and 24 carbon atoms and can be satu-rated (no double bonds), or unsaturated (one or more double bonds).

ácido graso (pág. 835) Ácido carboxílico de cadena larga que tiene generalmente entre 12 y 24 átomos de carbono; puede ser saturado (sin enlaces dobles) o insaturado o no saturado (con uno o más enlaces dobles).

F

Page 116: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1015

Glossary/Glosario

group/grupofermentation/fermentación

fermentation (p. 847) The process in which glucose is bro-ken down in the absence of oxygen, producing either ethanol, carbon dioxide, and energy (alcoholic fermenta-tion) or lactic acid and energy (lactic acid fermentation).

filtration (p. 82) A technique that uses a porous barrier to separate a solid from a liquid.

formula unit (p. 218) The simplest ratio of ions represented in an ionic compound.

fractional distillation (p. 747) The process by which petro-leum can be separated into simpler components, called fractions, as they condense at different temperatures.

free energy (p. 546) The energy available to do work—the difference between the change in enthalpy and the prod-uct of the entropy change and the kelvin temperature.

freezing point (p. 428) The temperature at which a liquid is converted into a crystalline solid.

freezing-point depression (p. 502) The difference in temper-ature between a solution’s freezing point and the freezing point of its pure solvent.

frequency (p. 137) The number of waves that pass a given point per second.

fuel cell (p. 722) A voltaic cell in which the oxidation of a fuel, such as hydrogen gas, is used to produce electric energy.

functional group (p. 786) An atom or group of atoms that always reacts in a certain way in an organic molecule.

fermentación (pág. 847) Proceso en el cual la glucosa es desdoblada en ausencia de oxígeno produciendo etanol, dióxido de carbono y energía (fermentación alcohólica) o ácido láctico y energía (fermentación del ácido láctico).

filtración (pág. 82) Técnica que utiliza una barrera porosa para separar un sólido de un líquido.

fórmula unitaria (pág. 218) La razón más simple de iones representados en un compuesto iónico.

destilación fraccionaria (pág. 747) Proceso mediante el cual se separa el petróleo en componentes más simples llama-dos fracciones, las cuales se condensan a temperaturas diferentes.

energía libre (pág. 546) Energía disponible para hacer tra-bajo: la diferencia entre el cambio en la entalpía y el pro-ducto del cambio de entropía por la temperatura kelvin.

punto de congelación (pág. 428) La temperatura a la cual un líquido se convierte en un sólido cristalino.

depresión del punto de congelación (pág. 502) Diferencia de temperatura entre el punto de congelación de una solu-ción y el punto de congelación de su disolvente puro.

frecuencia (pág. 137) Número de ondas que pasan por un punto dado en un segundo.

celda de combustible (pág. 722) Celda voltaica en la cual la oxidación de un combustible, como el gas hidrógeno, se utiliza para producir energía eléctrica.

grupo funcional (pág. 786) Átomo o grupo de átomos que siempre reaccionan de cierta manera en una molécula orgánica.

Ggalvanization (p. 727) The process in which an iron object

is dipped into molten zinc or electroplated with zinc to make the iron more resistant to corrosion.

gamma rays (p. 124) High-energy radiation that has no electrical charge and no mass, is not deflected by electric or magnetic fields, usually accompanies alpha and beta radiation, and accounts for most of the energy lost dur-ing radioactive decay.

gas (p. 72) A form of matter that flows to conform to the shape of its container, fills the container’s entire volume, and is easily compressed.

Gay-Lussac’s law (p. 447) States that the pressure of a fixed mass of gas varies directly with the kelvin temperature when the volume remains constant.

geometric isomers (p. 766) A category of stereoisomers that results from different arrangements of groups around a double bond.

Graham’s law of effusion (p. 404) States that the rate of effu-sion for a gas is inversely proportional to the square root of its molar mass.

graph (p. 55) A visual display of data.ground state (p. 146) The lowest allowable energy state of

an atom.group (p. 177) A vertical column of elements in the peri-

odic table arranged in order of increasing atomic num-ber; also called a family.

galvanizado (pág. 727) Proceso en el cual un objeto de hierro en sumergido o galvanizado en zinc para aumen-tar la resistencia del hierro a la corrosión.

rayos gamma (pág. 124) Radiación de alta energía sin carga eléctrica ni masa; no es desviada por campos eléctricos ni magnéticos; acompaña generalmente a la radiación alfa y beta; representa la mayor parte de la energía perdida durante la desintegración radiactiva.

gas (pág. 72) Forma de la materia que fluye para adaptarse a la forma de su contenedor, llena el volumen entero del recipiente y se comprime fácilmente.

ley de Gay-Lussac (pág. 447) Establece que la presión de una masa dada de gas varía directamente con la temperatura en grados Kelvin cuando el volumen permanece cons-tante.

isómeros geométricos (pág. 766) Categoría de este-reoisómeros originada por los diversos ordenamientos posibles de grupos alrededor de un enlace doble.

ley de efusión de Graham (pág. 404) Establece que la tasa de efusión de un gas es inversamente proporcional a la raíz cuadrada de su masa molar.

gráfica (pág. 55) Representación visual de datos.estado base (pág. 146) Estado de energía más bajo posible

de un átomo.grupo (pág. 177) Columna vertical de los elementos en la

tabla periódica ordenados en sentido creciente según su número atómico; llamado también familia.

Page 117: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1016 Glossary/Glosario

Glossary/Glosario

half-cells (p. 710) The two parts of an electrochemical cell in which the separate oxidation and reduction reactions occur.

half-life (p. 870) The time required for one-half of a radio-isotope’s nuclei to decay into its products.

half-reaction (p. 693) One of two parts of a redox reac-tion—the oxidation half, which shows the number of electrons lost when a species is oxidized, or the reduction half, which shows the number of electrons gained when a species is reduced.

halocarbon (p. 787) Any organic compound containing a halogen substituent.

halogen (p. 180) A highly reactive group 17 element.

halogenation (p. 790) A process by which hydrogen atoms are replaced by halogen atoms.

heat (p. 518) A form of energy that flows from a warmer object to a cooler object.

heat of solution (p. 492) The overall energy change that occurs during the solution formation process.

Heisenberg uncertainty principle (p. 151) States that it is not possible to know precisely both the velocity and the posi-tion of a particle at the same time.

Henry’s law (p. 496) States that at a given temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas above the liquid.

Hess’s law (p. 534) States that if two or more thermochemi-cal equations can be added to produce a final equation for a reaction, then the sum of the enthalpy changes for the individual reactions is the enthalpy change for the final reaction.

heterogeneous catalyst (p. 573) A catalyst that exists in a different physical state than the reaction it catalyzes.

heterogeneous equilibrium (p. 602) A state of equilibrium that occurs when the reactants and products of a reaction are present in more than one physical state.

heterogeneous mixture (p. 81) One that does not have a uniform composition and in which the individual sub-stances remain distinct.

homogeneous catalyst (p. 573) A catalyst that exists in the same physical state as the reaction it catalyzes.

homogeneous equilibrium (p. 600) A state of equilibrium that occurs when all the reactants and products of a reac-tion are in the same physical state.

homogeneous mixture (p. 81) One that has a uniform com-position throughout and always has a single phase; also called a solution.

homologous series (p. 751) Describes a series of compounds that differ from one another by a repeating unit.

Hund’s rule (p. 157) States that single electrons with the same spin must occupy each equal-energy orbital before additional electrons with opposite spins can occupy the same orbitals.

semiceldas (pág. 710) Las dos partes de una celda electro-química en las que ocurren las reacciones separadas de oxidación y reducción.

vida media (pág. 870) Tiempo requerido para que la mitad de los núcleos de un radioisótopo se desintegren en sus productos.

semirreacción (pág. 693) Una de dos partes de una reac-ción redox: la correspondiente a la oxidación muestra el número de electrones que se pierden al oxidarse una espe-cie y la correspondiente a la reducción muestra el número de electrones que se ganan al reducirse una especie.

halocarbono (pág. 787) Cualquier compuesto orgánico que contiene un sustituyente halógeno.

halógeno (pág. 180) Elemento sumamente reactivo del grupo 17.

halogenación (pág. 790) Proceso mediante el cual se reem-plazan átomos de hidrógeno por átomos de halógeno.

calor (pág. 518) Forma de energía que fluye hacia cuerpos más fríos.

calor de solución (pág. 492) El cambio global de energía que ocurre durante el proceso de formación de una solución.

principio de incertidumbre de Heisenberg (pág. 151) Establece que no es posible saber con precisión y al mismo tiempo la velocidad y la posición de una partícula.

ley de Henry (pág. 496) Establece que a una temperatura dada, la solubilidad de un gas en un líquido es directa-mente proporcional a la presión del gas sobre el líquido.

ley de Hess (pág. 534) Establece que si para producir la ecua-ción final para una reacción se pueden sumar dos o más ecuaciones termoquímicas, entonces la suma de los cam-bios de entalpía para las reacciones individuales equivale al cambio de entalpía de la reacción final.

catalizador heterogéneo (pág. 573) Catalizador que existe en un estado físico diferente al de la reacción que cataliza.

equilibrio heterogéneo (pág. 602) Estado de equilibrio que ocurre cuando los reactivos y los productos de una reac-ción están presentes en más de un estado físico.

mezcla heterogénea (pág. 81) Aquella que no tiene una composición uniforme y en la que las sustancias indi-viduales permanecen separadas.

catalizador homogéneo (pág. 573) Catalizador que existe en el mismo estado físico de la reacción que cataliza.

equilibrio homogéneo (pág. 600) Estado de equilibrio que ocurre cuando todos los reactivos y productos de una reacción están en el mismo estado físico.

mezcla homogénea (pág. 81) Aquella que tiene una com-posición uniforme y siempre tiene una sola fase; también llamada solución.

serie homóloga (pág. 751) Describe una serie de compues-tos que difieren entre sí por una unidad repetitiva.

regla de Hund (pág. 157) Establece que los electrones indi-viduales con igual rotación deben ocupar cada uno orbi-tales distintos con la misma energía, antes de que elec-trones adicionales con rotación opuesta puedan ocupar los mismos orbitales.

Hhalf-cells/semiceldas Hund’s rule/regla de Hund

Page 118: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1017

Glossary/Glosario

hybridization (p. 262) A process in which atomic orbitals are mixed to form new, identical hybrid orbitals.

hydrate (p. 351) A compound that has a specific number of water molecules bound to its atoms.

hydration reaction (p. 804) An addition reaction in which a hydrogen atom and a hydroxyl group from a water mol-ecule add to a double or triple bond.

hydrocarbon (p. 745) Simplest organic compound com-posed only of the elements carbon and hydrogen.

hydrogenation reaction (p. 804) An addition reaction in which hydrogen is added to atoms in a double or triple bond; usually requires a catalyst.

hydrogen bond (p. 413) A strong dipole-dipole attraction between molecules that contain a hydrogen atom bonded to a small, highly electronegative atom.

hydroxyl group (p. 792) An oxygen-hydrogen group cova-lently bonded to a carbon atom.

hypothesis (p. 13) A tentative, testable statement or predic-tion about what has been observed.

hibridación (pág. 262) Proceso mediante el cual se mezclan los orbitales atómicos para formar orbitales híbridos nuevos e idénticos.

hidrato (pág. 351) Compuesto que tiene un número especí-fico de moléculas de agua unidas a sus átomos.

reacción de hidratación (pág. 804) Reacción de adición en la que se añaden el átomo de hidrógeno y el grupo hidro-xilo de una molécula de agua a un enlace doble o triple.

hidrocarburo (pág. 745) El compuesto orgánico más simple; está formado sólo por los elementos carbono e hidrógeno.

reacción de hidrogenación (pág. 804) Reacción de adición en la que se agrega hidrógeno a los átomos que forman un enlace doble o triple; requiere generalmente de un catalizador.

enlace de hidrógeno (pág. 413) Fuerte atracción dipolo-dipolo entre moléculas que contienen un átomo de hidrógeno unido a un átomo pequeño, sumamente elec-tronegativo.

grupo hidroxilo (pág. 792) Un grupo hidrógeno-oxígeno unido covalentemente a un átomo de carbono.

hipótesis (pág. 13) Enunciado tentativo y comprobable o predicción acerca de lo que ha sido observado.

Iideal gas constant (R) (p. 454) An experimentally deter-

mined constant whose value in the ideal gas equation depends on the units that are used for pressure.

ideal gas law (p. 454) Describes the physical behavior of an ideal gas in terms of pressure, volume, temperature, and number of moles of gas.

immiscible (ih MIHS ih bul) (p. 479) Describes two liquids that can be mixed together but separate shortly after you cease mixing them.

independent variable (p. 14) In an experiment, the variable that the experimenter plans to change.

induced transmutation (p. 875) The process in which nuclei are bombarded with high-velocity charged particles in order to create new elements.

inhibitor (p. 571) A substance that slows down the reaction rate of a chemical reaction or prevents a reaction from happening.

inner transition metal (p. 180) A type of group B element that is contained in the f-block of the periodic table and is characterized by a filled outermost orbital, and filled or partially filled 4f and 5f orbitals.

insoluble (p. 479) Describes a substance that cannot be dis-solved in a given solvent.

instantaneous rate (p. 578) The rate of decomposition at a specific time, calculated from the rate law, the specific rate constant, and the concentrations of all the reactants.

intensive property (p. 73) A physical property that remains the same no matter how much of a substance is present.

intermediate (p. 580) A substance produced in one elemen-tary step of a complex reaction and consumed in a subse-quent elementary step.

constante de los gases ideales (R) (pág. 454) Constante determinada experimentalmente cuyo valor en la ecua-ción de los gases ideales depende de las unidades en las que se expresa la presión.

ley de los gases ideales (pág. 454) Describe el comporta-miento físico de un gas ideal en términos de la presión, el volumen, la temperatura y el número de moles del gas.

inmiscible (pág. 479) Describe dos líquidos que se pueden mezclar entre sí, pero que se separan poco después de que se cesa de mezclarlos.

variable independiente (pág. 14) La variable de un experi-mento que el experimentador piensa cambiar.

transmutación inducida (pág. 875) Proceso en cual se bom-bardean núcleos con partículas cargadas de alta veloci-dad para crear elementos nuevos.

inhibidor (pág. 571) Sustancia que reduce la tasa de reac-ción de una reacción química o evita que ésta suceda.

metal de transición interna (pág. 180) Tipo de elemento del grupo B contenido dentro del bloque F de la tabla periódica; se caracteriza por tener el orbital más externo lleno y los orbitales 4f y 5f parcialmente llenos.

insoluble (pág. 479) Describe una sustancia que no se puede disolver en un disolvente dado.

velocidad instantánea (pág. 578) La tasa de descomposición en un tiempo dado, se calcula a partir de la ley de veloci-dad de la reacción, la constante de velocidad de la reac-ción y las concentraciones de los reactivos.

propiedad intensiva (pág. 73) Propiedad física que perma-nece igual sea cual sea la cantidad de sustancia presente.

intermediario (pág. 580) Sustancia producida en un paso elemental de una reacción compleja y que es consumida en un paso elemental subsecuente.

hybridization/hibridación intermediate/intermediario

Page 119: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1018 Glossary/Glosario

Glossary/Glosario

joule (p. 518) The SI unit of heat and energy. julio (pág. 518) La unidad SI de medida del calor y la energía.

ion/ion law of conservation of mass/ley de conservación de la masa

J

ion (p. 189) An atom or bonded group of atoms with a positive or negative charge.

ionic bond (p. 210) The electrostatic force that holds oppo-sitely charged particles together in an ionic compound.

ionic compounds (p. 210) Compounds that contain ionic bonds

ionization energy (p. 191) The energy required to remove an electron from a gaseous atom; generally increases in moving from left-to-right across a period and decreases in moving down a group

ionizing radiation (p. 885) Radiation that is energetic enough to ionize matter it collides with.

ion product constant for water (p. 650) The value of the equilibrium constant expression for the self-ionization of water.

isomers (p. 765) Two or more compounds that have the same molecular formula but have different molecular structures.

isotopes (p. 117) Atoms of the same element with different numbers of neutrons.

ion (pág. 189) Átomo o grupo de átomos unidos que tienen carga positiva o negativa.

enlace iónico (pág. 210) Fuerza electrostática que mantiene unidas las partículas con carga opuesta en un compuesto iónico.

compuestos iónicos (pág. 210) Compuestos que contienen enlaces iónicos.

energía de ionización (pág. 191) Energía que se requiere para separar un electrón de un átomo en estado gaseoso; generalmente aumenta al moverse de izquierda a derecha a lo largo de un período de la tabla periódica y disminuye al moverse hacia abajo a lo largo de un grupo.

radiación ionizante (pág. 885) Radiación que posee suficiente energía como para ionizar la materia con la que choca.

constante del producto iónico del agua (pág. 650) Valor de la expresión de la constante de equilibrio de la ionización del agua.

isómeros (pág. 765) Dos o más compuestos que tienen la misma fórmula molecular pero poseen estructuras moleculares diferentes.

isótopos (pág. 117) Átomos del mismo elemento con dife-rente número de neutrones.

kelvin (p. 35) The SI base unit of temperature.ketone (p. 797) An organic compound in which the carbon

of the carbonyl group is bonded to two other carbon atoms.

kilogram (p. 34) The SI base unit for mass.kinetic-molecular theory (p. 402) Describes the behavior

of gases in terms of particles in motion; makes several assumptions about size, motion, and energy of gas par-ticles.

kelvin (pág. 35) Unidad básica de temperatura del SI.cetona (pág. 797) Compuesto orgánico en el que el car-

bono del grupo carbonilo está unido a otros dos átomos de carbono.

kilogramo (pág. 34) Unidad básica de masa del SI.teoría cinético-molecular (pág. 402) Explica el comporta-

miento de los gases en términos de partículas en movi-miento; hace varias suposiciones acerca del tamaño, movimiento y energía de las partículas de gas.

K

Llanthanide series (p. 180) In the periodic table, the f-block

elements from period 6 that follow the element lantha-num.

lattice energy (p. 216) The energy required to separate one mole of the ions of an ionic compound, which is directly related to the size of the ions bonded and is also affected by the charge of the ions.

law of chemical equilibrium (p. 599) States that at a given temperature, a chemical system may reach a state in which a particular ratio of reactant and product concen-trations has a constant value.

law of conservation of energy (p. 517) States that in any chemical reaction or physical process, energy may change from one form to another, but it is neither created nor destroyed.

law of conservation of mass (p. 77) States that mass is nei-ther created nor destroyed during a chemical reaction but is conserved.

serie de los lantánidos (pág. 180) Los elementos del blo-que F del período 6 de la tabla periódica que siguen al elemento lantano.

energía reticular (pág. 216) Energía que se requiere para separar un mol de los iones de un compuesto iónico; está directamente relacionada con el tamaño de los iones enlazados y es afectada también por la carga de los iones.

ley del equilibrio químico (pág. 599) Establece que a una temperatura dada, un sistema químico puede alcanzar un estado en el que la razón particular de las concentracio-nes del reactivo y el producto tiene un valor constante.

ley de conservación de la energía (pág. 517) Establece que en toda reacción química y en todo proceso físico la energía puede cambiar de una forma a otra, pero no puede ser creada ni destruida.

ley de conservación de la masa (pág. 77) Establece que durante una reacción química la masa no se crea ni se destruye, sino que se conserva.

Page 120: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1019

Glossary/Glosario

law of definite proportions (p. 87) States that, regardless of the amount, a compound is always composed of the same elements in the same proportion by mass.

law of multiple proportions (p. 89) States that when different compounds are formed by the combination of the same elements, different masses of one element combine with the same mass of the other element in a ratio of small whole numbers.

Le Châtelier’s principle (luh SHAHT uh lee yays • PRIHN sih puhl) (p. 607) States that if a stress is applied to a system at equilibrium, the system shifts in the direction that relieves the stress.

Lewis model (p. 641) An acid is an electron-pair acceptor and a base is an electro-pair donor.

Lewis structure (p. 242) A model that uses electron-dot structures to show how electrons are arranged in mol-ecules. Pairs of dots or lines represent bonding pairs.

limiting reactant (p. 379) A reactant that is totally con-sumed during a chemical reaction, limits the extent of the reaction, and determines the amount of product.

lipids (p. 835) Large, nonpolar biological molecules that vary in structure, store energy in living organisms, and make up most of the structure of cell membranes.

liquid (p. 71) A form of matter that flows, has constant vol-ume, and takes the shape of its container.

liter (p. 35) The metric unit for volume equal to one cubic decimeter.

ley de las proporciones definidas (pág. 87) Establece que, independientemente de la cantidad, un compuesto siem-pre se compone de los mismos elementos en la misma proporción por masa.

ley de las proporciones múltiples (pág. 89) Establece que cuando la combinación de los mismos elementos forma compuestos diferentes, una masa dada de uno de los elementos se combina con masas diferentes del otro elemento de acuerdo con una razón que se expresa en números enteros pequeños.

Principio de Le Châtelier (pág. 607) Establece que si se aplica una perturbación a un sistema en equilibrio, el sistema cambia en la dirección que reduce la perturbación.

modelo de Lewis (pág. 641) Un ácido es un receptor de pares de electrones y una base es un donante de pares de electrones.

estructura de Lewis (pág. 242) Modelo que utiliza diagramas de puntos de electrones para mostrar la disposición de los electrones en las moléculas. Los pares de puntos o líneas representan pares de electrones enlazados.

reactivo limitante (pág. 379) Reactivo que se consume com-pletamente durante una reacción química, limita la dura-ción de la reacción y determina la cantidad del producto.

lípidos (pág. 835) Moléculas biológicas no polares de gran tamaño que varían en estructura, almacenan energía en los seres vivos y conforman la mayor parte de la estruc-tura de las membranas celulares.

líquido (pág. 71) Forma de materia que fluye, tiene volu-men constante y toma la forma de su envase.

litro (pág. 35) Unidad de volumen del sistema métrico; equivale a un decímetro cúbico.

law of definite proportions/ley de las proporciones definidas meter/metro

mass (p. 9) A measure that reflects the amount of matter.mass defect (p. 877) The difference in mass between a

nucleus and its component nucleons.mass number (p. 117) The number after an element’s name,

representing the sum of its protons and neutrons.

matter (p. 4) Anything that has mass and takes up space.

melting point (p. 426) For a crystalline solid, the tempera-ture at which the forces holding a crystal lattice together are broken and it becomes a liquid.

metabolism (p. 844) The sum of the many chemical reac-tions that occur in living cells.

metal (p. 177) An element that is solid at room tempera-ture, a good conductor of heat and electricity, and gener-ally is shiny; most metals are ductile and malleable.

metallic bond (p. 225) The attraction of a metallic cation for delocalized electrons.

metalloid (p. 181) An element that has physical and chemi-cal properties of both metals and nonmetals.

meter (p. 33) The SI base unit for length.

masa (pág. 9) Medida que refleja la cantidad de materia.defecto másico (pág. 877) La diferencia de masa entre un

núcleo y los nucleones que lo componen.número de masa (pág. 117) El número que va después del

nombre de un elemento; representa la suma de sus pro-tones y neutrones.

materia (pág. 4) Cualquier cosa que tiene masa y ocupa espacio.

punto de fusión (pág. 426) Para un sólido cristalino, es la temperatura a la que se rompen las fuerzas que mantienen unida la red cristalina y el sólido se convierte en líquido.

metabolismo (pág. 844) El conjunto de las numerosas reac-ciones químicas que ocurren en las células vivas.

metal (pág. 177) Elemento sólido a temperatura ambiente, es buen conductor de calor y electricidad y generalmente es brillante; la mayoría de los metales son dúctiles y maleables.

enlace metálico (pág. 225) Atracción de un catión metálico por los electrones deslocalizados.

metaloide (pág. 181) Elementos que tienen las propiedades físicas y químicas de metales y de no metales.

metro (pág. 33) Unidad básica de longitud del SI.

M

Page 121: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1020 Glossary/Glosario

Glossary/Glosario

method of initial rates (p. 576) Determines the reaction order by comparing the initial rates of a reaction carried out with varying reactant concentrations.

miscible (p. 479) Describes two liquids that are soluble in each other.

mixture (p. 80) A physical blend of two or more pure substances in any proportion in which each substance retains its individual properties; can be separated by physical means.

model (p. 10) A visual, verbal, and/or mathematical expla-nation of data collected from many experiments.

molality (p. 487) The ratio of the number of moles of sol-ute dissolved in one kilogram of solvent; also known as molal concentration.

molar enthalpy (heat) of fusion (p. 530) The amount of heat required to melt one mole of a solid substance.

molar enthalpy (heat) of vaporization (p. 530) The amount of heat required to vaporize one mole of a liquid.

molarity (p. 482) The number of moles of solute dissolved per liter of solution; also known as molar concentration.

molar mass (p. 326) The mass in grams of one mole of any pure substance.

molar volume (p. 452) For a gas, the volume that one mole occupies at 0.00°C and 1.00 atm pressure.

mole (p. 321) The SI base unit used to measure the amount of a substance, abbreviated mol; the number of carbon atoms in exactly 12 g of pure carbon; one mole is the amount of a pure substance that contains 6.02 × 1 0 23 rep-resentative particles.

molecular formula (p. 346) A formula that specifies the actual number of atoms of each element in one molecule of a substance.

molecule (p. 241) Forms when two or more atoms cova-lently bond and is lower in potential energy than its con-stituent atoms.

mole fraction (p. 488) The ratio of the number of moles of solute in solution to the total number of moles of solute and solvent.

mole ratio (p. 371) In a balanced equation, the ratio between the numbers of moles of any two substances.

monatomic ion (p. 218) An ion formed from only one atom.monomer (p. 810) A molecule from which a polymer is

made.monosaccharides (p. 832) The simplest carbohydrates, also

called simple sugars.

método de las velocidades iniciales (pág. 576) Determina el orden de la reacción al comparar las velocidades iniciales de una reacción realizada con diversas concentraciones de reactivo.

miscible (pág. 479) Describe dos líquidos que son solubles entre sí.

mezcla (pág. 80) Combinación física de dos o más sustan-cias puras en cualquier proporción en la que cada sustan-cia retiene sus propiedades individuales; las sustancias se pueden separar por medios físicos.

modelo (pág. 10) Explicación matemática, verbal o visual de datos recolectados en muchos experimentos.

molalidad (pág. 487) La razón del número de moles de soluto disueltos en un kilogramo de disolvente; también se conoce como concentración molal.

entalpía (calor) molar de fusión (pág. 530) Cantidad requerida de calor para fundir un mol de una sustancia sólida.

entalpía (calor) molar de vaporización (pág. 530) Cantidad requerida de calor para vaporizar un mol de un líquido.

molaridad (pág. 482) Número de moles de soluto disueltos por litro de solución; también se conoce como concen-tración molar.

masa molar (pág. 326) Masa en gramos de un mol de cualquier sustancia pura.

volumen molar (pág. 452) Para un gas, es el volumen que ocupa un mol a 0.00°C y una presión de 1.00 atm.

mol (pág. 321) Unidad básica del SI para medir la cantidad de una sustancia, se abrevia mol; el número de átomos de carbono en 12 g exactos de carbono puro; un mol es la cantidad de sustancia pura que contiene 6.02 × 1 0 23

partículas representativas.fórmula molecular (pág. 346) Fórmula que especifica

el número real de átomos de cada elemento en una molécula de la sustancia.

molécula (pág. 241) Se forma cuando dos o más átomos se unen covalentemente y posee menor energía potencial que los átomos que la conforman.

fracción molar (pág. 488) La razón del número de moles de soluto en solución al número total de moles de soluto y disolvente.

razón molar (pág. 371) En una ecuación equilibrada, se refiere a la razón entre el número de moles de dos sus-tancias cualesquiera.

ion poliatómico (pág. 218) Ion formado de un sólo átomo.monómero (pág. 810) Molécula a partir de la cual se forma

un polímero.monosacáridos (pág. 832) Los carbohidratos más simples;

se llaman también azúcares simples.

method of initial rates/método de las velocidades iniciales neutralization reaction/reacción de neutralización

net ionic equation (p. 301) An ionic equation that includes only the particles that participate in the reaction.

neutralization reaction (p. 659) A reaction in which an acid and a base react in aqueous solution to produce a salt and water.

ecuación iónica neta (pág. 301) Ecuación iónica que incluye sólo las partículas que participan en la reacción.

reacción de neutralización (pág. 659) Reacción en la que un ácido y una base reaccionan en una solución acuosa para producir sal y agua.

N

Page 122: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1021

Glossary/Glosario

neutron (p. 113) A neutral, subatomic particle in an atom’s nucleus that has a mass nearly equal to that of a proton.

noble gas (p. 180) An extremely unreactive group 18 ele-ment.

nonmetals (p. 180) Elements that are generally gases or dull, brittle solids that are poor conductors of heat and electricity.

nuclear equation (p. 123) A type of equation that shows the atomic number and mass number of the particles involved.

nuclear fission (p. 883) The splitting of a nucleus into smaller, more stable fragments, accompanied by a large release of energy.

nuclear fusion (p. 878) The process of binding smaller atomic nuclei into a single, larger, and more stable nucleus.

nuclear reaction (p. 122) A reaction that involves a change in the nucleus of an atom.

nucleic acid (p. 840) A nitrogen-containing biological poly-mer that is involved in the storage and transmission of genetic information.

nucleons (p. 865) The positively charged protons and neu-tral neutrons contained in an atom’s nucleus.

nucleotide (p. 840) The monomer that makes up a nucleic acid; consists of a nitrogen base, an inorganic phosphate group, and a five-carbon monosaccharide sugar.

nucleus (p. 112) The extremely small, positively charged, dense center of an atom that contains positively charged protons and neutral neutrons.

neutrón (pág. 113) Partícula subatómica neutral en el núcleo de un átomo que tiene una masa casi igual a la de un protón.

gas noble (pág. 180) Elemento extremadamente no reactivo del grupo 18.

no metales (pág. 180) Elementos que generalmente son gases o sólidos quebradizos, sin brillo y malos conducto-res de calor y electricidad.

ecuación nuclear (pág. 123) Tipo de ecuación que muestra el número atómico y el número de masa de las partículas involucradas.

fisión nuclear (pág. 883) Ruptura de un núcleo en fragmen-tos más pequeños y más estables; se acompaña de una gran liberación de energía.

fusión nuclear (pág. 878) Proceso de unión de núcleos atómicos pequeños en un solo núcleo más grande y más estable.

reacción nuclear (pág. 122) Reacción que implica un cam-bio en el núcleo de un átomo.

ácido nucleico (pág. 840) Polímero biológico que contiene nitrógeno y que participa en el almacenamiento y trans-misión de información genética.

nucleones (pág. 865) Los protones de carga positiva y los neutrones sin carga que contiene el núcleo de un átomo.

nucleótido (pág. 840) Monómeros que forman los ácidos nucleicos; consisten de una base nitrogenada, un grupo fosfato inorgánico y un azúcar monosacárido de cinco carbonos.

núcleo (pág. 112) El diminuto y denso centro con carga positiva de un átomo; contiene protones con su carga positiva y neutrones sin carga.

osmotic pressure/presión osmóticaneutron/neutrón

Ooctet rule (p. 193) States that atoms lose, gain, or share elec-

trons in order to acquire the stable electron configuration of a noble gas.

optical isomers (p. 768) Result from different arrangements of four different groups around the same carbon atom and have the same physical and chemical properties except in chemical reactions where chirality is important.

optical rotation (p. 769) An effect that occurs when polar-ized light passes through a solution containing an optical isomer and the plane of polarization is rotated to the right by a d-isomer or to the left by an l-isomer.

organic compounds (p. 745) All compounds that contain carbon with the primary exceptions of carbon oxides, carbides, and carbonates, all of which are considered inorganic.

osmosis (p. 504) The diffusion of solvent particles across a semipermeable membrane from an area of higher solvent concentration to an area of lower solvent concentration.

osmotic pressure (p. 504) The pressure caused when water molecules move into or out of a solution.

regla del octeto (pág. 193) Establece que los átomos pierden, ganan o comparten electrones para adquirir la configuración electrónica estable de un gas noble.

isómeros ópticos (pág. 768) Son resultado de los distin-tos ordenamientos que adquieren los cuatro grupos diferentes que rodean a un mismo átomo de carbono; todos poseen las mismas propiedades químicas y físicas, excepto en las reacciones químicas donde la quiralidad es importante.

rotación óptica (pág. 769) Efecto que ocurre cuando la luz polarizada atraviesa una solución que contiene un isómero óptico y el plano de polarización rota a la dere-cha en los isómeros dextrógiros (-d) y a la izquierda en los isómeros levógiros (-l).

compuestos orgánicos (pág. 745) Todo compuesto que con-tiene carbono; las excepciones más importantes son los óxidos de carbono, los carburos y los carbonatos, todos los cuales se consideran inorgánicos.

osmosis (pág. 504) Difusión de partículas de disolvente a través de una membrana semipermeable hacia el área donde la concentración del disolvente es menor.

presión osmótica (pág. 504) La presión que causan las moléculas de agua al entrar o salir de una solución.

Page 123: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1022 Glossary/Glosario

Glossary/Glosario

oxidation/oxidación periodic table/tabla periódica

oxidation (p. 681) The loss of electrons from the atoms of a substance; increases an atom’s oxidation number.

oxidation number (p. 219) The positive or negative charge of a monatomic ion.

oxidation-number method (p. 689) The technique that can be used to balance more difficult redox reactions, based on the fact that the number of electrons transferred from atoms must equal the number of electrons accepted by other atoms.

oxidation-reduction reaction (p. 680) Any chemical reac-tion in which electrons are transferred from one atom to another; also called a redox reaction.

oxidizing agent (p. 683) The substance that oxidizes another substance by accepting its electrons.

oxyacid (p. 250) Any acid that contains hydrogen and an oxyanion.

oxyanion (ahk see AN i ahn) (p. 222) A polyatomic ion composed of an element, usually a nonmetal, bonded to one or more oxygen atoms.

oxidación (pág. 681) Pérdida de electrones de los átomos de una sustancia; aumenta el número de oxidación de un átomo.

número de oxidación (pág. 219) La carga positiva o negativa de un ion monoatómico.

método del número de oxidación (pág. 689) Técnica que sirve para equilibrar las reacciones redox más difíciles; se basa en el hecho de que el número de electrones trans-feridos por los átomos debe ser igual al número de elec-trones aceptados por otros átomos.

reacción de oxidación-reducción (pág. 680) Toda reacción química en la que sucede transferencia de electrones de un átomo a otro; también se llama reacción redox.

agente oxidante (pág. 683) Sustancia que oxida otra sustan-cia al aceptar sus electrones.

oxiácido (pág. 250) Todo ácido que contiene hidrógeno y un oxianión.

oxianión (pág. 222) Ion poliatómico compuesto de un ele-mento, generalmente un no metal, unido a uno o a más átomos de oxígeno.

parent chain (p. 753) The longest continuous chain of car-bon atoms in a branched-chain alkane, alkene, or alkyne.

pascal (p. 407) The SI unit of pressure; one pascal (Pa) is equal to a force of one newton per square meter.

Pauli exclusion principle (p. 157) States that a maximum of two electrons can occupy a single atomic orbital but only if the electrons have opposite spins.

penetrating power (p. 864) The ability of radiation to pass through matter.

peptide (p. 828) A chain of two or more amino acids linked by peptide bonds.

peptide bond (p. 828) The amide bond that joins two amino acids.

percent by mass (p. 87) A percentage determined by the ratio of the mass of each element to the total mass of the compound.

percent composition (p. 342) The percent by mass of each element in a compound.

percent error (p. 48) The ratio of an error to an accepted value.

percent yield (p. 386) The ratio of actual yield (from an experiment) to theoretical yield (from stoichiometric calculations) expressed as a percent.

period (p. 177) A horizontal row of elements in the modern periodic table.

periodic law (p. 176) States that when the elements are arranged by increasing atomic number, there is a peri-odic repetition of their properties.

periodic table (p. 85) A chart that organizes all known ele-ments into a grid of horizontal rows (periods) and verti-cal columns (groups or families) arranged by increasing atomic number.

cadena principal (pág. 753) La cadena continua más larga de átomos de carbono en un alcano, un alqueno o un alquino ramificados.

pascal (pág. 407) La unidad SI de presión; un pascal (Pa) es igual a una fuerza de un newton por metro cuadrado.

principio de exclusión de Pauli (pág. 157) Establece que cada orbital atómico sólo puede ser ocupado por un máximo de dos electrones, pero sólo si los electrones tienen giros opuestos.

poder de penetración (pág. 864) La capacidad de la radia-ción de atravesar la materia.

péptido (pág. 828) Cadena de dos o más aminoácidos uni-dos por enlaces peptídicos.

enlace peptídico (pág. 828) Enlace amida que une dos ami-noácidos.

porcentaje en masa (pág. 87) Porcentaje determinado por la razón de la masa de cada elemento respecto a la masa total del compuesto.

composición porcentual (pág. 342) Porcentaje en masa de cada elemento en un compuesto.

porcentaje de error (pág. 48) La razón del error al valor aceptado.

porcentaje de rendimiento (pág. 386) Razón del rendimiento real (de un experimento) al rendimiento teórico (de cál-culos estequiométricos) expresada como porcentaje.

período (pág. 177) Fila horizontal de elementos en la tabla periódica moderna.

ley periódica (pág. 176) Establece que al ordenar los ele-mentos por número atómico en sentido ascendente, existe una repetición periódica de sus propiedades.

tabla periódica (pág. 85) Tabla en la que se organizan todos los elementos conocidos en una cuadrícula de filas horizontales (períodos) y columnas verticales (grupos o familias), ordenados según su número atómico en sen-tido ascendente.

P

Page 124: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1023

Glossary/Glosario

pH (p. 652) The negative logarithm of the hydrogen ion concentration of a solution; acidic solutions have pH val-ues between 0 and 7, basic solutions have values between 7 and 14, and a solution with a pH of 7.0 is neutral.

phase change (p. 76) A transition of matter from one state to another.

phase diagram (p. 429) A graph of pressure versus tempera-ture that shows which phase a substance exists in under different conditions of temperature and pressure.

phospholipid (p. 838) A triglyceride in which one of the fatty acids is replaced by a polar phosphate group

photoelectric effect (p. 142) A phenomenon in which pho-toelectrons are emitted from a metal’s surface when light of a certain frequency shines on the surface.

photon (p. 143) A particle of electromagnetic radiation with no mass that carries a quantum of energy.

photosynthesis (p. 846) The complex process that converts energy from sunlight to chemical energy in the bonds of carbohydrates.

physical change (p. 76) A type of change that alters the physical properties of a substance but does not change its composition.

physical property (p. 73) A characteristic of matter that can be observed or measured without changing the sample’s composition—or example, density, color, taste, hardness, and melting point.

pi bond (p. 245) A bond that is formed when parallel orbit-als overlap to share electrons.

Planck’s constant (h) (p. 142) 6.626 × 1 0 -34 J·s, where J is the symbol for the joule.

plastic (p. 789) A polymer that can be heated and molded while relatively soft.

pOH (p. 652) The negative logarithm of the hydroxide ion concentration of a solution; a solution with a pOH above 7.0 is acidic, a solution with a pOH below 7.0 is basic, and a solution with a pOH of 7.0 is neutral.

polar covalent bond (p. 266) A type of bond that forms when electrons are not shared equally.

polyatomic ion (p. 221) An ion made up of two or more atoms bonded together that acts as a single unit with a net charge.

polymerization reaction (p. 810) A reaction in which mono-mer units are bonded together to form a polymer.

polymers (p. 809) Large molecules formed by combining many repeating structural units (monomers); are synthe-sized through addition or condensation reactions.

polysaccharide (p. 833) A complex carbohydrate, which is a polymer of simple sugars that contains 12 or more monomer units.

positron (p. 868) A particle that has the same mass as an electron but an opposite charge.

positron emission (p. 868) A radioactive decay process in which a proton in the nucleus is converted into a neutron and a positron, and then the positron is emitted from the nucleus.

pH (pág. 652) El logaritmo negativo de la concentración de iones hidrógeno de una solución; las soluciones ácidas poseen valores de pH entre 0 y 7, las soluciones básicas tienen valores entre 7 y 14 y una solución con un pH de 7.0 es neutra.

cambio de fase (pág. 76) La transición de la materia de un estado a otro.

diagrama de fase (pág. 429) Gráfica de presión contra tem-peratura que muestra la fase en la que se encuentra una sustancia bajo distintas condiciones de temperatura y presión.

fosfolípido (pág. 838) Triglicérido en el que uno de los áci-dos grasos es sustituido por un grupo fosfato polar.

efecto fotoeléctrico (pág. 142) Fenómeno en el cual la superficie de un metal emiten fotoelectrones cuando una luz de cierta frecuencia ilumina su superficie.

fotón (pág. 143) Partícula de radiación electromagnética sin masa que transporta un cuanto de energía.

fotosíntesis (pág. 846) Proceso complejo que convierte la energía de la luz solar en la energía química de los enlaces en carbohidratos.

cambio físico (pág. 76) Tipo de cambio que altera las propiedades físicas de una sustancia pero no cambia su composición.

propiedad física (pág. 73) Característica de la materia que se puede observar o medir sin cambiar la composición de una muestra de la materia; por ejemplo, la densidad, el color, el sabor, la dureza y el punto de fusión.

enlace pi (pág. 245) Enlace que se forma cuando orbitales paralelos se superponen para compartir electrones.

constante de Planck (h) (pág. 142) 6.626 × 1 0 -34 J·s, donde J es el símbolo de julios.

plástico (pág. 789) Polímero que se puede calentar y mol-dear mientras esté relativamente suave.

pOH (pág. 652) El logaritmo negativo de la concentración de iones hidróxido de una solución; una solución con un pOH mayor que 7.0 es ácida, una solución con un pOH menor que 7.0 es básica y una solución con un pOH de 7.0 es neutra.

enlace covalente polar (pág. 266) Tipo de enlace que se forma cuando los electrones no se comparten de manera equitativa.

ion poliatómico (pág. 221) Ion compuesto de dos o más átomos unidos entre sí que actúan como una unidad con carga neta.

reacción de polimerización (pág. 810) Reacción en la cual los monómeros se unen para formar un polímero.

polímeros (pág. 809) Moléculas grandes formadas por la unión de muchas unidades estructurales repetidas (monómeros); se sintetizan a través de reacciones de adición o de condensación.

polisacárido (pág. 833) Carbohidrato complejo; es un polímero de azúcares simples que contiene 12 ó más monómeros.

positrón (pág. 868) Partícula que tiene la misma masa que un electrón pero carga opuesta.

emisión de positrones (pág. 868) Proceso de desintegración radiactiva en el que un protón del núcleo se convierte en un neutrón y un positrón y luego el positrón es emitido del núcleo.

positron emission/emisión de positronespH/pH

Page 125: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1024 Glossary/Glosario

Glossary/Glosario

precipitate (p. 296) A solid produced during a chemical reaction in a solution.

precision (p. 47) Refers to how close a series of measure-ments are to one another; precise measurements show little variation over a series of trials but might not be accurate.

pressure (p. 406) Force applied per unit area.primary battery (p. 720) A type of battery that produces

electric energy by redox reactions that are not easily reversed, delivers current until the reactants are gone, and then is discarded.

principal energy levels (p. 153) The major energy levels of an atom.

principal quantum number (n) (p. 153) Assigned by the quantum mechanical model to indicate the relative sizes and energies of atomic orbitals.

product (p. 283) A substance formed during a chemical reaction.

protein (p. 826) An organic polymer made up of animo acids linked together by peptide bonds that can function as an enzyme, transport important chemical substances, or provide structure in organisms.

proton (p. 113) A subatomic particle in an atom’s nucleus that has a positive charge of 1+.

pure research (p. 17) A type of scientific investigation that seeks to gain knowledge for the sake of knowledge itself.

precipitado (pág. 296) Sólido que se produce durante una reacción química en una solución.

precisión (pág. 47) Se refiere a la cercanía de una serie de medidas entre sí; las medidas precisas muestran poca variación durante una serie de pruebas, incluso si no son exactas.

presión (pág. 406) Fuerza aplicada por unidad de área.batería primaria (pág. 720) Tipo de batería que produce

energía eléctrica por reacciones redox que no son fácil-mente reversibles, produce corriente hasta que se agotan los reactivos y luego se desecha.

niveles energéticos principales (pág. 153) Los niveles ener-géticos más importantes de un átomo.

número cuántico principal (pág. 153) Asignado por el mo delo mecánico cuántico para indicar el tamaño y la energía relativas de los orbitales atómicos.

producto (pág. 283) Sustancia que se forma durante una reacción química.

proteína (pág. 826) Polímero orgánico compuesto de ami-noácidos unidos por enlaces peptídicos; puede funcionar como enzima, transportar sustancias químicas impor-tantes o ser parte de la estructura en los organismos.

protón (pág. 113) Partícula subatómica en el núcleo de un átomo con carga positiva 1+.

investigación pura (pág. 17) Tipo de investigación científica que busca obtener conocimiento sin otro interés que sa tisfacer el interés científico.

precipitate/precipitado radiochemical dating/datación radioquímica

Qqualitative data (p. 13) Information describing color, odor,

shape, or some other physical characteristic.quantitative data (p. 13) Numerical information describing

how much, how little, how big, how tall, or how fast.quantum (p. 141) The minimum amount of energy that can

be gained or lost by an atom.quantum mechanical model of the atom (p. 152) An atomic

model in which electrons are treated as waves; also called the wave mechanical model of the atom.

quantum number (p. 146) The number assigned to each orbit of an electron.

datos cualitativos (pág. 13) Información que describe el color, el olor, la forma o alguna otra característica física.

datos cuantitativos (pág. 13) Información numérica que describe cantidad, tamaño o rapidez.

cuanto (pág. 141) La cantidad mínima de energía que puede ganar o perder un átomo.

modelo mecánico cuántico del átomo (pág. 152) Modelo atómico en el cual los electrones se estudian como si fueran ondas; también se denomina modelo mecánico ondulatorio del átomo.

número cuántico (pág. 146) Número que se asigna a cada órbita de un electrón.

radiation (p. 122) The rays and particles—alpha and beta particles and gamma rays—that are emitted by radioac-tive materials.

radioactive decay (p. 122) A spontaneous process in which unstable nuclei lose energy by emitting radiation.

radioactive decay series (p. 870) A series of nuclear reac-tions that starts with an unstable nucleus and results in the formation of a stable nucleus.

radioactivity (p. 122) The process in which some substances spontaneously emit radiation.

radiochemical dating (p. 873) The process that is used to determine the age of an object by measuring the amount of a certain radioisotope remaining in that object.

radiación (pág. 122) Los rayos y partículas que emiten los materiales radiactivos (partículas alfa y beta y rayos gamma).

desintegración radiactiva (pág. 122) Proceso espontáneo en el que los núcleos inestables pierden energía al emitir radiación.

serie de desintegración radiactiva (pág. 870) Serie de reac-ciones nucleares que empieza con un núcleo inestable y produce la formación de un núcleo estable.

radiactividad (pág. 122) Proceso en el que algunas sustan-cias emiten radiación espontáneamente.

datación radioquímica (pág. 873) Proceso que sirve para determinar la edad de un objeto al medir la cantidad res-tante de cierto radioisótopo en dicho objeto.

R

Page 126: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1025

Glossary/Glosario

salt hydrolysis/hidrólisis de salesradioisotopes/radioisótopos

radioisotopes (p. 861) Isotopes of atoms that have unstable nuclei and emit radiation to attain more stable atomic configurations.

radiotracer (p. 887) An isotope that emits non-ionizing radiation and is used to signal the presence of an element or specific substance; can be used to analyze complex chemical reactions mechanisms and to diagnose disease.

rate-determining step (p. 581) The slowest elementary step in a complex reaction; limits the instantaneous rate of the overall reaction.

rate law (p. 574) The mathematical relationship between the rate of a chemical reaction at a given temperature and the concentrations of reactants.

reactant (p. 283) The starting substance in a chemical reac-tion.

reaction mechanism (p. 580) The complete sequence of elementary steps that make up a complex reaction.

reaction order (p. 575) For a reactant, describes how the rate is affected by the concentration of that reactant.

reaction rate (p. 561) The change in concentration of a reactant or product per unit time, generally calculated and expressed in moles per liter per second.

redox reaction (p. 680) An oxidation-reduction reaction.reducing agent (p. 683) The substance that reduces another

substance by losing electrons.reduction (p. 681) The gain of electrons by the atoms of a

substance; decreases an atom’s oxidation number.

reduction potential (p. 711) The tendency of a substance to gain electrons.

representative elements (p. 177) Elements from groups 1, 2, and 13–18 in the modern periodic table, possessing a wide range of chemical and physical properties.

resonance (p. 258) Condition that occurs when more than one valid Lewis structure exists for the same molecule.

reversible reaction (p. 595) A reaction that can take place in both the forward and reverse directions; leads to an equi-librium state where the forward and reverse reactions occur at equal rates and the concentrations of reactants and products remain constant.

radioisótopos (pág. 861) Isótopos de átomos que poseen núcleos inestables y emiten radiación para obtener una configuración atómica más estable.

radiolocalizador (pág. 887) Isótopo que emite radiación no ionizante y se utiliza para señalar la presencia de un elemento o sustancia específica; se usan para analizar los mecanismos de reacciones químicas complejas y para diagnosticar enfermedades.

paso determinante de la velocidad de reacción (pág. 581) El paso elemental más lento en una reacción compleja; limita la velocidad instantánea de la reacción general.

ley de velocidad de la reacción (pág. 574) Relación matemática entre la velocidad de una reacción química a una temperatura dada y las concentraciones de los reactivos.

reactivo (pág. 283) Sustancia inicial en una reacción química.

mecanismo de reacción (pág. 580) Sucesión completa de pasos elementales que componen una reacción compleja.

orden de la reacción (pág. 575) Describe cómo la concen-tración de un reactivo afecta la velocidad de la reacción para dicho reactivo.

tasa de reacción (pág. 561) Cambio en la concentración de un reactivo o producto por unidad de tiempo, general-mente se calcula y expresa en moles por litro por segundo.

reacción redox (pág. 680) Una reacción de oxidorreducción.agente reductor (pág. 683) Sustancia que reduce otra sus-

tancia al perder electrones.reducción (pág. 681) Ganancia de electrones por los átomos

de una sustancia; reduce el número de oxidación de los átomos.

potencial de reducción (pág. 711) Tendencia de una sustan-cia a ganar electrones.

elementos representativos (pág. 177) Elementos de los gru-pos 1, 2 y 13 a 18 de la tabla periódica moderna; poseen una gran variedad de propiedades químicas y físicas.

resonancia (pág. 258) Condición que ocurre cuando existe más de una estructura válida de Lewis para una misma molécula.

reacción reversible (pág. 595) Reacción que puede ocurrir en direcciones normal e inversa; produce un estado de equilibrio donde las reacciones en sentido nor-mal e inverso ocurren a tasas iguales, ocasionando que la concentración de reactivos y productos permanezcan constantes.

salt (p. 659) An ionic compound made up of a cation from a base and an anion from an acid.

salt bridge (p. 709) A pathway constructed to allow positive and negative ions to move from one solution to another.

salt hydrolysis (p. 665) The process in which anions of the dissociated salt accept hydrogen ions from water, or the cations of the dissociated salt donate hydrogen ions to water.

sal (pág. 659) Compuesto iónico formado por un catión pro-veniente de una base y un anión proveniente de un ácido.

puente salino (pág. 709) Medio que permite el movimiento de iones positivos y negativos de una solución a otra.

hidrólisis de sales (pág. 665) Proceso en el que los aniones de una sal disociada aceptan iones hidrógeno del agua o en el que los cationes de la sal disociada donan iones hidrógeno al agua.

S

Page 127: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1026 Glossary/Glosario

Glossary/Glosario

saponification/saponificación species/especie

saponification (suh pahn ih fih KAY shuhn) (p. 837) The hydrolysis of the ester bonds of a triglyceride using an aqueous solution of a strong base to form carboxylate salts and glycerol.

saturated hydrocarbon (p. 746) A hydrocarbon that contains only single bonds.

saturated solution (p. 493) Contains the maximum amount of dissolved solute for a given amount of solvent at a spe-cific temperature and pressure.

scientific law (p. 16) Describes a relationship in nature that is supported by many experiments.

scientific methods (p. 12) A systematic approach used in scientific study; an organized process used by scientists to do research and to verify the work of others.

scientific notation (p. 40) Expresses any number as a num-ber between 1 and 10 (known as a coefficient) multiplied by 10 raised to a power (known as an exponent).

second (p. 33) The SI base unit for time.second law of thermodynamics (p. 543) The spontaneous

processes always proceed in such a way that the entropy of the universe increases.

secondary battery (p. 720) A rechargeable battery that depends on reversible redox reactions.

sigma bond (p. 244) A single covalent bond that is formed when an electron pair is shared by the direct overlap of bonding orbitals.

significant figures (p. 50) The number of all known digits reported in measurements plus one estimated digit.

single-replacement reaction (p. 293) A chemical reaction that occurs when the atoms of one element replace the atoms of another element in a compound.

solid (p. 71) A form of matter that has its own definite shape and volume, is incompressible, and expands only slightly when heated.

solubility (p. 614) The maximum amount of solute that will dissolve in a given amount of solvent at a specific tem-perature and pressure.

solubility product constant (p. 614) K sp , which is an equi-librium constant for the dissolving of a sparingly soluble ionic compound in water.

soluble (p. 479) Describes a substance that can be dissolved in a given solvent.

solute (p. 299) One or more substances dissolved in a solu-tion.

solution (p. 81) A uniform mixture that can contain solids, liquids, or gases; also called a homogeneous mixture.

solvation (p. 489) The process of surrounding solute parti-cles with solvent particles to form a solution; occurs only where and when the solute and solvent particles come in contact with each other.

solvent (p. 299) The substance that dissolves a solute to form a solution; the most plentiful substance in the solution.

species (p. 693) Any kind of chemical unit involved in a process.

saponificación (pág. 837) La hidrólisis de los enlaces éster de un triglicérido, usando una solución acuosa de una base fuerte, para formar sales de carboxilato y glicerol.

hidrocarburo saturado (pág. 746) Hidrocarburo que sólo contiene enlaces sencillos.

solución saturada (pág. 493) Solución que contiene la can-tidad máxima de soluto disuelto para una cantidad dada de disolvente a una temperatura y presión específicas.

ley científica (pág. 16) Describe una relación natural demostrada en muchos experimentos.

métodos científicos (pág. 12) Enfoque sistemático que se usa en los estudios científicos; proceso organizado que siguen los científicos para realizar sus investigaciones y verificar el trabajo realizado por otros científicos.

notación científica (pág. 40) Expresa cualquier número como un número entre 1 y 10 (conocido como coefi-ciente) multiplicado por 10 elevado a alguna potencia (conocida como exponente).

segundo (pág. 33) Unidad básica de tiempo del SI.segunda ley de la termodinámica (pág. 543) Los pro-

cesos espontáneos siempre proceden de una forma que aumenta la entropía del universo.

batería secundaria (pág. 720) Batería recargable que depende de reacciones redox reversibles.

enlace sigma (pág. 244) Enlace covalente simple que se forma cuando se comparte un par de electrones me diante la superposición directa de los orbitales del enlace.

cifras significativas (pág. 50) El número de dígitos conoci-dos que se reportan en medidas, más un dígito estimado.

reacción de sustitución simple (pág. 293) Reacción química que ocurre cuando los átomos de un elemento reempla-zan a los átomos de otro elemento en un compuesto.

sólido (pág. 71) Forma de la materia que tiene su propia forma y volumen, es incompresible y sólo se expande levemente cuando se calienta.

solubilidad (pág. 614) Cantidad máxima de soluto que se disolverá en una cantidad dada de disolvente a una tem-peratura y presión específicas.

constante de producto de solubilidad (pág. 614) Se repre-senta como K sp ; es la constante de equilibrio para la diso-lución de un compuesto iónico moderadamente soluble en agua.

soluble (pág. 479) Describe una sustancia que se puede disolver en un disolvente dado.

soluto (pág. 299) Una o más sustancias disueltas en una solución.

solución (pág. 81) Mezcla uniforme que puede contener sóli-dos, líquidos o gases; llamada también mezcla homogénea.

solvatación (pág. 489) Proceso de rodear las partículas de soluto con partículas del disolvente para formar una solu-ción; ocurre sólo en los lugares y en el momento en que las partículas de soluto y disolvente entran en contacto.

disolvente (pág. 299) Sustancia que disuelve un soluto para formar una solución; la sustancia más abundante en la solución.

especie (pág. 693) Cualquier clase de unidad química que participa en un proceso.

Page 128: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1027

Glossary/Glosario

specific heat (p. 519) The amount of heat required to raise the temperature of one gram of a given substance by one degree Celsius.

specific rate constant (p. 575) A numerical value that relates reaction rate and concentration of reactant at a specific temperature.

spectator ion (p. 301) Ion that does not participate in a reaction.

spontaneous process (p. 542) A physical or chemical change that occurs without outside intervention and may require energy to be supplied to begin the process.

standard enthalpy (heat) of formation (p. 537) The change in enthalpy that accompanies the formation of one mole of a compound in its standard state from its constituent elements in their standard states.

standard hydrogen electrode (p. 711) The standard elec-trode against which the reduction potential of all elec-trodes can be measured.

states of matter (p. 71) The physical forms in which all matter naturally exists on Earth—most commonly as a solid, a liquid, or a gas.

stereoisomers (p. 766) A class of isomers whose atoms are bonded in the same order but are arranged differently in space.

steroids (p. 839) Lipids that have multiple cyclic rings in their structures.

stoichiometry (p. 368) The study of quantitative relation-ships between the amounts of reactants used and prod-ucts formed by a chemical reaction; is based on the law of conservation of mass.

strong acid (p. 644) An acid that ionizes completely in aqueous solution.

strong base (p. 648) A base that dissociates entirely into metal ions and hydroxide ions in aqueous solution.

strong nuclear force (p. 865) A force that acts on subatomic particles that are extremely close together.

structural formula (p. 253) A molecular model that uses symbols and bonds to show relative positions of atoms; can be predicted for many molecules by drawing the Lewis structure.

structural isomers (p. 765) A class of isomers whose atoms are bonded in different orders with the result that they have different chemical and physical properties despite having the same formula.

sublimation (p. 83) The energy-requiring process by which a solid changes directly to a gas without first becoming a liquid.

substance (p. 5) Matter that has a definite composition; also known as a chemical.

substituent groups (p. 753) The side branches that extend from the parent chain; they appear to substitute for a hydrogen atom in the straight chain.

substitution reaction (p. 790) A reaction of organic com-pounds in which one atom or group of atoms in a mol-ecule is replaced by another atom or group of atoms.

calor específico (pág. 519) Cantidad de calor requerida para elevar la temperatura de un gramo de una sustancia dada en un grado centígrado (Celsius).

constante de velocidad de la reacción (pág. 575) Valor numérico que relaciona la velocidad de la reacción y la concentración de reactivos a una temperatura específica.

ion espectador (pág. 301) Ion que no participa en una reacción.

proceso espontáneo (pág. 542) Cambio físico o químico que ocurre sin intervención externa; la iniciación del proceso puede requerir un suministro de energía.

entalpía (calor) estándar de formación (pág. 537) Cambio en la entalpía que acompaña la formación de un mol de un compuesto en su estado normal, a partir de sus elemen-tos constituyentes en su estado normal.

electrodo normal de hidrógeno (pág. 711) Electrodo están-dar que sirve de referencia para medir el potencial de reducción de todos los electrodos.

estados de la materia (pág. 71) Las formas físicas en las que la materia existe naturalmente en la Tierra, más común-mente como sólido, líquido o gas.

estereoisómeros (pág. 766) Clase de isómeros cuyos átomos se unen en el mismo orden, pero con distinta disposición espacial.

esteroides (pág. 839) Lípidos con múltiples anillos en sus estructuras.

estequiometría (pág. 368) El estudio de las relaciones cuan-titativas entre las cantidades de reactivos utilizados y los productos formados durante una reacción química; se basa en la ley de la conservación de la masa.

ácido fuerte (pág. 644) Ácido que se ioniza completamente en solución acuosa.

base fuerte (pág. 648) Base que se disocia enteramente en iones metálicos e iones hidróxido en solución acuosa.

fuerza nuclear fuerte (pág. 865) Fuerza que actúa sólo en las partículas subatómicas que se encuentran extremada-mente cercanas.

fórmula estructural (pág. 253) Modelo molecular que usa símbolos y enlaces para mostrar las posiciones relati-vas de los átomos; esta fórmula se puede predecir para muchas moléculas al trazar su estructura de Lewis.

isómeros estructurales (pág. 765) Clase de isómeros cuyos átomos están unidos en distinto orden, por lo que tienen propiedades químicas y físicas diferentes a pesar de tener la misma fórmula.

sublimación (pág. 83) Proceso que requiere de energía en el que un sólido se convierte directamente en gas, sin con-vertirse primero en un líquido.

sustancia (pág. 5) Materia con una composición definida; también se conoce como sustancia química.

grupos sustituyentes (pág. 753) Las ramas laterales que se extienden desde la cadena principal y parecen sustituir un átomo de hidrógeno de la cadena recta.

reacción de sustitución (pág. 790) Reacción de compuestos orgánicos en la cual un átomo o un grupo de átomos en una molécula son sustituidos por otro átomo o grupo de átomos.

substitution reaction/reacción de sustituciónspecific heat/calor específico

Page 129: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1028 Glossary/Glosario

Glossary/Glosario

substrate (p. 830) A reactant in an enzyme-catalyzed reac-tion that binds to specific sites on enzyme molecules.

supersaturated solution (p. 494) Contains more dissolved solute than a saturated solution at the same temperature.

surface tension (p. 418) The energy required to increase the surface area of a liquid by a given amount; results from an uneven distribution of attractive forces.

surfactant (p. 419) A compound, such as soap, that low-ers the surface tension of water by disrupting hydrogen bonds between water molecules; also called a surface active agent.

surroundings (p. 526) In thermochemistry, includes every-thing in the universe except the system.

suspension (p. 476) A type of heterogeneous mixture whose particles settle out over time and can be separated from the mixture by filtration.

synthesis reaction (p. 289) A chemical reaction in which two or more substances react to yield a single product.

system (p. 526) In thermochemistry, the specific part of the universe containing the reaction or process being studied.

sustrato (pág. 830) Reactivo en una reacción catalizada por enzimas que se enlaza a sitios específicos en las molécu-las de la enzima.

solución sobresaturada (pág. 494) Aquella que contiene más soluto disuelto que una solución saturada a la misma temperatura.

tensión superficial (pág. 418) Energía requerida para aumentar el área superficial de un líquido en una canti-dad dada; es producida por una distribución desigual de las fuerzas de atracción.

surfactante (pág. 419) Compuesto, como el jabón, que reduce la tensión superficial del agua al romper los enlaces de hidrógeno entre las moléculas de agua; lla-mado también agente tensioactivo.

alrededores (pág. 526) En termoquímica, incluye todo el universo a excepción del sistema.

suspensión (pág. 476) Tipo de mezcla heterogénea cuyas partículas se asientan con el tiempo y pueden separarse de la mezcla por filtración.

reacción de síntesis (pág. 289) Reacción química en la que dos o más sustancias reaccionan para generar un solo producto.

sistema (pág. 526) En termoquímica, se refiere a la parte específica del universo que contiene la reacción o el pro-ceso en estudio.

substrate/sustrato titration/titulación

Ttechnology (p. 9) The practical use of scientific information.temperature (p. 403) A measure of the average kinetic

energy of the particles in a sample of matter.theoretical yield (p. 385) In a chemical reaction, the maxi-

mum amount of product that can be produced from a given amount of reactant.

theory (p. 16) An explanation supported by many experi-ments; is still subject to new experimental data, can be modified, and is considered valid it if can be used to make predictions that are proven true.

thermochemical equation (p. 529) A balanced chemical equation that includes the physical states of all the reac-tants and the energy change, usually expressed as the the change in enthalpy.

thermochemistry (p. 525) The study of heat changes that accompany chemical reactions and phase changes.

thermonuclear reaction (p. 883) A nuclear fusion reaction.thermoplastic (p. 813) A type of polymer that can be melted

and molded repeatedly into shapes that are retained when it is cooled.

thermosetting (p. 813) A type of polymer that can be molded when it is first prepared but when cool cannot be remelted.

titrant (p. 661) A solution of known concentration used to titrate a solution of unknown concentration; also called the standard solution.

titration (p. 660) The process in which an acid-base neu-tralization reaction is used to determine the concentra-tion of a solution of unknown concentration.

tecnología (pág. 9) Uso práctico de la información científica.temperatura (pág. 403) Medida de la energía cinética pro-

medio de las partículas en una muestra de materia.rendimiento teórico (pág. 385) La cantidad máxima de

producto que se puede producir a partir de una cantidad dada de reactivo, durante una reacción química.

teoría (pág. 16) Explicación respaldada por muchos experi-mentos; está sujeta a los resultados obtenidos en nuevos experimentos, se puede modificar y se considera válida si permite hacer predicciones verdaderas.

ecuación termoquímica (pág. 529) Ecuación química equili-brada que incluye el estado físico de todos los reactivos y el cambio de energía, este último usualmente expresado como el cambio en entalpía.

termoquímica (pág. 525) El estudio de los cambios de calor que acompañan a las reacciones químicas y a los cambios de fase.

reacción termonuclear (pág. 883) Reacción de fusión nuclear.termoplástico (pág. 813) Tipo de polímero que se puede

fundir y moldear repetidas veces en formas que el plástico mantiene al enfriarse.

fraguado (pág. 813) Tipo de polímero que se puede mol-dear la primera vez que es producido, pero que no puede fundirse de nuevo una vez que se ha enfriado.

solución tituladora (pág. 661) Solución de concentración conocida que se usa para titular una solución de concen-tración desconocida; también conocida como solución estándar.

titulación (pág. 660) Proceso en el que se usa una reacción de neutralización ácido-base para determinar la concen-tración de una solución de concentración desconocida.

Page 130: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Glossary/Glosario 1029

Glossary/Glosario

transition elements (p. 177) Elements in groups 3–12 of the modern periodic table and are further divided into tran-sition metals and inner transition metals.

transition metal (p. 180) The elements in groups 3–12 that are contained in the d-block of the periodic table and, with some exceptions, is characterized by a filled out-ermost s orbital of energy level n, and filled or partially filled d orbitals of energy level n −1.

transition state (p. 564) Term used to describe an activated complex because the activated complex is as likely to form reactants as it is to form products.

transmutation (p. 865) The conversion of an atom of one element to an atom of another element.

transuranium element (p. 876) An element with an atomic number of 93 or greater in the periodic table.

triglyceride (p. 836) Forms when three fatty acids are bonded to a glycerol backbone through ester bonds; can be either solid or liquid at room temperature.

triple point (p. 429) The point on a phase diagram repre-senting the temperature and pressure at which the three phases of a substance (solid, liquid, and gas) can coexist.

Tyndall effect (TIHN duhl • EE fekt) (p. 478) The scat-tering of light by colloidal particles.

elementos de transición (pág. 177) Elementos de los grupos 3 al 12 de la tabla periódica moderna; se subdividen en metales de transición y metales de transición interna.

metal de transición (pág. 180) Elementos de los grupos 3 al 12 del bloque d de la tabla periódica; con algunas excep-ciones, se caracterizan por tener lleno el orbital externo s del nivel de energía n y por tener orbitales d llenos o parcialmente llenos en el nivel de energía n −1.

estado de transición (pág. 564) Término que se usa para describir un complejo activado por su probabilidad de formar tanto reactivos como productos.

transmutación (pág. 865) Conversión de un átomo de un elemento a un átomo de otro elemento.

elemento transuránico (pág. 876) Elementos de la tabla periódica con un número atómico igual o mayor que 93.

triglicérido (pág. 836) Se forma cuando tres ácidos grasos se enlazan a un cadena principal de glicerol por enlaces éster; puede ser sólido o líquido a temperatura ambiente.

punto triple (pág. 429) El punto en un diagrama de fase que representa la temperatura y la presión en la que coexisten las tres fases de una sustancia (sólido, líquido y gas).

efecto Tyndall (pág. 478) Dispersión de la luz causada por las partículas coloidales.

viscosity/viscosidadtransition elements/elementos de transición

Uunit cell (p. 421) The smallest arrangement of atoms in a

crystal lattice that has the symmetry as the whole crystal; a small representative part of a larger whole.

universe (p. 526) In thermochemistry, is the system plus the surroundings.

unsaturated hydrocarbon (p. 746) A hydrocarbon that con-tains at least one double or triple bond between carbon atoms.

unsaturated solution (p. 493) Contains less dissolved solute for a given temperature and pressure than a saturated solution; has further capacity to hold more solute.

celda unitaria (pág. 421) El conjunto más pequeño de áto-mos en una red cristalina que posee la simetría de todo el cristal; pequeña parte representativa de un entero mayor.

universo (pág. 526) En termoquímica, se refiere el sistema más los alrededores.

hidrocarburo no saturado (pág. 746) Hidrocarburo que contiene por lo menos un enlace doble o triple entre sus átomos de carbono.

solución no saturada (pág. 493) Aquella que contiene menos soluto disuelto a una temperatura y presión dadas que una solución saturada; puede contener cantidades adi-cionales del soluto.

valence electrons (p. 161) The electrons in an atom’s outer-most orbitals; determine the chemical properties of an element.

vapor (p. 72) Gaseous state of a substance that is a liquid or a solid at room temperature.

vaporization (p. 426) The energy-requiring process by which a liquid changes to a gas or vapor.

vapor pressure (p. 427) The pressure exerted by a vapor over a liquid.

vapor pressure lowering (p. 499) The lowering of vapor pressure of a solvent by the addition of a nonvolatile sol-ute to the solvent.

viscosity (p. 417) A measure of the resistance of a liquid to flow, which is affected by the size and shape of particles, and generally increases as the temperature decreases and as intermolecular forces increase.

electrones de valencia (pág. 161) Los electrones en el orbital más externo de un átomo; determinan las propiedades químicas de un elemento.

vapor (pág. 72) Estado gaseoso de una sustancia que es líquida o sólida a temperatura ambiente.

vaporización (pág. 426) Proceso que requiere energía en el que un líquido se convierte en gas o vapor.

presión de vapor (pág. 427) Presión que ejerce un vapor sobre un líquido.

disminución de la presión de vapor (pág. 499) Reducción de la presión de vapor de un disolvente por la adición de un soluto no volátil al disolvente.

viscosidad (pág. 417) Medida de la resistencia de un líquido a fluir; es afectada por el tamaño y la forma de las partícu-las y en general aumenta cuando disminuye temperatura y cuando aumentan las fuerzas intermoleculares.

V

Page 131: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1030 Glossary/Glosario

Glossary/Glosario

wavelength (p. 137) The shortest distance between equiva-lent points on a continuous wave; is usually expressed in meters, centimeters, or nanometers.

wax (p. 838) A type of lipid that is formed by combining a fatty acid with a long-chain alcohol; is made by both plants and animals.

weak acid (p. 645) An acid that ionizes only partially in dilute aqueous solution.

weak base (p. 648) A base that ionizes only partially in dilute aqueous solution to form the conjugate acid of the base and hydroxide ion.

weight (p. 9) A measure of an amount of matter and also the effect of Earth’s gravitational pull on that matter.

longitud de onda (pág. 137) La distancia más corta entre puntos equivalentes en una onda continua; se expresa generalmente en metros, centímetros o nanómetros.

cera (pág. 838) Tipo de lípido que se forma al combinarse un ácido graso con un alcohol de cadena larga; son ela-borados por plantas y animales.

ácido débil (pág. 645) Ácido que se ioniza parcialmente en una solución acuosa diluida.

base débil (pág. 648) Base que se ioniza parcialmente en una solución acuosa diluida para formar el ácido conju-gado de la base y el ion hidróxido.

peso (pág. 9) Medida de la cantidad de materia y también del efecto de la fuerza gravitatoria de la Tierra sobre esa materia.

W

voltaic cell (p. 709) A type of electrochemical cell that con-verts chemical energy into electrical energy by a sponta-neous redox reaction.

VSEPR model (p. 261) Valence Shell Electron Pair Repulsion model, which is based on an arrangement that minimizes the repulsion of shared and unshared pairs of electrons around the central atom.

pila voltaica (pág. 709) Tipo de celda electroquímica que convierte la energía química en energía eléctrica mediante una reacción redox espontánea.

modelo RPCEV (pág. 261) Modelo de Repulsión de los Pares Electrónicos de la Capa de Valencia; se basa en un ordenamiento que minimiza la repulsión de los pares de electrones compartidos y no compartidos alrededor del átomo central.

X ray (p. 864) A form of high-energy, penetrating electro-magnetic radiation emitted from some materials that are in an excited electron state.

rayos X (pág. 864) Forma de radiación electromagnética penetrante de alta energía que emiten algunos materiales que se encuentran en un estado electrónico excitado.

X

voltaic cell/pila voltaica X ray/rayos X

Page 132: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1031

Italic numbers = illustration/photo

act. = activity

Bold numbers = vocabulary term

prob. = problem

Index Key

AAbsolute zero, 445

Absorption spectrum, 145, 164 act.

Accelerants, 91

Accuracy, 47–48

Acetaldehyde, 796

Acetaminophen, 800

Acetic acid, 634, 798, 800

Acetone, 432 act., 797

Acetylene. See Ethyne

Acid anhydrides, 643

Acid-base chemistry, 633 act., 634–668;

acid-base titration, 660–663, 664 prob.,

670 act.; acids, strength of, 644–647,

648 act.; Arrhenius model, 637, 642

table; bases, strength of, 648–649;

Brønsted-Lowry model, 638–640,

642 table; buffers, 666–667, 668 act.;

chemical properties of acids and bases,

635; hydronium and hydroxide ions,

636; ion-product of water and, 650

prob., 650–651; Lewis model, 641–643,

642 table; litmus paper and, 633 act.,

635, 658; milestones in understanding,

636–637; molarity and pH, 656; mono-

protic and polyprotic acids, 640–641,

641 table; neutralization reactions,

659–660; pH and, 633 act., 652, 653,

653 prob., 654 prob.; physical proper-

ties of acids and bases, 634–635; pOH

and, 652, 653; salt hydrolysis, 665

Acid-base indicators, 658, 663, 664

Acid-base titration. See Titration

Acid hydrolysis, 665

Acidic solutions, 636

Acid ionization constant ( K a), 647, 647

table, 970 table; calculate from pH,

656, 657 prob.

Acid mine waste, biotreatment of, 920

Acidosis, 666

Acid rain, 637

Acids. See also Acid-base chemistry;

acid ionization constant ( K a), 647,

647 table, 656, 657 prob.; anhydrides,

643; Arrhenius, 637; Brønsted-Lowry,

638–639, 646; chemical properties,

635; conjugate, 638; electrical conduc-

tivity, 635; in household items, 633

act.; ionization equations, 645, 645

table; molarity and pH of strong, 656;

monoprotic, 640, 640 table; naming,

250–251, 252; pH of. See pH; physical

properties, 634–635; polyprotic, 640–

641, 641 table; strength of, 644–647,

648 act.; strong, 644; titration of. See

Titration; weak, 645

Actinide series, 180, 185, 921

Activated complex, 564

Activation energy ( E a ), 564–566,

571–572

Active site, 830

Activities. See CHEMLABs; Data

Analysis Labs; Launch Labs;

MiniLabs; Problem-Solving Labs

Activity series, 293–294, 310 act.

Actual yield, 385

Addition: scientific notation and, 42,

948; significant figures and, 53, 53

prob., 952, 953 prob.

Addition polymerization, 811

Addition reactions, 804 table, 804–805

Adenine (A), 841

Adenosine diphosphate (ADP), 845

Adenosine triphosphate (ATP), 532, 845

Adhesion, 419

Adipic acid, 798

ADP (adenosine diphosphate), 845

Age of Polymers. See Polymers

Agitation, 492

AIDS, 389

Air masses, density of and weather, 37

Air pressure, 406; deep sea diving and,

408 act.; measurement of, 406–407;

units of, 407

Alcoholic fermentation, 847

Alcohols, 792–793; denatured, 793;

elimination reactions, 803; evapora-

tion of, 432 act., 816 act.; functional

groups, 787 table; layering of in grad-

uated cylinder, 31 act.; naming, 793;

properties, 792–793, 816 act.

Aldehydes, 787 table, 796 table, 796–797

Algal blooms, 250

Algebraic equations, 954–955, 955 prob.

Aliphatic compounds, 771. See also

Alkanes; Alkenes; Alkynes

Alkali metals (Group 1A), 177, 906–909

Alkaline batteries, 719

Alkaline earth metals (Group 2A), 177,

910–915

Alkanes, 750–758; alkyl halides and,

789; branched-chain, 752–753,

754–755 prob.; burner gas analysis,

776 act.; chemical properties, 758;

condensed structural formulas, 751;

cycloalkanes, 755–756, 756–757

prob.; hydrogenation reactions, 805;

naming, 751, 752–753, 754–755

prob.; nonpolarity of, 757, 758; physi-

cal properties, 758; solubility, 758;

straight-chain, 750–751

Alkenes, 759; addition reactions involv-

ing, 804; naming, 760, 761 prob.; prop-

erties, 762; stereoisomers, 766; uses, 762

Alkyl groups, 752, 753 table

Alkyl halides, 787; dehydrogenation

reactions, 803; naming, 788; parent

alkanes v., 789 table; substitution

reactions, 791

Alkynes, 763–764; ethyne, synthesize

and observe, 762 act.; examples, 763

table; hydrogenation reactions, 805;

naming, 763; properties, 764; uses, 764

Allotropes, 938

Alloys, 81, 227–228; commercially

important, 228 table; interstitial, 228;

magnesium, 913; substitutional, 228;

transition metal, 916

Alnico, 228 table

Alpha decay, 867, 868 table

Alpha particles, 123, 861 table, 862, 864,

888 table

Alpha radiation, 123, 124 table, 861, 861

table, 862, 888 table

Alternative energy specialist, 729

Aluminum, 159 table, 226 table, 730–

731, 922, 923, 924

Aluminum oxide, 212

Amide functional group, 787 table

Amides, 787 table, 800, 800 table

Amines, 787 table, 795, 795 table

Amino acids, 826–827, 827 table

Amino functional group, 787 table, 826

Ammonia: as Brønsted-Lowry base,

639; evaporation of, 432 act.; Lewis

structure, 243, 255 prob.; polarity of,

268; production of, 290, 462, 594, 596,

597; sigma bonds in, 244, 245

Ammoniated cattle feed, 601

Ammonium, 221 table

Amorphous solids, 424

Amphoteric, 639

Amplitude, 137

Anabolism, 844–845

Analytical balance, 77, 79

Analytical chemistry, 11 table, 79, 341

Anhydrides, 643

Anhydrous calcium chloride, 354

Aniline, 795

Anions, 209

Absolute zero Anions

Page 133: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1032 Index

Index

Anodes, 107, 710

Antacids, 659

Antarctica, ozone hole over, 7, 20–21

Anthracene, 772

Antilogarithms, 966–967

Antimony, 932, 933, 935

Applied research, 17

Aqueous solutions, 299–308. See also

Solutions; electrolytes in and colliga-

tive properties, 498–499; ionic com-

pounds in, 300; ionic equations and,

301, 302 prob.; molecular compounds

in, 299; nonelectrolytes in and colliga-

tive properties, 499; overall equations

for reactions in, 307; reactions produc-

ing water in, 303, 304 prob.; reactions

that form gases, 281 act., 304–305, 306

prob.; reactions that form precipitates

in, 300, 301 act., 302 prob.; solvation of

ionic compounds in, 490; solvation of

molecular compounds in, 491

Aragonite, 214

Archaeologist, 891

Argon, 159 table, 185 table, 944, 945

Aristotle, 103, 103 table, 416

Aromatic compounds, 771–774; ben-

zene, 770–771; carcinogenic, 774;

fused-ring systems, 772; naming,

772–773, 773 prob.

Arrhenius model of acid-base chemis-

try, 637, 642 table

Arrhenius, Svante, 636, 637

Arsenic, 932, 933

Arson investigator, 91

Art restorer, 23

Aryl halides, 788

Aspirin, 810

Astatine, 940, 941

Asymmetric carbon, 768

Atmosphere (atm), 407, 407 table

Atmosphere, Earth’s: cycling of carbon

dioxide in, 505; elements in, 901;

layers of, 5; ozone layer and, 5–8

Atomic bomb, 879

Atomic distances, 113 act.

Atomic emission spectrum, 144–145,

164 act.

Atomic Force Microscope, 291

Atomic mass, 119–120, 121 prob., 126

act.

Atomic mass unit (amu), 119, 325, 969

table

Atomic nucleus, 112; discovery of, 112;

nuclear model of mass and, 326 act.

Atomic number, 115, 116 prob., 118

prob.

Atomic orbitals, 152, 154, 262

Atomic radii, trends in, 187, 188, 189

prob.

Atomic solids, 422, 422 table

Atomic structure: Bohr model of,

146–148, 150 act.; Dalton’s model

of, 104 table, 104–105; Democritus’

early idea of, 103; Greek philosophers’

views of, 102–103, 103 table; mile-

stones in understanding, 110–111;

nuclear atomic model, 112–114, 136;

plum pudding model, 110; quantum

mechanical model, 149–152; try to

determine, 135 act.

Atomic weapons, 111

Atoms, 10, 106–107; atom-to-mass

conversions, 331 prob.; determining

structure of. See Atomic structure;

excited state, 146, 147; ground state,

146; mass-to-atom conversions,

329–330, 330 prob.; size of, 106, 112;

stability of, 240; subatomic particles,

113–114, 114 table; viewing, 107

ATP (adenosine triphosphate), 845

Aufbau diagram, 156–157, 157 table,

160

Aufbau principle, 156, 157 table

Automobile air safety bags, 292

Average rate of reaction, 560–562, 562

prob.

Avogadro’s number, 321, 326 act., 969

table

Avogadro’s principle, 452

BBacteria, nitrogen-fixing, 934

Bakelite, 809, 810, 813

Baker, 847

Baking, acid-base chemistry and, 669

Baking powder, 669

Baking soda, 378 act., 669

Balanced chemical equations: conserva-

tion of mass and, 285, 288; deriving,

285–286, 286 table, 287 prob., 288,

288. See also Stoichiometry; mole

ratios and, 371–372; particle and mole

relationships in, 368–369; relation-

ships derived from, 369 table

Balanced forces, 597

Ball-and-stick molecular models, 253, 746

Balmer (visible) series, 147, 148, 150 act.

Band of stability, 866

Bar graphs, 56

Barite, 214

Barium, 226 table, 910–911, 913, 914

Barium carbonate, 302, 302 prob.

Barium chloride, 913

Barium sulfate, 621

Barometers, 407, 416

Base hydrolysis, 665

Base ionization constant ( K b ), 649, 649

table, 970 table

Bases. See also Acid-base chemistry;

antacids, 659; Arrhenius, 637; base

ionization constant ( K b ), 649, 649

table; Brønsted-Lowry, 638–639;

chemical properties, 635; conjugate,

638; in household items, 633 act.;

molarity and pH of strong, 656; phys-

ical properties, 634–635; strength of,

648–649; strong, 649; titration of. See

Titration; weak, 649

Base units, 33, 35–37

Basic solutions, 636

Batteries, 717, 718–723; dry cells, 718–

720; fuel cells, 722–723; lead-acid,

720–721, 930; lemon battery, 707 act.;

lithium, 721–722

Becquerel, Henri, 860–861, 885

Beetles, bioluminescent, 309

Bent molecular shape, 263 table

Benzaldehyde, 796 table, 797

Benzene, 770–771; carcinogenic nature

of, 774; naming of substituted,

772–773

Benzopyrene, 774

Bernoulli, Daniel, 416

Beryl, 214

Beryllium, 158 table, 161 table, 910–

911, 912

Beryls, 912

Best-fit line, 56–57

Beta decay, 867, 868 table

Beta particles, 123, 861 table, 863, 864,

888 table

Beta radiation, 123, 124 table, 861, 861

table, 862, 863, 888 table

Binary acids, 250, 252

Binary ionic compounds, 210, 219

Binary molecular compounds, 248–250,

249 prob., 252

Binding energy, 877, 878

Biochemist, 308

Biochemistry, 11 table

Biofuel cells, 724 act.

Biofuels, 774 act., 775

Biogas, 775

Biological metabolism. See Metabolism

Bioluminescence, 309, 693

Biomolecules: carbohydrates, 825 act.,

832–834; lipids, 835–839; nucleic

acids, 840–843; proteins, 826–831

Bioremediation, 920

Bismuth, 932, 933, 935

Bismuth subsalicylate, 935

Blocks, periodic table, 183–185. See also

Specific blocks

Blood, pH of, 666, 668 act.

Anodes Blood

Page 134: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1033

Index

Bloodstains, detecting, 697

Body temperature, reaction rate and, 583

Bohr atomic model, 146–148, 150 act.

Bohr, Niels, 110, 146

Boiling, 427

Boiling point, 77, 427; of alkanes, 758;

of covalent compounds, 270; of halo-

carbons, 789; as physical property, 73

Boiling point elevation, 500–501, 503

prob.

Boltzmann, Ludwig, 402

Bond angles, 261

Bond character, 266

Bond dissociation energies, 247

Bonding pairs, 242

Bonds. See Chemical bonds

Book preservation, 661

Borates, 214

Boron, 158 table, 161 table, 184, 922,

923, 924

Boron group (Group 13), 922–925

Bose-Einstein condensate, 417

Bose, Satyendra Nath, 417

Boyle, Robert, 442

Boyle’s law, 442–443, 443 prob., 444 act.,

451 table

Branched-chain alkanes, 752–753;

alkyl groups, 752; naming, 752–753,

754–755 prob., 760, 761 prob.

Brass, 228 table

Breathing, Boyle’s law and, 444 act.

Breeder reactors, 882

Brine, electrolysis of, 730

Bromate, 221 table

Bromine, 120, 180, 940, 941, 942

Brønsted, Johannes, 638

Brønsted-Lowry model, 638–640, 642

table, 646

Bronze, 228 table

Brownian motion, 477

Brown, Robert, 477

Buckminsterfullerene, 928

Buckyballs, 928

Buffer capacity, 667

Buffers, 666–667, 668 act.

Buffer systems, 666–667, 668 act.

Bufotoxin, 839

Burner gas analysis, 776 act.

Butane, 750, 751, 751 table

1-Butene, 759 table

2-Butene, 759 table

Butyl group, 753 table

CCadaverine, 795

Cadmium, 920

Calcium, 177, 195, 910–911, 913, 914

Calcium chloride, 913

Calcium hydroxide, 287

Calibration technician, 56

Calorie (cal), 518

Calorimeter, 523–524, 525 prob., 532 prob.

Calx of mercury, 79

Cancer, 163, 887

Canola oil, hydrogenation of, 805 act.

Capillary action, 419

Caramide, 800

Carbohydrates, 832–834; disaccharides,

833; functions of, 832; monosaccha-

rides, 832–833; polysaccharides, 833–

834; test for simple sugars, 825 act.

Carbolic acid, 636

Carbon. See also Organic compounds;

abundance of, 84; analytical tests for,

926–927; atomic properties, 158 table,

161 table, 926–927; common reactions

involving, 926–927; in human body,

195; organic compounds and, 745;

physical properties, 926; uses of, 928

Carbonated beverages, 495

Carbonates, 214

Carbon dating, 873–874, 883

Carbon dioxide, 256 prob., 430, 505

Carbon group (Group 4A), 926–931,

932–935

Carbonic acid, 634

Carbon tetrachloride, 20, 267–268

Carbonyl compounds, 796–801; alde-

hydes, 796–797; carboxylic acids, 798;

ketones, 797

Carbonyl group, 787 table, 796

Carboxyl group, 787 table, 798, 798

table, 826

Carboxylic acids, 798, 798 table; con-

densation reactions, 801; functional

groups, 787 table; naming, 798;

organic compounds derived from,

799–800, 800 act.; properties, 798

Carcinogens, 774

Cardiac scans, 925

Careers. See Careers in Chemistry; In

the Field

Careers in Chemistry: alternative energy

specialist, 729; baker, 847; biochemist,

308; calibration technician, 56; chemi-

cal engineer, 580; chemistry teacher,

123; environmental chemist, 7; flavor

chemist, 267; food scientist, 219; heat-

ing and cooling specialist, 527; materi-

als scientist, 81; medicinal chemist,

342; metallurgist, 423; meteorologist,

447; nursery worker, 646; petroleum

technician, 748; pharmacist, 381; phar-

macy technician, 483; polymer chem-

ist, 813; potter, 682; radiation therapist,

887; research chemist, 185; science

writer, 604; spectroscopist, 139

Cast iron, 228 table

Catabolism, 844–845

Catalysts, 571–573. See also Enzymes;

chemical equilibrium and, 611;

hydrogenation reactions and, 805;

temperature and, 850 act.

Catalytic converters, 573

Cathode rays, 108

Cathode-ray tubes, 107–108

Cathodes, 107, 710

Cations, 207–208

Cattle feed, 601

Cave formation, 643

CDs, 924

Cell membrane, 838

Cell notation, 713

Cell potential: applications of, 716;

calculate, 713–714, 715 prob., 717;

measure, 734 act.

Cellular respiration, 846

Celluloid, 490

Cellulose, 834

Celsius scale, 34

Centrifuge, 490

CERN, 111

Cesium, 194, 906, 907, 909

Cesium clock, 909

CFCs. See Chlorofluorocarbons (CFCs)

Chadwick, James, 110, 113

Chain reactions, 859 act., 879, 880

Chance, scientific discoveries and, 18

Charles, Jacques, 444

Charles’s law, 441 act., 444–445, 446

prob., 451 table

Chelation therapy, 229

Chemical bonds, 206; character of, 266;

covalent. See Covalent bonds; elec-

tron affinity and, 265; ionic. See Ionic

bonds; melting point and, 242 act.;

metallic. See Metallic bonds; valence

electrons and, 207

Chemical changes, 69 act., 77, 92 act.,

281 act. See also Chemical reactions

Chemical engineer, 580

Chemical equations, 285. See also

Ionic equations; Nuclear equations;

Redox equations; Stoichiometry;

Thermochemical equations; balanc-

ing, 285–286, 286 table, 287 prob.,

288; coefficients in, 369; interpreta-

tion, 370 prob.; mole ratios and,

371–372; products, 283; reactants,

283; relationships derived from, 369;

symbols used in, 283, 283 table

Chemical equilibrium, 596; addition

of products and, 608; addition of

Bloodstains Chemical equilibrium

Page 135: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1034 Index

Index

reactants and, 607; catalysts and, 611;

changes affecting, 593 act.; charac-

teristics of, 604; common ion effect

and, 620–621; concentration and, 607;

determine point of, 593 act.; dynamic

nature of, 597–598; equilibrium con-

stant ( K eq ), 599–600, 604, 605 prob.;

equilibrium expressions, 600, 601

prob., 602, 603 prob.; hemoglobin-

oxygen equilibrium in body, 623; law

of, 599–600; Le Châtelier’s principle

and, 606–611; moles of reactant v.

moles of product and, 609; removal

of products and, 608; reversible reac-

tions and, 595–596; temperature and,

609–610, 611 act.; volume and pres-

sure and, 608–609

Chemical formulas, 85; for binary ionic

compounds, 219, 220 prob.; empirical.

See Empirical formula; for hydrates,

351 table, 352, 353 prob., 356 act.;

for ionic compounds, 218–219, 220

prob., 221, 222 prob.; molecular. See

Molecular formulas; mole relation-

ship to, 333–334, 334–335 prob.; for

monatomic ions, 218–219; name of

molecular compound from, 251; per-

cent composition from, 342, 343 prob.;

for polyatomic ionic compounds, 221,

222 prob.; structural. See Structural

formulas

Chemical potential energy, 517

Chemical properties, 74

Chemical reaction rates. See Reaction

rates

Chemical reactions, 77, 282–288; actual

yield from, 385; addition, 804–805;

in aqueous solutions, 299–301, 302

prob., 303–305, 306 prob., 307–308;

classification of, 291 prob.; com-

bustion, 290–291, 532 prob., 533;

condensation, 801; conservation of

mass and, 77, 78 prob., 79, 285, 288;

decomposition, 292, 292 prob.; dehy-

dration, 803; dehydrogenation, 803;

elimination, 802; endothermic, 216,

247; equations for, 283 table, 283–285;

evidence of, 69 act., 77, 282–283, 367

act.; excess reactants in, 379, 384;

exothermic, 216, 247; heat from. See

Thermochemistry; limiting reactants,

379–381, 382–383 prob.; milestones in

understanding, 290–291; neutraliza-

tion, 659–660; nuclear reactions v.,

860 table; organic. See Organic reac-

tions; oxidation reduction reactions,

806–807; percent yield from, 386,

386 prob., 388; products of, identify,

92 act.; products of, predict, 298, 298

table, 807–808; rates of. See Reaction

rates; redox. See Redox reactions;

replacement, 293–294, 295 prob.,

296–297; spontaneity of, 542–545,

546–547, 548 prob., 566–567; stoi-

chiometry in. See Stoichiometry;

substitution, 790–791; synthesis, 289;

theoretical yield from, 385

Chemical symbols, 84

Chemistry, 4, 11; benefits of studying,

22; branches of, 11, 11 table; symbols

and abbreviations used in, 968 table

Chemistry & Health: elements of the

body, 195; evolution and HIV, 389;

hemoglobin-oxygen equilibrium, 623;

hyperbaric oxygen therapy, 465; laser

scissors, 163; PA-457 anti-HIV drug,

389; rate of reaction and body tem-

perature, 583; toxicology, 59

Chemistry teacher, 123

CHEMLABs, 228. See also Data Analysis

Labs; Launch Labs; MiniLabs; absorp-

tion and emission spectra, 164 act.;

alcohols, properties of, 816 act.; atomic

mass of unknown element, 126 act.;

burner gas analysis, 776 act.; calorim-

etry, 550 act.; density, dating coins

by, 60 act.; descriptive chemistry, 196

act.; enzyme action and temperature,

850 act.; evaporation, compare rates

of, 432 act.; gas, identify an unknown,

466 act.; hydrate, determine formula

for, 356 act.; hydrocarbon burner gas

analysis, 776 act.; ionic compounds,

formation of, 230 act.; metals, reactiv-

ity of, 310 act.; molar solubility, calcu-

late and compare, 624 act.; molecular

shape, 272 act.; mole ratios, determine,

390 act.; products of chemical reaction,

identify, 92 act.; reaction rate, affect of

concentration on, 584 act.; redox and

the damaging dumper, 698 act.; solu-

bility rate, factors affecting, 506 act.;

vapor pressure and popcorn popping,

466 act.; voltaic cell potentials, mea-

sure, 734 act.; water analysis, 24 act.

Chernobyl, 880, 883, 889 act.

Chewing gum, percent composition,

342 act.

Chimney soot, 774

Chirality, 767, 768

Chlorate, 221 table

Chlorine, 89–90, 119–120, 159 table,

180, 940, 941, 942

Chlorine bleach, 942

Chlorite, 221 table

Chlorofluorocarbons (CFCs), 7–8, 17,

20, 291, 788

Chloromethane, 787

Chlorophyll, 912

Chocolate, 431

Chromatograms, polarity and, 269 act.

Chromatography, 82 act., 83, 269 act.

Chrome, 328

Chromium, 160, 328, 918, 919

Cinnameldehyde, 796 table, 797

Circle graphs, 55

cis- isomers, 766

Clay, 476

Clay roofing tiles, 302

Clouds, 428

Cloud seeding, 495

Cobalt, 918, 919

Coefficients, 285; balancing equations

and, 285; scientific notation and, 40–41

Cohesion, 419

Cold-packs, 515 act., 528

Collagen, 831

Colligative properties, 498–504; boiling

point elevation, 500–501; electrolytes

and, 498–499; freezing point depres-

sion, 501–502, 502 act., 503 prob.;

osmotic pressure, 504; vapor pressure

lowering, 499–500

Collision theory, 563–564, 564 table

Colloids, 477, 477 table, 478

Color: change in as evidence of chemical

reaction, 283; as physical property, 73

Combined gas law, 449, 450 prob., 451

table, 454

Combustion engines, 290

Combustion reactions, 290–291, 532

prob., 533

Common ion, 620

Common ion effect, 620–621

Complementary base pairs, 841, 842

Complete ionic equations, 301, 302

prob., 304 prob.

Complex carbohydrates. See

Polysaccharides

Complex reactions, 580

Compounds, 85–87; compare melt-

ing points of, 242 act.; formulas for.

See Formulas; ionic. See Ionic com-

pounds; law of definite proportions

and, 87–88; law of multiple propor-

tions and, 89–90; mass-to-mole

conversions, 337, 337 prob.; molar

mass of, 335, 335 prob.; mole-to-mass

conversions, 336, 336 prob.; percent

composition and. See Percent com-

position; properties of, 86; separating

components of, 86; stability of, 240

Computer chips, 181, 929

Concentration, 475 act., 480–488. See

Solution concentration; calculate from

Chemical formulas Concentration

Page 136: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1035

Index

equilibrium constant expression, 612,

613 prob.; chemical equilibrium and,

607; qualitative descriptions of, 480;

ratios of. See Concentration ratios;

reaction rate and, 569, 574–576, 584

act.

Concentration ratios: molality, 480

table, 487, 487 prob.; molarity, 480

table, 482, 483 prob.; mole fraction,

480 table, 488; percent by mass, 480

table, 481, 481 prob.; percent by vol-

ume, 480 table, 482

Conclusions, 15

Condensation, 76, 428

Condensation polymerization, 811

Condensation reactions, 801

Condensed structural formulas, 751

Conductivity: among types of elements

177–181; as physical property, 73;

explanation of, 226; of ionic com-

pounds in solution, 215, 498–499

Conjugate acid-base pair, 638

Conjugate acids, 638, 641 table

Conjugate bases, 638, 641 table

Conservation of energy. See Law of con-

servation of energy

Conservation of mass. See Law of con-

servation of mass

Constant, 14

Controls, 14

Conversion factors, 44–46, 46 prob.,

319 act.

Coordinate covalent bonds, 259

Copper: acid mine waste, 920; electron

configuration, 160; in fireworks, 913;

flame test for, 92 act.; law of multiple

proportions and, 89–90; melting and

boiling point, 226 table; in microchip

wiring, 919; as paint pigment, 919;

properties of, 74 table; purification of,

731–732

Core, iron in Earth’s, 919

Corn oil, 31 act.

Corrosion, 724–727, 726 act.

Counting units, 320

Covalent bonds, 241–247; bond angle,

261, 263 table; coordinate, 259; double,

245; electron affinity and, 265; electro-

negativity and, 266; energy in, 247; for-

mation of, 241; hybridization and, 262;

length of, 246; nonpolar, 266; pi bonds

and, 245; polar, 266, 267–268; sigma

bonds and, 244, 245; single, 242–244;

strength of, 246–247; super ball prop-

erties, 239 act.; triple, 245

Covalent compounds: boiling points

of, 270; formulas from names of, 251;

intermolecular forces in, 269–270;

Lewis structures for, 253–260, 255 prob.,

256 prob., 257 prob., 258 prob., 260

prob.; melting points of, 242 act., 270;

naming, 248–251, 249 prob., 252; polar-

ity of and chromatograms, 269 act.;

properties of, 270; shape of (VSEPR

model), 261–262, 263 table, 264 prob.

Covalent gases, 270

Covalent molecular solids, 270

Covalent network solids, 270, 422, 422

table, 423

Cracking, 748

CRC Handbook of Chemistry and

Physics, 75, 77

Crick, Francis, 637, 841–842

Crime-scene investigator, 697

Critical mass, 880

Critical point, 429

Crookes, Sir William, 108

Crude oil. See Petroleum

Crust, Earth’s, 901

Cryosurgery, 934

Cryotherapy, 934

Crystal lattices, 214, 270, 420–421, 422

act.

Crystalline solids, 420–421, 422 table;

categories, 422 table, 422–423; crystal

unit cells, 421, 422 act.

Crystallization, 83

Cube root, 949

Cubic unit cells, 421 table

Curie, Marie, 861, 882, 915

Curie, Pierre, 861, 882

Cyanide, 221 table

Cyclic hydrocarbons, 755

Cycloalkanes, 755–756, 756–757 prob.

Cyclohexane, 755

Cyclohexanol, 793

Cyclohyexylamine, 795

Cysteine, 827 table

Cytosine (C), 841

DDalton, John, 417

Dalton’s atomic theory, 104 table,

104–105, 109

Dalton’s law of partial pressures, 408,

409 prob., 410

Data, 13

Data Analysis Labs. See also

CHEMLABs; Launch Labs; MiniLabs;

Problem-Solving Labs; antimicrobial

properties of polymers, 216 act.;

atomic distances in highly ordered

pyrolytic graphite (HOPG), 113 act.;

biofuel cells, 724 act.; gas pressure and

deep sea diving, 408 act.; hydrogena-

tion of canola oil, 805 act.; microbes,

electric current from, 724 act.; oxida-

tion rate of dichloroethene isomers,

768 act.; oxygen in moon rocks, 387

act.; ozone levels in Antarctica, 21

act.; polarity and chromatograms, 269

act.; redox reactions and space shuttle

launch, 691 act.; turbidity and Tyndall

effect, 478 act.

d-block elements, 185, 916

de Broglie equation, 150

de Broglie, Louis, 149

Decane, 751 table

Decomposition reactions, 292, 292

prob., 566 act.

Deep sea diving, gas pressure and, 408

act.

Dehydration reactions, 803

Delocalized electrons, 225

Democritus, 103, 103 table, 416

Denaturation, 829

Denatured alcohol, 793

Density, 36–37; calculate, 37; date coins

by, 60 act.; of gases, 403, 456, 457 act.;

identification of unknowns by, 37, 38

prob., 39 act.; of liquids, 31 act., 415;

as physical property, 73; of solids, 420;

units of, 36

Dental amalgams, 228 table

Deoxyribonucleic acid. See DNA

(deoxyribonucleic acid)

Deoxyribose sugar, 841

Dependent variables, 14, 56

Deposition, 429

Derived units, 35–36, 44

Desalination, 730

Descriptive chemistry, 196 act.

Dessicants, 354

Detergents, 13 act., 419, 924

Deuterium, 904

Diamonds, 423, 928

Diatomic molecules, 241

Dichloroethene, 768 act.

Dietary salt, 908

Diffusion, 404, 405

Dilute solutions, 485, 486 prob.

Dimensional analysis, 44–46, 46 prob.,

956, 956 prob.

Dinitrogen pentoxide, 565 act.

Dipeptides, 828

Dipole-dipole forces, 269, 411, 412–413

Direct relationships, 961

Disaccharides, 833

Dispersion forces, 269, 411, 412

Dispersion medium, 477 table

Dissociation energy, 247

Dissociation equations, strong bases,

648, 648 table

Concentration ratios Dissociation equations

Page 137: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1036 Index

Index

Distillation, 82

Distilled water: electrical conductivity

of, 205 act.; evaporation of, 432 act.

Diving, gas pressure and, 408 act.

Division operations, 54

DNA (deoxyribonucleic acid), 841–842,

842 act., 843

Dobson, G. M. B., 6

Dobson units (DU), 6

d orbitals, 154

Dose of radiation, 889–890

Dose-response curve, 59

Double covalent bonds, 245, 246

Double helix, DNA, 841

Double-replacement reactions, 296–

297, 297 prob., 297 table

Down’s cells, 729

Drake, Edwin, 749

Dry cells, 718–720; alkaline batteries,

719; primary batteries, 720; second-

ary batteries, 720; silver batteries, 719;

zinc-carbon, 718–719

Dry ice, 428

Drywall, 914

Ductility, 226

DVDs, 924

EEarth: atmosphere of, 5, 901; elements

in core of, 919; elements in crust of,

84, 901; elements in oceans of, 901;

entropy and geologic changes on, 545

Effusion, 404–405, 405 prob.

Egyptian cubits, 46 prob.

Einstein, Albert, 143, 417, 877

Elastic collisions, 403

Electrical conductivity: of acids and

bases, 635; of ionic compounds, 214–

215; of metals, 180, 226; of strong

acids, 645; of various compounds, 205

act.; of weak acids, 645, 648 table

Electric charge, observe, 101 act.

Electrochemical cell potentials, 711–

717, 734 act.; calculate, 713–714, 715

prob., 717; cell notation, 713; half-cell

potentials, 712, 712 table; of standard

hydrogen electrode, 711

Electrochemical cells, 707 act., 709,

709–711; alkaline batteries, 719;

chemistry of, 710–711; dry cells,

718–720; electrochemical cell poten-

tials, 711–714, 715 prob., 716–717;

electrolysis and, 728–732; half-cells,

710; lead-acid batteries, 720–721;

lithium batteries, 721–722; primary

and secondary batteries, 720; silver

batteries, 719

Electrochemistry: batteries, 717, 718–

723; biofuel cells, 724 act.; corrosion,

724–727; electrochemical cell poten-

tials, 711–714, 715 prob., 716–717;

electrochemical cells, 707 act., 709;

electrolysis, 728–732; lemon battery,

707 act.; redox reactions in, 708–709;

voltaic cell chemistry, 710–711

Electrolysis, 86, 728–732; aluminum

production, 730–731; desalination by,

730; electroplating and, 732; of mol-

ten NaCl, 729; ore purification and,

731–732

Electrolytes, 215; colligative properties

of aqueous solutions and, 498–499;

strong, 498; weak, 498

Electrolytic cells, 728; aluminum pro-

duction and, 730–731; electrolysis of

brine and, 730; electrolysis of molten

NaCl and, 729; electroplating and,

732; purification of ores and, 731–732

Electromagnetic radiation, 137–139,

140 prob., 861 table, 863–864

Electromagnetic (EM) spectrum,

138–139

Electromagnetic wave relationship, 137,

150

Electromotive force (emf), 710

Electron affinity, 265

Electron capture, 868, 868 table

Electron configuration notation, 158–

159; first period elements, 158 table;

second period elements, 158 table;

third period elements, 159 table

Electron configurations, 156–162;

aufbau principle and, 156–157, 157

table; electron configuration notation,

158–159; electron-dot structures, 161,

162 prob.; exceptions to predicted,

160; ground state, 156; Hund’s rule

and, 157; Noble-gas notation, 159;

orbital diagrams of, 158; Pauli exclu-

sion principle and, 157; periodic table

trends, 182–185, 186 prob.; valence

electrons, 161

Electron-dot structures, 161, 161 table,

162 prob., 207. See also Lewis struc-

tures

Electronegativity, 194, 265; bond

character and, 266, 266 table; bond

polarity and, 266, 267; periodic table

trends, 194, 265; redox and, 684

Electronegativity scale, 194, 212, 265

Electron mediator, 724 act.

Electrons, 108; charge of, 108–109; dis-

covery of, 107–109; energy levels and,

146–148; location of around nucleus,

152; mass of, 108–109, 119, 969 table;

photoelectric effect and, 142; proper-

ties of, 114 table; quantum mechanical

model of atom and, 150–152; valence,

161

Electron sea model, 225

Electroplating, 732

Electrostatic force, 865

Elements, 10, 84–85, 87; abundance

of various, 84; in atmosphere, 901;

atomic number of, 115, 116 prob., 118

prob.; chemical symbols for, 84; color

key, 968 table; in Earth’s atmosphere,

901; in Earth’s core, 919; in Earth’s

crust, 84, 901; in Earth’s oceans, 901;

emission spectra of, 164 act.; in the

human body, 195; isotopes, 117; law

of definite proportions, 87–88; law of

multiple proportions, 89–90; periodic

table of. See Periodic table; physical

states of, 84; properties of, 180 act.,

196 act., 971–974 table; representa-

tive, 177, 196 act.

Elimination reactions, 802

Emeralds, 912

Emission spectra, 164 act.

Empirical formulas, 344; from mass

data, 349–350 prob.; from percent

composition, 344, 345 prob., 347

Endothermic reactions, 216, 247, 528,

528 table

End point (titration), 663

Energy, 516–522; bond dissociation, 247;

change during solution formation,

475 act., 492; changes of state and,

530–530, 531 act., 532 prob.; chemi-

cal cold pack and, 515 act.; chemical

potential, 517; flow of as heat, 518. See

also Heat; kinetic, 402, 403, 516–517,

710; lattice, 216–217; law of conserva-

tion of, 517; potential, 516–517; quan-

tized, 141–143, 146; solar, 522; units of,

518, 518 prob., 518 table; uses of, 516;

voltaic cells and, 710–711

Energy levels, 153

Energy sublevels, 153–154

English units, 32

Enthalpy (H), 527; calculate changes

in (Hess’s law), 534–536, 536 prob.;

calorimetry measurement of, 550 act.;

changes of state and, 530–533, 531

act., 532 prob.; thermochemical equa-

tions and, 529

Enthalpy (heat) of combustion

(∆ H comb ), 529, 529 table

Enthalpy (heat) of reaction (∆ H rxn ),

527–528

Entropy (S), 543; Earth’s geologic pro-

cesses and, 545; predict changes in,

Distillation Entropy

Page 138: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1037

Index

544–545; reaction spontaneity and,

546–547, 548 prob.; second law of

thermodynamics and, 543

Environmental chemist, 7

Environmental chemistry, 11 table

Enzymes, 826, 829–830. See also

Catalysts; Proteins; affect on reaction

rate, 571; chirality and, 767, 768; tem-

perature and, 850 act.

Enzyme-substrate complex, 830

Equations: algebraic, 954–955, 955 prob.;

atomic number, 115; average rate of

reaction, 562; boiling point elevation,

500; Boyle’s law, 443; cell potential,

714; Charles’s law, 445; chemical. See

Chemical equations; Dalton’s law of

partial pressures, 409; density, 37; dilu-

tion, 485; Einstein’s (E=m c 2 ), 877;

electromagnetic wave relationship, 137,

150; energy of a photon, 143; energy of

a quantum, 142; error, 48; Gay-Lussac’s

law, 447; general rate law, 575; Gibbs

free energy, 515 act., 546; Graham’s

law of effusion, 404; Henry’s law, 496;

ideal gas law, 454; induced transmuta-

tion, 876 prob.; ionic, 301; ion-product

of water, 650; law of conservation of

mass, 77; mass number, 117; molality,

487; molarity, 482; mole fraction, 488;

neutralization, 659–660; nuclear, 123,

869, 869 prob.; overall, 307; percent by

mass, 87, 481; percent by mass from

the chemical formula, 342; percent by

volume, 482; percent error, 48; percent

yield, 386; pH, 652; pH and pOH,

relationship between, 652; pOH, 652;

quantum, energy of, 142; radiation,

intensity and distance of, 890; radioac-

tive element, remaining amount of,

871; rate law, 574; skeleton, 284; slope

of a line, 57, 962; specific heat, 520;

summation, 540; symbols used in, 283

table; thermochemical, 529–533; word,

284

Equilibrium. See Chemical equilibrium;

Solubility equilibrium

Equilibrium concentrations, calculate,

612, 613 prob.

Equilibrium constant ( K eq ), 599–600,

604, 605 prob.

Equilibrium constant expressions,

599–600; calculate concentrations

from, 612, 613 prob.; for heteroge-

neous equilibrium, 602, 603 prob.; for

homogeneous equilibrium, 600, 601

prob.; Le Châtelier’s principle and,

606–611; solubility product constant

expressions. See Solubility product

constant expressions

Equivalence point, 661

Error, 48

Essential elements, 383

Essential oils, 770

Esterification, 806 table

Esters, 787 table, 799, 799 table, 800 act.

Ethanal, 796

Ethanamide, 800

Ethane, 750, 751 table, 793

Ethanol, 432 act., 792–793, 816 act.

Ethene, 759 table, 762, 803

Ether functional group, 787 table

Ethers, 787 table, 794, 794 table

Ethylamine, 795

Ethyl group, 753 table

Ethyne (acetylene), 762 act., 763, 763,

764

Evaporation, 426–427, 432 act., 816 act.

Everyday Chemistry: baking soda and

baking powder and cooking, 669;

chocolate, manufacture of, 431; garlic

and pain receptors, 815; history in a

glass of water, 355; killer fashion, 229

Example Problems: algebraic equations,

955 prob.; alkanes, naming, 754–755

prob.; alkenes, naming, 761 prob.;

aromatic compounds, naming, 773

prob.; atomic mass, 121 prob.; atomic

number, 116 prob., 118 prob.; atomic

radii trends, 189 prob.; atom-to-mass

conversions, 330 prob.; average rate of

reaction, 562 prob.; balancing equa-

tions, 287 prob.; boiling point eleva-

tion, 503 prob.; Boyle’s law, 443 prob.;

branched-chain alkanes, naming,

754–755 prob.; cell potential, calculate,

715 prob.; Charles’s law (gas tempera-

ture and volume relationship), 446

prob.; chemical equations, interpret,

370 prob.; combined gas law, 450 prob.;

combustion reactions, energy released

by, 532 prob.; concentration from equi-

librium constant expression, 613 prob.;

conservation of mass, 78 prob.; conver-

sion factors, 46 prob.; cycloalkanes,

naming, 756–757 prob.; density and

volume to find mass, 38 prob.; dimen-

sional analysis, 956 prob.; electron

configuration and the periodic table,

186 prob.; electron-dot structure, 162

prob.; empirical formula from mass

data, 349–350 prob.; empirical formula

from percent composition, 345 prob.;

energy of a photon, 143 prob.; energy

units, convert, 518 prob.; equilibrium

constant expression for heterogeneous

equilibrium, 603 prob.; equilibrium

constant expression for homogeneous

equilibrium, 601 prob.; equilibrium

constants, value of, 605 prob.; formula

for polyatomic compound, 222 prob.;

formulas for ionic compound, 220

prob.; freezing point depression, 503

prob.; gas stoichiometry, 461 prob.;

Gay-Lussac’s law, 448 prob.; Graham’s

law of effusion, 405 prob.; half-reac-

tion method, 695 prob.; heat absorbed,

calculate, 521 prob.; hydrates, deter-

mine formula for, 353 prob.; ideal gas

law, 455 prob.; induced transmutation

equations, 876 prob.; instantaneous

reaction rates, 579 prob.; ionic equa-

tions and precipitation reactions, 302

prob.; ionic equations for aqueous

solutions forming gases, 306 prob.;

ionic equations for aqueous solutions

forming water, 304 prob.; ion product

constant, 651 prob.; ion product con-

stant Q sp , 619 prob.; Lewis structure

for covalent compound with multiple

bonds, 256 prob.; Lewis structure for

covalent compound with single bond,

255 prob.; Lewis structures, 244 prob.;

limiting reactant, determine, 382–383

prob.; mass number, 118 prob.; mass-

to-atom conversions, 330 prob.; mass-

to-mass stoichiometric conversion, 377

prob.; mass-to-mole conversions, 329

prob.; mass-to-mole conversions for

compounds, 337 prob.; mass to moles

to particles conversions, 338–339

prob.; molality, 487 prob.; molarity, 483

prob.; molarity from titration data, 664

prob.; molar solubility, 616 prob.; molar

volume, 453 prob.; molecular formula

from percent composition, 348–349

prob.; molecular shape, 264 prob.; mole

relationship from a chemical formula,

334 prob.; mole-to-mass conversion,

328 prob.; mole-to-mass conversions

for compounds, 336 prob.; mole-to-

mass stoichiometric conversion, 376

prob.; mole-to-mole stoichiometric

conversion, 375 prob.; net ionic redox

equation, balance, 692; nuclear equa-

tions, balancing, 869 prob.; oxidation

number, determine, 687 prob.; oxi-

dation-number method, 690 prob.;

particles, convert to moles, 324 prob.;

percent by mass, 481; percent error,

49 prob.; percent yield, 386 prob.; pH,

calculate, 653 prob., 654 prob.; pOH,

calculate, 654 prob.; radioactive ele-

ment, remaining amount of, 872 prob.;

reaction spontaneity, 548 prob.; redox

reactions, identify, 685 prob.; scientific

Environmental chemist Example Problems

Page 139: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1038 Index

Index

notation, 41 prob., 43 prob.; significant

figures, 51 prob., 53 prob., 54 prob.;

significant figures and, 951 prob., 953

prob.; single-replacement reactions,

295 prob.; standard enthalpy (heat) of

formation, 540 prob.; unit conversion,

958 prob.; wavelength of EM wave, 140

prob.

Excess reactants, 379, 384

Exothermic reactions, 216, 247; activa-

tion energy and, 565; enthalpy and,

527, 528 table

Expanded octets, 259

Experimental data, percent composition

from, 341–342, 342 act.

Experiments, 14. See also CHEMLABs;

MiniLabs; Problem-Solving Labs;

laboratory safety and, 18, 19 table

Exponents, 40–41

Extensive properties, 73

Extrapolation, 57, 963

FFahrenheit scale, 34

Families, periodic table. See Groups

Faraday, Michael, 770

Fasteners, arrange, 173 act.

Fats. See Lipids

Fatty acids, 767, 835–836, 837

f-Block elements, 185, 916

Femtochemistry, 581

Fermentation, 847–848; alcoholic, 847;

lactic acid, 848

Fermi, Enrico, 882

Fermionic condensate, 417

Ferromagnetism, 916

Fertilizers, 250, 388, 462

Fiber-optic cable, 930

Filtration, 82

Fire extinguishers, ideal gas law and,

456, 457 act.

Firefly, bioluminescence, 309

Fireworks, 913

First period elements: electron con-

figuration notation, 158 table; orbital

diagrams, 158 table

Fission, 111

Flame retardant fabric, 935

Flame tests, 92 act., 144 act., 907, 923

Flat-screen televisions, 925

Flavor chemist, 267

Fleming, Alexander, 18

Flexible-fuel vehicles (FFV), 549

Fluidity, 416

Fluids, 416

Fluoridation, 622 act., 942

Fluoride, 180

Fluorine: analytical tests for, 941;

atomic properties, 941; common reac-

tions involving, 940; electron configu-

ration and orbital diagram, 158 table;

electron-dot structure, 161 table; elec-

tronegativity of, 194, 265; isotopes,

120; physical properties, 940

Fluoroapatite, 622 act.

Fog, 428

Foldables: acid-base chemistry, 633 act.;

atoms, 101 act.; biomolecules, 825

act.; bond character, 239 act.; chemi-

cal reactions, 281 act.; concentration

of solutions, 475 act.; electrochemical

cells, 707 act.; electron configura-

tion, 135 act.; equilibrium, changes

affecting, 593 act.; functional groups,

785 act.; gas laws, 441 act.; Gibbs free

energy equation, 515 act.; hydrocar-

bon compounds, 743 act.; hydrocar-

bons, 743 act.; ionic compounds, 205

act.; mole conversion factors, 319 act.;

periodic trends, 173 act.; properties

and changes, 69 act.; reaction rates,

559 act.; redox equations, balance, 679

act.; scientific method, 3 act.; states of

matter, 401 act.; stoichiometric calcu-

lations, 367 act.; types of graphs, 31

act.; types of radiation, 859 act.

Food: from fermentation, 847; homog-

enization, 490; measure calories in,

550 act.; preservation of, 571; test for

simple sugars in, 825 act.

Food scientist, 219

f orbitals, 154

Forces: balanced, 597; dipole-dipole,

269, 411, 412–413; dispersion, 269,

411, 412; intermolecular, 411–414

Forensic accelerant detection, 91

Forensics CHEMLABs: density, dating

coins by, 60 act.; hydrocarbon burner

gases, identify, 776 act.; identify the

damaging dumper, 698 act.; water

source, determine, 24 act.

Forensics, luminol and, 697

Formaldehyde, 796, 797

Formic acid, 634

Formulas. See Chemical formulas;

Structural formulas

Formula unit, 218

Fossil fuels: natural gas, 416, 745, 747;

petroleum, 747–748

Fractional distillation, 747–748

Fractionation, 747–748

Fractions, 964, 965–966

Francium, 84, 180 act., 194, 265, 906,

907

Franklin, Rosalind, 637

Free energy ( G system ), 546–547; calcu-

late, 547, 548 prob.; sign of, 547, 547

table

Freezing, 428

Freezing point, 428

Freezing point depression, 501–502, 502

act., 503 prob.

Frequency, 137

Fructose, 832, 833

Fuel cells, 722–723, 905

Fuel rods, nuclear reactor, 880–882

Functional groups, 785 act., 786, 787

table; amide group, 800; carbonyl

group, 796; carboxyl group, 798;

hydroxyl group, 792

Fused-ring systems, 772

Fusion, molar enthalpy (heat) of

(∆ H fus ), 530

Fusion nuclear reactions, 883–884

Fusion (phase change), 425–426, See

also Melting

GGadolinium, 921

Galactose, 832, 833

Gallium, 922, 923, 924

Galvanization, 727

Gamma radiation, 124, 861, 861 table,

862, 863, 888 table

Gamma rays, 124, 863, 864

Garlic, 815

Gases, 72, 402–410; compression and

expansion of, 72 act., 404; Dalton’s

law of partial pressures and, 408, 409

prob., 410; density of, 403; diffusion

and effusion of, 404–405; formation

of in aqueous solutions, 281 act.,

304–305, 306 prob.; gas laws. See Gas

laws; identify an unknown, 466 act.;

kinetic-molecular theory and, 402–

403; molar volume of, 452, 453 prob.;

pressure and volume relationship

(Boyle’s law), 442–443, 443 prob., 444

act.; real v. ideal, 457–459; solubility

of, 495–496, 497 prob.; temperature

and volume relationship, 441 act.

Gas grills, 375, 461

Gas laws, 442–451; Boyle’s law (pressure

and volume relationship), 442–443,

443 prob., 444 act.; Charles’s law

(temperature and volume), 441 act.,

444–445, 446 prob.; combined gas law,

449, 450 prob., 454; Gay-Lussac’s law

(temperature and pressure relation-

ship), 447, 448 prob.; ideal gas law,

454, 455 prob., 456; summary of, 451

table; temperature scales and, 451

Excess reactants Gas laws

Page 140: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1039

Index

Gasoline octane rating system, 748–749

Gas particles, 403; kinetic energy of,

403; motion of, 403; size of, 403

Gas pressure, 406–410; air pressure and,

406–407; Boyle’s law (pressure and

volume relationship), 442–443, 443

prob., 444 act.; Charles’s law (tempera-

ture and volume), 441 act., 444–445,

446 prob.; combined gas law, 449, 450

prob., 454; Dalton’s law of partial pres-

sures and, 408, 409 prob., 410; deep

sea diving and, 408 act.; Gay-Lussac’s

law (temperature and pressure rela-

tionship), 447, 448 prob.; ideal gas

law, 454, 455 prob., 456

Gas stoichiometry, 460–464; industrial

applications of, 464; volume-mass

problems, 462, 462–463 prob.; volume-

volume problems, 460–461, 461 prob.

Gay-Lussac’s law, 447, 448 prob., 451

table

Geckos, grip of, 271

Geiger counters, 885

Gemstones, 912

Geometric isomers, 766

Germanium, 181, 926–927, 930

Germanium tetrachloride, 930

GFP (green fluorescent protein), 309

Gibbs free energy ( G system ), 515 act.,

546–547, 548 prob.

Gibbs, J. Willard, 546

Glass, 929

Glucose, 532, 532 prob., 832, 833

Glutamic acid, 827 table

Glutamine, 827 table

Glycerol, 31 act., 793

Glycine, 827 table, 828

Glycogen, 834. See also Polysaccharides

Goiter, 943

Gold, 228 table, 920

Gold foil experiment, Rutherford’s, 110,

111–112, 113, 862

Gold leaf, 920

Graduated cylinder, layers of liquids in,

31 act.

Graham’s law of effusion, 404–405, 405

prob.

Graham, Thomas, 404

Grams (g), 34

Graphite, 423

Graphite golf shafts, 928

Graphs, 55–58; bar, 56; circle, 55; inter-

preting, 57–58; line, 56–57, 959–963

Gravimetric analysis, 341

Gravitation, law of universal, 16

Great Smog (London), 291

Greek philosophers, ideas on structure

of matter, 102–103, 103 table

Green fluorescent protein (GFP), 309

Ground state, 146

Ground-state electron configuration,

143 prob.

Ground-state electron configurations,

156–160; aufbau principle and,

156–157, 157 table; electron configu-

ration notation, 158–159; exceptions

to predicted, 160; Hund’s rule and,

157; noble-gas notation, 159; orbital

diagrams of, 158; Pauli exclusion

principle and, 157; problem-solving

strategy, 160

Group 1 elements (Alkali metals), 182

table, 182–184, 192, 207 table, 208,

208 table, 906, 906–909; (representa-

tive elements), 177

Group 2 elements (Alkaline earth

metals), 182, 183, 184, 207 table,

208, 208 table, 218 table, 219 table,

910–915

Group 13 elements (Boron group), 184,

207 table, 208, 208 table, 219 table,

922–925

Group 14 elements (Carbon group),

184, 207 table, 219 table, 243, 926–931

Group 15 elements (Nitrogen group),

184, 207 table, 209, 209 table, 218

table, 243, 932–935

Group 16 elements (Oxygen group),

184, 207 table, 209 table, 218 table,

243, 936–939

Group 17 elements (Halogens), 184, 207

table, 209, 209 table, 218 table, 243,

940–943

Group 18 elements (Noble gases), 180,

184, 185 table, 192, 207 table, 944–945

Groups (families), periodic table, 177;

atomic radii trends, 188, 189 prob.;

electron configuration and position

on periodic table, 183; ionic radii

trends, 191

Grove, William, 722

Guanine (G), 841

Gypsum, 490, 491, 914

HHaber-Bosch process, 290

Hahn, Otto, 111

Half-cells, 710

Half-life, 870–871, 871 table

Half-reaction method, 693–694, 694

table, 695 prob.

Half-reactions, 693

Halides, 214

Hall, Charles Martin, 730

Hall-Héroult process, 730–731

Halocarbons, 787 table, 787–789; alkyl

halides, 787; aryl halides, 788; func-

tional group, 787, 787 table; naming,

788; properties of, 789; substitution

reactions forming, 790; uses of, 789

Halogenated hydrocarbons, 940

Halogenation, 790

Halogen functional group, 787 table,

787–788

Halogen light bulbs, 942

Halogens, 180

Halogens (Group 17 elements), 184, 207

table, 209, 209 table, 218 table, 243,

940–943

Halogens, 940–943; analytical tests for,

941; applications of, 942–943; atomic

properties, 941; common reactions

involving, 940; covalent bonding in,

243; physical properties of, 940; predict

reactivity of, 294 act.; single-replace-

ment reactions involving, 294, 294 act.

Halothane, 790, 791

Hardness, as physical property, 73

Hard water, 24 act.

HD DVDs, 924

Heart stress test, 925

Heat (q), 518. See also

Thermochemistry; absorption of by

chemical reactions. See Endothermic

reactions; calorimetry and, 523–524,

525 prob., 550 act.; release of by

chemical reactions. See Exothermic

reactions; specific heat, 519–520, 521

prob., 522, 526 act.; thermochemical

systems and, 523–524; units of, 518,

518 prob.

Heating and cooling specialist, 527

Heating curves, 531 act.

Heat of combustion (∆ H comb ), 529,

529 table

Heat of reaction (∆ H rxn ), 527–528

Heat of solution, 475 act., 492

Heat-pack reaction, 527, 542

Heat-treated steel, 227 act.

Heavy hydrogen (deuterium), 904

Heisenberg uncertainty principle, 151

Helium, 158 table, 159, 183, 185 table,

192, 944, 945

Hemoglobin, 623, 830

Henry’s law, 495–496, 497 prob.

Heptane, 751, 751 table

Héroult, Paul L. T., 730

Hertz (Hz), 137

Hess’s law, 534–536, 536 prob.

Heterogeneous catalysts, 573

Heterogeneous equilibrium, 602, 603

prob.

Heterogeneous mixtures, 81, 87,

Gasoline octane rating system Heterogeneous mixtures

Page 141: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1040 Index

Index

476–478; colloids, 477, 477 table;

separating components of, 82–83;

suspensions, 476

Hexagonal unit cells, 421 table, 422 act.

Hexane, 751 table

HFCs (hydrofluorocarbons), 788

Hill, Julian, 18

HIV, 389

Homogeneous catalysts, 573

Homogeneous equilibrium, 600, 601

prob.

Homogeneous mixtures, 81, 82–83, 87,

478–479

Homogenization, 490

Homologous series, 751

Hope Diamond, 40

HOPG, atomic distances in, 113 act.

Hormones, 831, 839

Household items, acidity of, 633 act.

How It Works: bioluminescence, 309;

flexible-fuel vehicles (FFV), 549;

gecko grip, 271; mass spectrometer,

125; methane digester, 775; pace-

maker, 733

Hubble Space Telescope, 912

Human body, elements in, 84, 195

Human immunodeficiency virus (HIV),

389

Hund’s rule, 157

Hybridization, 262

Hybrid orbitals, 262

Hydrates, 351–354; formulas for, 351

table, 352, 353 prob., 356 act.; naming,

351; uses for, 354

Hydration (solvation in water), 489

Hydration reactions, 804, 804 table

Hydrocarbons, 291, 745–749. See also

specific types; alkanes. see Alkanes;

alkenes. See Alkenes; alkynes, 763–764;

aromatic. See Aromatic compounds;

burner gas analysis, 776 act.; chirality

of, 767; Foldable, 743 act.; halogenated,

940; isomers of, 765–766, 768–769;

models of, 743 act., 746; refinement of

petroleum, 747–748; saturated, 746;

substituted. See Substituted hydrocar-

bons; unsaturated, 746

Hydrofluorocarbons (HFCs), 788

Hydrogen, 904–905; abundance of, 84;

atomic properties, 153–155, 158 table,

904; Bohr model of, 146–148, 147

table; emission spectrum, 144, 145,

147–148, 150 act.; in human body,

195; isotopes of, 904; physical proper-

ties, 904; single-replacement reactions

involving, 293; in stars, 905

Hydrogenated fats, 805

Hydrogenation, 767, 836

Hydrogenation reactions, 804 table,

804–805, 805 act.

Hydrogen bonds, 411, 413–414

Hydrogen carbonate, 221 table

Hydrogen cyanide, 647

Hydrogen fluoride, 244, 244 prob., 639

Hydrogen fuel cells, 905

Hydrogen peroxide, 89

Hydrometers, 37

Hydronium ions, 636, 652; calculate

concentration of from pH, 655 prob.;

calculate concentrations from, 651,

651 prob.; calculate pH from concen-

tration of, 653 prob., 654 prob.

Hydroxide ions, 221 table, 636, 652;

calculate concentration of from pH,

655 prob.; calculate concentrations

from, 651, 651 prob.; calculate pOH

from concentration of, 654 prob.

Hydroxyl group, 787 table, 792, 816 act.

Hyperbaric oxygen therapy, 465

Hyperthermia, 583

Hypochlorite, 221 table

Hypothermia, 583

Hypotheses, 13

IIce, 420, 425–426

Ideal gas constant (R), 454, 969 table

Ideal gases, real versus, 457–459

Ideal gas law, 454, 455 prob., 456;

density and, 456; derive other laws

from, 458; exceptions to, 458–459;

fire extinguishers and, 457 act.; molar

mass and, 456

Immiscible, 479

Independent variables, 14, 56

Indicators, acid-base, 658, 663, 664

Indium, 922, 923, 925

Indium-tin oxide, 925

Induced fit, 830

Induced transmutation, 875, 882; equa-

tions representing, 876 prob.; trans-

uranium elements, 876

Industrial chemistry, 11 table, 341, 464

Infrared (Paschen) series, 147, 148, 150

act.

Inhibitors, 571

Initial rates, method of, 576, 577 prob.

Inner transition metals, 180, 185, 916,

917

Inorganic chemistry, 11 table

Insoluble, 479

Instantaneous reaction rates, 578–579,

579 prob.

Insulin, 831

Intensive properties, 73, 77

Intermediates, 580

Intermolecular forces, 411–414; cova-

lent compounds and, 269–270;

dipole-dipole, 411, 412–413; disper-

sion, 411, 412; evaporation and, 432

act.; grip of a gecko and, 271; hydro-

gen bonds, 411, 413–414

International Union of Pure and

Applied Chemistry (IUPAC), naming

conventions. See Naming conventions

Interpolation, 57, 963

Interstitial alloys, 228

In the Field: archaeologist, 891; arson

investigator, 91; art restorer, 23;

crime-scene investigator, 697; envi-

ronmental chemist, 505; molecular

paleontologist, 849

Intramolecular forces, comparison of,

411 table

Inverse relationships, 961

Iodate, 221 table

Iodine, 86, 940, 941, 943

Iodine-131, 887

Iodine deficiency, 943

Ion concentration: from K sp , 617 prob.,

618–619; from pH, 655, 655 prob.

Ionic bonds, 210; electronegativity and,

266; energy in, 216–217, 217 table

Ionic compounds, 210–215; in aqueous

solutions, 300; binary, 210; formation

of, 211–212, 212 prob., 216, 230 act.;

formulas for, 218–219, 220 prob., 221,

221 prob., 222 prob.; lattice energies

of, 216–217, 217 table; melting point

of, 242 act.; milestones in understand-

ing, 212–213; naming, 222, 223–224;

oxidation number of, 219; physical

properties, 212, 214–215, 230 act.;

physical structure, 212–214; poly-

atomic. See Polyatomic ions; solvation

of aqueous solutions of, 490; study

organizer, 205 act.

Ionic crystals, 215

Ionic equations, 301, 302 prob., 304

prob.; complete, 301; for reactions

forming gases, 304–305, 306 prob.;

for reactions forming water, 303, 304

prob.; net, 301

Ionic liquids, 229

Ionic radii, periodic table trends, 189–

191, 189–191

Ionic solids, 422, 422 table, 423

Ionization constants. See Acid ioniza-

tion constant; base ionization

constant

Ionization energy, 191–194; chemical

bonds and, 207; periodic table trends,

193

Hexagonal unit cells Ionization energy

Page 142: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1041

Index

Ionizing radiation, 885, 886; biological

effects of, 888–890; medical uses of,

886–887

Ion product constant ( Q sp ), 618–619,

619 prob.

Ion product constant for water, 650–

651, 651 prob.

Ions, 189; anion formation, 209; cation

formation, 207; formula for mona-

tomic, 218–219; ionic radii periodic

table trends, 189–191; metal, 208;

monatomic. See Monatomic ions;

naming, 222–223; oxidation number

of, 219; polyatomic, 221, 222 prob.;

pseudo-noble gas configuration, 208;

stability of, 240; transition metal, 208

Iron: in acid mine waste, 920; Earth’s

core and, 919; as paint pigment, 919;

redox reactions oxidizing, 693 table;

rust formation, 74, 77, 679 act.

Iron oxide. See Rusting

Isobutane, 752

Isomers, 765; cis-, 766; geometric, 766;

optical, 768–769; stereoisomers, 766;

structural, 765; trans-, 766; trans-fatty

acid, 767

Isopropyl alcohol, 432 act.

Isopropyl group, 753 table

Isotopes, 117, 118 prob.. See also

Radioactivity; abundance of, 117,

120; atomic mass and, 117, 118 act.,

119–120, 121 prob., 126 act.; mass of,

117; modeling, 120 act.; notation for,

117; radioactive. See Radioisotopes

IUPAC naming conventions. See

Naming conventions

JJames Webb Space Telescope (JWST), 912

Jin, Deborah S., 417

Joule (J), 142, 518

KKekule, Friedrich August, 771

Kelvin (K), 35, 451

Kelvin scale, 35, 451

Ketones, 787 table, 797, 797 table

Kilns, 461

Kilocalorie (kcal), 518

Kilogram (kg), 34

Kilometer (km), 33

Kinetic energy (KE), 516–517; kinetic-

molecular theory and, 402, 403, 517;

voltaic cells and, 710

Kinetic-molecular theory, 402–403;

assumptions of, 403; compression and

expansion of gases and, 404; density of

gases and, 403; diffusion and effusion

of gases and, 404–405; liquids and, 415

Knocking, 748

Krypton, 185 table, 944, 945

Kwolek, Stephanie, 491

LLab activities. See CHEMLABs;

Data Analysis Labs; Launch Labs;

MiniLabs; Problem-Solving Labs

Laboratory safety, 18, 19 table

Lactic acid fermentation, 848

Lactose, 833

Lanthanide series, 180, 185, 916

Large Hadron Collider, 111

Laser scissors, 163

Lattice energy, 216–217, 217 table

Launch Labs: arrange items, 173 act.;

atomic structure, 135 act.; chemical

change, evidence of, 281 act.; chemi-

cal change, observe, 69 act.; chemical

cold pack, 515 act.; chemical reaction,

observe, 367 act.; covalent bond-

ing (super ball properties), 239 act.;

electrical conductivity of solutions,

205 act.; electric charge, observe,

101 act.; equilibrium point, 593 act.;

hydrocarbons, model, 743 act.; lemon

battery, 707 act.; liquids, layering of

(density), 31; liquids, properties of,

401 act.; mole conversion factors,

319 act.; nuclear chain reactions, 859

act.; reaction rates, speeding, 559 act.;

rust formation, 679 act.; slime, make,

785 act.; solution formation, energy

change and, 475 act.; sugars, test for

simple, 825 act.; temperature and gas

volume (Charles’s Law), 441 act.; vis-

cosity of liquids, 401 act.; Where is it?

(conservation of matter), 3 act.

Lavoisier, Antoine, 79, 174, 174 table,

184, 290

Law, 16

Law of chemical equilibrium, 599–600

Law of conservation of energy, 517

Law of conservation of mass, 77, 78

prob., 79; balancing equations and,

285, 288; Dalton’s experimental evi-

dence of, 105; molar mass and, 335;

stoichiometry and, 368

Law of definite proportions, 87–88

Law of multiple proportions, 89–90

Law of octaves, 175

Law of universal gravitation, 16

Lawrencium, 921

LCD panels, 925

Lead, 229, 926–927, 930; poisoning, 229

Lead-acid storage batteries, 720–721,

930

Lead shot, 228 table

Le Châtelier, Henri-Louis, 607

Le Châtelier’s principle, 607; chemical

equilibrium and, 606–611; common

ion effect and, 620–621; ion-product

of water and, 650, 650 prob.; molar

solubility and, 624 act.

Lecithin, 431

Lemon battery, 707 act.

Length, 33, 33 table

LEO GER, 681

Lewis, G. N., 161, 212, 641

Lewis model, 641–643, 642 table

Lewis structures, 242, 244 prob., 253–

260. See also Electron-dot structures;

covalent compound with multiple

bond, 256 prob.; covalent compound

with single bond, 255 prob.; modeling,

272 act.; octet rule exceptions and,

258–259, 260 prob.; polyatomic ions,

256, 257 prob.; resonance and, 258

Light: continuous spectrum of, 138;

dual nature of, 143; electromagnetic

spectrum, 138–139; particle nature

of, 141–143; speed of (c), 137; visible

spectrum of, 139; wave nature of,

137–139, 140 prob., 143

“Like dissolves like”, 489

Limestone, 635, 643

Limiting reactants, 379–381; calculat-

ing product with, 380–381, 382–383

prob.; determining, 380

Linear molecular shape, 261, 263 table

Line graphs, 56–57, 58, 959–963

Line, slope of, 57, 962

Line spectra. See Emission spectra

Lipid bilayer, 838

Lipids, 13 act., 830, 835–839; fatty

acids, 835–836, 837; phospholipids,

838; saponification of, 837, 837 act.;

steroids, 839; triglycerides, 836–837;

waxes, 838

Liquids, 71, 415–419; adhesion and

cohesion of, 419; attractive forces in,

417; capillary action, 419; compres-

sion of, 415; density of, 31 act., 415;

evaporation of, 426–427, 432 act.; flu-

idity of, 416; properties of, compare,

401 act.; shape and size of particles in,

417; surface tension, 418–419; viscos-

ity of, 401 act., 417, 418

Liter (L), 35

Lithium, 136, 158 table, 161 table, 177,

226 table, 906, 907, 913

Lithium batteries, 721–722, 908

Lithium batteriesIonizing radiation

Page 143: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1042 Index

Index

Litmus paper, 633 act., 635, 658

Logarithms, 966–967

London forces. See Dispersion forces

London, Fritz, 412

Lowry, Thomas, 638

LP (liquefied propane) gas, 750

Luciferin, 309

Luminol, 697

Lunar missions, oxygen in moon rocks,

387 act.

Lyman (ultraviolet) series, 147, 148,

150 act.

Lysine, 827 table

MMagnesium, 159 table, 177, 910–911,

912, 913

Magnesium oxide, 210, 217 table

Magnetic resonance imaging, 921

Malleability, 226

Manganese, 918, 920

Manhattan Project, 882

Manometers, 407

Mass, 9–10; determine from density

and volume, 38 prob.; identify an

unknown by, 50 act.; law of conserva-

tion of, 77, 78 prob., 79, 105; mass-

to-atom conversions, 329–330, 330

prob.; mass-to-mole conversions, 329

prob.; mass-to-mole conversions for

compounds, 337, 337 prob.; mass-to-

moles-to-particles conversions, 338,

338–339 prob.; molar. See Molar mass;

mole-to-mass conversions, 328 prob.;

SI base unit for, 33 table, 34; volume-

mass gas stoichiometry, 462, 462–463

prob.; weight v., 9–10

Mass defect, 877

Mass number, 117, 118 prob.

Mass spectrometry, 125, 327

Mass-to-mass stoichiometric conver-

sions, 374, 377, 377 prob.

Material Safety Data Sheets (MSDS), 59

Materials scientist. See Careers in

Chemistry; In the Field

Math Handbook, 946–967; algebraic

equations, 954–955, 955 prob.; anti-

logarithms, 967; dimensional analysis,

956 prob.; fractions, 964, 965–966;

line graphs, 959–963; logarithms,

966–967; percents, 965; ratios, 964;

scientific notation, 946–948; sig-

nificant figures, 949–950, 951 prob.;

square and cube roots, 949; unit con-

version, 957–958, 958 prob.

Matter: categories of, 87; characteristics

of, 9–10; chemical changes in, 69 act.,

77; chemical properties of, 74; Greek

philosophers’ theories of, 102–103;

mixtures of. See Mixtures; physical

changes in, 76–77; physical properties

of, 73; properties of, observe, 74–75;

pure substances. See Pure substances;

states of. See States of matter; study of

chemistry and, 4

Maxwell, James, 402

Measurement, 295; accuracy of, 47–48;

precision of, 47–48; significant figures

and, 50–51; units of, 32–37

Medicinal chemist, 342

Meitner, Lise, 111

Melting, 425–426, 530

Melting point, 77, 426

Melting points: of alkanes, 758; bond

type and, 242 act.; of covalent com-

pounds, 270; of metals, 226, 226 table;

as physical property, 73

Mendeleev, Dmitri, 85, 175, 176 table,

184

Mercury, 73 table, 226

Mercury(II) oxide, 79

Metabolism, 844–848; anabolism,

844–845; ATP and, 845; catabolism,

844–845; cellular respiration, 846;

fermentation, 847–848; photosynthe-

sis, 846

Metal alloys, 227–228

Metal carbonates, 635

Metal ions: formation of, 208; mona-

tomic, 218, 219, 219 table

Metallic bonds, 225

Metallic hydroxids, 648

Metallic solids, 422, 422 table, 423

Metalloids, 181, 196 act.

Metallurgist, 423

Metals, 177. See also Alkali metals;

Alkaline earth metals; Inner transi-

tion metals; Transition metals; acid-

base reactions and, 635; activities of,

310 act.; boiling points, 226, 226 table;

bonding in, 225; ductility of, 177, 226;

durability of, 226; electrical conduc-

tivity of, 177, 226; fireworks and, 913;

hardness and strength of, 226; mal-

leability of, 177, 226; melting points,

226, 226 table; periodic table position,

177; properties of, 177, 196 act., 226,

226 table; purification of by electroly-

sis, 731–732; reactivity of, 293–294,

310 act.; single-replacement reactions

involving, 293–294; specific heat of,

526 act.; thermal conductivity of, 226

Meteorologist, 447

Meter (m), 33, 33 table

Methanal, 796

Methane, 243, 244, 245, 291, 745, 747,

750, 751, 751 table

Methane digester, 775

Methanol, 793, 816 act.

Method of initial rates, 576, 577 prob.

Methylbenzene, 772

Methyl chloroform, 20

Methyl group, 753 table

Methyl red, 662

Meyer, Lothar, 175, 176 table, 184

Microbes, electric current from, 724 act.

Microchips, 919

Microwaves, 137, 140 prob.

Midgley, Thomas Jr., 7

Milligrams (mg), 34

Millikan, Robert, 109

Milliliters (ml), 33 table, 36

Millimeter (mm), 33, 33 table

Mineralogists, 214

Minerals, 383; classification of, 214;

crystal lattice structure, 214

Mineral supplements, 220

MiniLabs. See also CHEMLABs; Data

Analysis Labs; Problem-Solving Labs;

acid strengths, compare, 648 act.;

bond type and melting point, 242

act.; chemical equilibrium, stress and,

611 act.; corrosion, 726 act.; crystal

unit cells, model, 422 act.; density

of unknown objects, 39 act.; esters,

recognize, 800 act.; ethyne, synthesize

and observe, 762 act.; flame test, 144

act.; freezing point depression, 502

act.; halogens, predict reactivity of,

294 act.; heat-treated steel, proper-

ties of, 227 act.; isotopes, model, 120

act.; molar volume and mass (fire

extinguisher), 457 act.; observation

skills, develop, 13 act.; paper chroma-

tography, 82 act.; percent composition

of chewing gum, 342 act.; periodic

trends, model, 193 act.; precipitate-

forming reaction, observe, 301 act.;

radioactive decay, model, 873 act.;

reaction rate and temperature, 571

act.; saponification (soap making),

837 act.; specific heat, 526 act.; stoi-

chiometry of baking soda decomposi-

tion, 378 act.; tarnish removal (redox

reaction), 683 act.

Miscible, 479

Mixtures, 80–83, 87; heterogeneous, 81,

476–478; homogeneous, 81, 478–479;

separate components of, 80, 82 act.,

82–83

Mobile phase, chromatography, 83

Model, 10, 15

Molal boiling point elevation constant

( K b ), 500, 500 table, 976 table

Litmus paper Molal boiling point elevation constant

Page 144: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1043

Index

Molal freezing point elevation constant

( K f ), 502, 502 table, 976 table

Molality (m), 480 table, 487, 487 prob.

Molar calculations, history in a glass of

water and, 355

Molar enthalpy (heat) of condensation,

530

Molar enthalpy (heat) of fusion, 530

Molar enthalpy (heat) of vaporization,

530, 531 act.

Molarity (M), 480 table, 482, 483 prob.;

from titration, 663, 664 prob., 670 act.

Molar mass, 326–332; atom-to-mass

conversions, 331 prob.; of compounds,

335, 335 prob.; effusion rate and, 404,

405 prob.; ideal gas law and, 456;

mass-to-atom conversions, 329–330,

330 prob.; mass-to-mole conversions,

329 prob.; mole-to-mass conversions,

327–328, 328 prob.; nuclear model of

mass and, 326 act.

Molar solubility, 615–617, 616 prob.,

621, 624 act.

Molar solutions, preparation of, 484,

485, 486 prob.

Molar volume, 452, 453 prob., 969 table

Mole (mol), 321–324; chemical for-

mulas and, 333–334, 334–335 prob.;

conversion factors, 319 act.; convert

particles to, 323, 323 prob., 324 prob.;

convert to particles, 322; as count-

ing unit, 319 act., 320; mass-to-mole

conversions, 329 prob.; mass-to-mole

conversions for compounds, 337, 337

prob.; mass to moles to particles con-

versions, 338, 338–339 prob.; molar

mass and, 326–332; mole-to-mass

conversions, 327–328, 327–328, 328

prob.; mole-to-mass conversions for

compounds, 336, 336 prob.

Molecular compounds: in aqueous solu-

tions, 299; formation of, 241; formulas

from names of, 251; Lewis structures

for, 253–260, 255 prob., 256 prob.,

257 prob., 258 prob., 260 prob.; nam-

ing, 248–251, 249 prob., 252; shape of

(VSEPR model), 261–262, 263 table,

264 prob., 272 act.; solvation of aque-

ous solutions of, 491

Molecular formulas, 253, 346–347; of

organic compounds, 746; from per-

cent composition, 346–347, 348–349

prob.

Molecular manufacturing, 107

Molecular paleontologist, 849

Molecular shape, 261–262, 263 table,

264 prob., 267–268

Molecular solids, 422, 422 table

Molecules, 241; diatomic, 241; shape

of, 261–262, 263 table, 264 prob.,

267–268

Mole fraction, 480 table, 488, 488 prob.

Mole ratios, 371–372, 390 act.

Mole-to-mass stoichiometric conver-

sions, 374, 376, 376 prob.

Mole-to-mole stoichiometric conver-

sions, 373–374, 375 prob.

Monatomic ions, 218; formulas for,

218–219; oxidation number of, 219

Monoclinic unit cells, 421 table, 422 act.

Monomers, 810

Monoprotic acids, 640, 641 table

Monosaccharides, 825 act., 832–833

Montreal Protocol, 20

Moon rocks, oxygen in, 387 act.

Moseley, Henry, 115, 176, 176 table, 184

Mothballs, 428

Motor oil, viscosity of, 417, 418

Multidrug therapy, 389

Multiple covalent bonds, 245–246

Multiplication, 54, 54 prob.

NNaming conventions: acids, 250–251,

250–251, 252; alcohols, 793; alde-

hydes, 796; alkenes, 760, 761 prob.;

alkynes, 764; amides, 800; amines, 795;

aromatic compounds, 772–773, 773

prob.; binary molecular compounds,

248–250, 249 prob., 252; branched-

chain alkanes, 752–753, 754–755 prob.;

carboxylic acids, 798; cycloalkanes,

756, 756–757 prob.; esters, 799; halo-

carbons, 788; hydrates, 351; ionic

compounds, 223–224; ions, 222–223;

ketones, 797; oxyanions, 222 table,

222–223; straight-chain alkanes, 751

Nanoparticles, 216 act.

Nanotechnology, 107

Nanotubes, 928

Naphthalene, 772

National Oceanic and Atmospheric

Administration (NOAA), 20, 21 act.

Natural gas, 416, 745, 747

Negatively charged ions. See Anions

Neon, 143, 158 table, 161 table, 185

table, 944, 945

Net ionic equations, 301, 302 prob., 304

prob.

Net ionic redox equations, balancing,

691, 692 prob.

Network solids, 270

Neutralization equations, 659–660

Neutralization reactions, 659–660

Neutral solutions, 636

Neutron activation analysis, 886, 891

Neutrons, 113, 114 table, 119, 969 table

Neutron-to-proton ratio, nuclear stabil-

ity and, 865, 866

Newlands, John, 175, 176 table

Newton, Sir Isaac, 16

NiCad batteries, 720

Nickel, 919

Night-vision lenses, 930

Nitrate, 221 table

Nitrite, 221 table

Nitrogen, 158 table, 161 table, 195, 932,

933, 934

Nitrogen cryotherapy, 934

Nitrogen-fixation, 462, 934

Nitrogenous bases, 841, 843

Noble gases (Group 18), 180, 183, 184,

185 table, 207, 944–945

Noble-gas notation, 159

Nonane, 751 table

Nonmetals, 180; ions of, 209; periodic

table position, 177; properties of,

196 act.

Nonpolar covalent bonds, 266

Nonpolar molecules, 267–268, 269

Nuclear atomic model, 112–113, 136

Nuclear chain reactions. See Chain

reactions

Nuclear equations, 123, 869, 869 prob.

Nuclear fission, 878–880; chain reac-

tions and, 879–880; nuclear reactors

and, 880–882

Nuclear fusion, 883–884

Nuclear power plants, 878, 880–882

Nuclear reactions, 122; balanced equa-

tions representing, 863, 869, 869

prob.; chain reactions, 859 act., 879–

880; chemical reactions vs., 860 table;

induced transmutation, 875–876,

876 prob.; mass defect and binding

energy, 877–878; milestones in under-

standing, 882–883; nuclear fission,

878–880; nuclear fusion, 883–884;

radioactive decay series, 870; thermo-

nuclear reactions, 883

Nuclear reactors, 878, 880–882

Nuclear stability, 124, 865–866

Nuclear waste, storage of, 882

Nucleic acids, 636, 840–843; DNA,

841–842, 842 act.; RNA, 843

Nucleons, 865

Nucleotides, 840

Nucleus (atomic), 112; discovery of,

112; nuclear model of mass and, 326

act.; size of, 112

Nutritional calories, 518

Nylon, 18, 594, 811

Molal freezing point elevation constant Nylon

Page 145: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1044 Index

Index

OObservation, 13, 13 act.

Oceans: elements in, 901; sequestration

of carbon dioxide in, 505

Octahedral molecular shape, 261, 263

table

Octane, 751, 751 table

Octane rating system, 748–749

Octet rule, 193, 240; exceptions to,

258–259, 260 prob.

Odor, 73, 283

Oil drop experiment, Milikan’s, 109

Oil of wintergreen, 800 act.

Oleic acid, 835

Optical isomers, 768–769

Optical rotation, 769

Orbital diagrams, 158, 158 table, 159

table

Orbitals, 152, 154, 262

Order of operations, algebraic, 954–955,

955 prob.

Ores, 731–732

Organic chemistry, 11 table, 745

Organic compounds, 744–745. See also

Hydrocarbons; carbon-carbon bonds

in, 746; models of, 746; reactions

forming. See Organic reactions

Organic reactions: addition reactions,

804–805; condensation reactions, 801;

dehydration reactions, 803; dehydro-

genation reaction, 803; elimination

reactions, 802; oxidation reduction

reactions, 806–807; products of, pre-

dict, 807–808; substitution reactions,

790–791

Organosilicon oxide, 239 act.

Orthorhombic unit cell, 421 table, 422

act.

Osmosis, 504

Osmotic pressure, 504

Overall equations, 307

Oxalic acid, 798

Oxidation, 681

Oxidation number, 219, 682; determine,

686, 686 table, 687 prob.; monatomic

ion formulas and, 219; in redox reac-

tions, 688; of various elements, 688

table

Oxidation-number method, 689, 689

table, 690 prob.

Oxidation reduction reactions, 680. See

also Redox reactions

Oxidizing agent, 683

Oxyacids, 250–251, 252

Oxyanions, 222, 223

Oxygen: abundance of, 84; analytical

tests for, 937; atomic properties, 937;

common reactions involving, 936–

937; diatomic, 241; electron configu-

ration and orbital diagram, 158 table;

electron-dot structure, 161 table; in

human body, 195, 623; photosynthesis

and, 846, 912, 938; physical proper-

ties, 73 table, 936

Oxygen group (group 16), 184, 207

table, 209 table, 218 table, 243,

936–939

Ozone, 5, 6, 21 act., 938

Ozone depletion, 20–21

Ozone hole, 7, 20–21, 21 act.

Ozone layer, 5–8, 938; chlorofluorocar-

bons (CFCs) and, 7–8, 20; formation of

ozone in, 6; thinning of, 7, 20, 21 act.

PPA-457 anti-HIV drug, 389

Pacemakers, 733

Pain receptors, temperature and, 815

Painting restoration, 23

Paint pigments, 919

Paleontologist, 849

Papain, 829

Paper chromatography, 82 act., 83, 269

act.

Paraffin, 270

Paramagnetism, 916, 917

Parent chain, 752

Partial pressure, Dalton’s law of, 408,

409 prob., 410

Particle accelerators, 875

Particle model of light, 141–143

Particles: convert moles to, 322, 323

prob.; convert to moles, 323, 324

prob.; counting, 320–321; mass-to-

moles-to-particles conversions, 338,

338–339 prob.; representative, 321

Pascal (Pa), 407

Paschen (infrared) series, 147, 148, 150

act.

Pasteur, Louis, 767

Pauli exclusion principle, 157

Pauling, Linus, 194, 771

Paulings, 194

Pauli, Wolfgang, 157

p-Block elements, 184

Penetrating power, 864; of alpha par-

ticles, 862; of beta particles, 863; of

X rays, 864

Penicillin, 18

Pennies: dating by density, 60 act.;

model isotopes with, 120 act.

Pentane, 751, 751 table

Peptide bond, 827–828

Peptides, 828

Percent by mass concentration ratio,

87–88, 480 table

Percent by volume concentration ratio,

480 table, 482, 482 prob.

Percent composition, 341–342; from

chemical formula, 342, 343 prob.;

empirical formula from, 344, 345

prob.; from experimental data,

341–342, 342 act.; molecular formula

from, 346–347, 348–349 prob.

Percent error, 48–49, 49 prob.

Percents, 965; as conversion factors, 44

Percent yield, 386, 386 prob., 388

Perchlorate, 221 table

Perfumes, 770

Periodic law, 176

Periodic table of the elements, 85, 173

act., 174–177, 178–179, 180–181;

atomic radii trends, 187–188, 189

prob.; blocks on, 183–185; boxes on,

177; electron configuration of ele-

ments and, 182–185, 186 prob.; elec-

tronegativity trends, 194, 265; groups

(families), 177; history of develop-

ment of, 174–177, 176 table, 184–185;

ionic radii trends, 189–191; ionization

energy trends, 193; model periodic

trends, 193 act.; model trends, 173

act.; nonmetals, 180; periods (rows),

177, 182; predict element properties

from, 180 act.

Periods, periodic table, 85, 177; atomic

radii trends, 188, 189 prob.; electron

configuration, 182 table; ionic radii

trends, 190; ionization energies, 192

table; valence electrons and, 182

Permaganate, 221 table

Perspiration, 426

Petroleum, 747–749, 790

Petroleum technician, 748

PET scans, 888

Pewter, 228 table

pH, 652, 653; acid ionization constant

( K a ) from, 656, 657 prob.; of familiar

substances, 652; of household items,

633 act.; ion concentration from, 655,

655 prob.; from ion concentrations,

653 prob., 654 prob.; measurement of,

633 act., 635, 658

Pharmacist, 381

Pharmacy technician, 483

Phase changes, 76–77, 425–430; boiling,

427; condensation, 428; deposition,

429; evaporation, 426–427, 432 act.;

freezing, 428; melting, 425–426; phase

diagrams and, 429–430; six possible

transitions, 425; sublimation, 428;

Observation Phase changes

Page 146: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1045

Index

thermochemical equations for, 530–

531, 531 act.; vaporization, 426–427

Phase diagrams, 429–430

Phenanthrene, 772

Phenolthphalein, 658, 662

Phenylalanine, 827 table, 828

pH meters, 637, 658

Phosphate ion structure, 257 prob.

Phosphates, 250

Phospholipases, 838

Phospholipids, 838

Phosphoric acid, 634

Phosphors, 180, 886

Phosphorus, 159 table, 932, 933, 934

Phosphorus trihydride, 264 prob.

Photocopies, 939

Photoelectric effect, 142–143

Photoelectrons. See Electrons

Photons, 143, 143 prob.

Photosynthesis, 846, 912, 938

Photovoltaic cells, 142, 522

pH paper, 633 act., 635, 658

pH scale, 636

Physical changes, 76–77

Physical chemistry, 11 table

Physical constants, 969 table

Physical properties, 73; of common

substances, 73 table; extensive, 73;

intensive, 73, 77; mineral identifica-

tion by, 73; observe, 74–75

Pi bond, 245–246

Pie charts, 55

Planck, Max, 141–142

Planck’s constant, 142, 969 table

Plants: hydrogen cyanide in, 647; nitro-

gen-fixation, 462, 934; photosynthe-

sis, 846, 912, 938; waxes, 838

Plasma, 71, 417

Plastics, 789, 802, 810–811, 814

Plastic viscosity, 431

Platinum, 918

Plum pudding model, 110

pOH, 652, 653, 654 prob.

Polar covalent bonds, 266, 267–268

Polarized light, 769

Polar molecules, 267–268; chromato-

grams and, 269 act.; ideal gas law and,

459; shape of, 267–268; solubility of,

268

Polonium, 882, 936, 937

Polyacrylonitrile, 812 table

Polyatomic ions, 221, 970 table;

common, 221 table; formulas for, 221,

222 prob.; Lewis structures, 256, 257

prob.; naming, 222–223

Polycarbonate, 809

Polycyclic aromatic hydrocarbons

(PAHs), 807

Polyethylene, 762, 810, 811

Polyethylene terephthalate (PET), 810,

812 table

Polymer chemist, 813

Polymer chemistry, 11 table

Polymerization reactions, 810–811

Polymers, 809–814; antimicrobial

properties of, 216 act.; common, 812

table; milestones in understanding,

810–811; properties of, 813; reactions

forming, 810–811; recycling of, 814;

synthetic, 809

Polymethyl methacrylate, 812 table

Polypeptides, 828

Polyphenols, 662

Polypropylene, 812 table

Polyprotic acids, 640–641, 641 table

Polysaccharides, 833–834

Polyurethane, 812 table

Polyvinyl chloride (PVC), 812 table

Polyvinylidene chloride, 812 table

Popcorn, 466 act.

p orbitals, 154

Positive ions. See Cations

Positron, 868

Positron emission, 868, 868 table, 888

Positron emission transaxial tomogra-

phy (PET), 888

Potassium, 86, 117, 136, 906, 907

Potential energy, 516–517

Potter, 682

Pottery kilns, 461

Practice Problems: acid-metal reactions,

635 prob.; acids, naming, 251 prob.;

aromatic compounds, naming, 773

prob.; atomic mass, 121 prob.; atomic

number, 116 prob., 118 prob.; atomic

radii trends, 189 prob.; atoms-to-

mass conversions, 331 prob.; average

reaction rates, 563 prob.; balanced

chemical equations, interpret, 371

prob.; binary molecular compounds,

naming, 249 prob.; Boyle’s law (pres-

sure and volume relationship),

443 prob.; branched-chain alkanes,

naming, 755 prob.; branched-chain

alkenes, naming, 761 prob.; calorim-

etry data, 525 prob.; Charles’s law,

446 prob.; chemical equations, write,

287 prob.; chemical reactions, clas-

sify, 291 prob.; combined gas law,

450 prob.; conjugate acid-base pairs,

640 prob.; cycloalkanes, naming, 757

prob.; decomposition reactions, 292

prob.; dilute stock solutions, 486 prob.;

double-replacement reactions, 297

prob.; electron configuration and the

periodic table, 186 prob.; electron-

dot structures, 162 prob.; empirical

formula from mass data, 350 prob.;

empirical formula from percent com-

position, 346 prob.; energy released

by reaction, 532 prob.; energy units,

convert, 519 prob.; equilibrium con-

centrations, 613 prob.; equilibrium

constant expressions, 601 prob., 603

prob.; equilibrium constants, value of,

605 prob.; expanded octets, 260 prob.;

formulas from names of molecular

compounds, 251 prob.; freezing and

boiling point depressions, 503 prob.;

gas-forming reactions, 306 prob.;

Gay-Lussac’s law, 448 prob.; Graham’s

law of effusion, 405 prob.; ground-

state electron configuration, 160

prob.; half-cell potentials, 716 prob.;

half-reaction method, 695 prob.; halo-

carbons, naming, 788 prob.; Henry’s

law, 497 prob.; Hess’s law, 537 prob.;

hydrate, determine formula for, 353

prob.; ideal gas law, 455 prob.; induced

transmutation, 876 prob.; instanta-

neous reaction rates, 579 prob.; ion

concentrations, 617 prob.; ion con-

centrations from pH, 655 prob.; ionic

compound formation, 212 prob.; ionic

compounds, formulas for, 221 prob.,

222 prob.; ionic compounds, nam-

ing, 223 prob.; ionization constant of

water, 651 prob.; ionization equations

and base ionization constants, 649

prob.; isotopes, amount of remain-

ing, 872 prob.; law of conservation of

mass, 78 prob.; law of definite pro-

portions, 88 prob.; Lewis structures,

244 prob., 255 prob., 256 prob., 257

prob., 258 prob., 260 prob.; limiting

reactant, determine, 383 prob.; mass

number, 118 prob.; mass-to-mass

stoichiometry, 377 prob.; mass-to-

mole conversions, 329 prob.; mass-

to-mole conversions for compounds,

337 prob.; mass-to-moles-to-particles

conversions, 339 prob.; molality, 487

prob.; molarity, 483 prob.; molarity

from titration data, 664 prob.; molar

mass and, 335 prob.; molar solubility,

616 prob.; molar solutions, 484 prob.;

molar volume, 453 prob.; molecular

shape, 264 prob.; mole fraction,

488 prob.; mole ratios, 372 prob.;

mole relationships from a chemical

formula, 335 prob.; moles, convert

to particles, 323 prob.; mole-to-mass

conversions, 328 prob.; mole-to-mass

conversions for compounds, 336

Phase diagrams Practice Problems

Page 147: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1046 Index

Index

prob.; mole-to-mass stoichiometry,

376 prob.; mole-to-mole stoichiom-

etry, 375 prob.; nuclear equations, bal-

ancing, 869 prob.; oxidation number,

687 prob.; oxidation-number method,

690 prob., 692 prob.; oxidation-reduc-

tion reactions, 685 prob.; partial

pressure of a gas, 409 prob.; particles,

convert to moles, 324 prob.; percent

by mass, 481 prob.; percent by vol-

ume, 482 prob.; percent composition,

344 prob.; percent yield, 387 prob.;

pH, acid dissociation constant from,

657 prob.; pH from [ H + ], 653 prob.;

photon, energy of, 143 prob.; pOH

and pH from [O H - ], 654 prob.; pre-

cipitate-forming reactions, 302 prob.;

precipitates, predicting, 619 prob.; rate

laws, 577 prob.; reaction spontane-

ity, 545 prob., 548 prob.; resonance

structures, 258 prob.; salt hydrolysis,

665 prob.; single-replacement reac-

tions, 295 prob.; skeleton equations,

284 prob.; specific heat, 521 prob.;

standard enthalpies of formation, 541

prob.; volume-mass gas stoichiometry,

463 prob.; volume-volume problems,

461 prob.; water-forming reactions,

304 prob.; wavelength, 140 prob.

Precipitates, 296; determine with K sp ,

618, 619 prob.; reactions in aqueous

solutions forming, 300, 301 act., 302

prob.

Precipitation, 428

Precision, 47–48, 50

Pressure, 406; chemical equilibrium

and, 608–609; combined gas law and,

449, 450 prob.; extreme and ideal gas

law, 458, 466 act.; gas temperature and

(Gay-Lussac’s law), 447, 448 prob.; gas

volume and (Boyle’s law), 442–443,

443 prob., 444 act.; partial pressure

of a gas, 408, 409 prob., 410; popcorn

popping and, 466 act.; solubility of

gases and (Henry’s law), 495–496, 497

prob.; units of, 407, 407 table

Primary batteries, 720

Principle energy levels, 153, 154

Principle quantum numbers (n), 153

Problem-Solving Labs: Bohr model of

the atom, 150 act.; Boyle’s law and

breathing, 444 act.; decomposition

rate, variation in, 566 act.; DNA

replication, 842 act.; elements, pre-

dict properties of by periodic table

position, 180 act.; fluoride ions and

prevention of tooth decay, 622 act.;

francium, predict properties of, 180

act.; gas, release of compressed, 72

act.; identify an unknown by mass

and volume, 50 act.; molar enthalpy

(heat) of vaporization, 531 act.; molar

mass, Avogadro’s number, and atomic

nucleus, 326 act.; pH of blood, 668

act.; radiation exposure, distance and,

890 act.; rate of decomposition of

dinitrogen pentoxide, 566 act.

Problem-Solving Strategies: ground-

state electron configuration, 160;

halogens, predict reactivity of, 294

act.; ideal gas law, derive other laws

from, 458; ionic compound naming

flowchart, 224; Lewis structures, 254;

mass defect and binding energy, 878;

molarity from titration, 663; molar

solubility, streamlining calculation

of, 621; potential of voltaic cell, 717;

redox equations, balance, 696; round-

ing numbers, 52; significant figures,

recognizing, 51; stoichiometry, 374

Products, 77, 283; addition of and

chemical equilibrium, 608; calculating

when reactant is limiting, 380–381,

382–383 prob.; identifying, 92 act.;

predicting, 298, 298 table; removal of

and chemical equilibrium, 608

Propane, 750, 751, 751 table; chemical

equation for, 370 prob.; gas grills and,

375

Propanol, 816 act.

Propene, 759 table

Propyl group, 753 table

Proteins, 826–831; amino acid build-

ing blocks, 826–827; denaturation of,

829; enzymes, 826, 829–830; peptide

bonds in, 827–828; polypeptides, 828;

protein hormones, 831; structural

proteins, 831; three-dimensional

structure, 829; transport proteins, 830

Protium, 904

Protons, 113, 114 table, 119, 969 table

Prussian blue, 916

Pseudo-noble gas configurations, 208

PTFE (nonstick coating), 811

Pure covalent bond, 266

Pure research, 17

Pure substances, 70, 87. See also

Substances; compounds. See

Compounds; elements. See Elements;

mixtures of. See Mixtures; physical

properties of, 73

Putrescine, 795

QQualitative data, 13

Quantitative data, 13

Quantized energy, 141–143, 146

Quantum, 141–142

Quantum mechanical model of atom,

149–152

Quantum number (n), 147

Quarks, 111, 114

RRad, 889

Radiation, 122; alpha, 123, 124 table,

861, 861 table, 862, 888 table; average

annual exposure to, 890 table; beta,

123, 124 table, 861, 861 table, 862,

863, 888 table; biological effects of,

888–890, 889 table; detection of, 885–

886; discovery of, 860–861; distance

and, 889 act., 890; dose of, 889–890;

gamma, 124, 861, 861 table, 862, 863,

888 table; intensity of and distance,

889 act., 890; ionizing, 885; medical

uses of, 886–887; neutron activation

analysis, 891; scientific uses of, 886;

types of, 123–124, 859 act., 861 table,

861–864

Radiation-detection tools, 885–886

Radiation therapist, 887

Radiation therapy, 887

Radioactive decay, 122, 861; model, 873

act.; nuclear stability and, 865–866;

radiochemical dating and, 873–874;

rate of, 870–871, 872 prob., 873–874;

transmutation, 865; types of, 866–868,

868 table

Radioactive decay series, 870

Radioactivity, 122. See also Radiation;

detection of, 885–886; discovery of,

860–861, 915

Radiocarbon dating. See Carbon dating

Radiochemical dating, 873–874

Radioisotopes, 861; half-life of,

870–871, 871 table; medical uses of,

887–888; radioactive decay of. See

Radioactive decay; radiochemical dat-

ing and, 873–874

Radiotracers, 887

Radium, 882, 910–911, 915

Radium-226, 862

Radon, 944

Radon gas, 915

Rainbows, 138

Rare Earth elements. See f-Block

elements

Rate constant (k), 574

Precipitates Rate constant

Page 148: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1047

Index

Rate-determining steps, 581–582

Rate laws, 574–576

Rates, reaction. See Reaction rates

Ratios, 964

Reactants, 77, 283; addition of and

chemical equilibrium, 607; calculate

product when limited, 380–381,

382–383 prob.

Reaction mechanisms, 580–582; com-

plex reactions, 580; intermediates,

580; rate-determining steps, 581–582

Reaction order, 575–577; determination

of, 576, 577 prob.; first-order reaction

rate laws and, 575; other-order reac-

tion rate laws and, 575–576

Reaction rate laws. See Rate laws

Reaction rates, 561–567; activation

energy and, 564–566; average rate

of, 560–562, 562 prob.; catalysts and,

571–573; collision theory and, 563,

564; concentration and, 569, 584

act.; decomposition of dinitrogen

pentoxide, 565 act.; factors affecting,

559 act.; inhibitors and, 571; instan-

taneous, 578–579, 579 prob.; rate-

determining steps, 581–582; rate laws,

574–576; reactivity of reactants and,

566–567; speeding, 559 act.; sponta-

neity and, 542–545, 566–567; surface

area and, 569–570; temperature and,

570, 571 act.

Reaction spontaneity (∆G), 542–545;

Earth’s geologic processes and, 545;

entropy and, 544–545, 545 prob.; free

energy and, 548 prob.; Gibbs free

energy and, 546–547; reaction rate

and, 566–567

Real-World Chemistry: algal blooms

and phosphates, 250; ammoniated

cattle feed, 601; book preservation

and, 661; cathode ray, 108; chrome

and chromium, 328; clay roofing tiles,

302; enzymes (papain), 829; food

preservation, 571; fuel cells, 722; gas

grills, 375, 461; Gay-Lussac’s law and

pressure cookers, 448; hydrogen cya-

nide, 647; iron oxidation, 685; kilns,

461; liquid density measurement, 37;

mineral identification, 73; mineral

supplements, 220; perspiration, 426;

photoelectric effect, 142; polycyclic

aromatic hydrocarbons (PAHs), 807;

reef aquariums, 287; saltwater fish

and freezing point depression, 503;

scuba diving and helium, 192; solar

energy, 142; solar fusion, 883; specific

heat, 521; sunscreen, protection from

UV radiation, 5; trans-fatty acids, 767;

zinc-plating, 295

Reaumur scale, 451

Recycling, 814

Redox equations, balancing, 679 act.,

689–696; half-reaction method,

693–693, 695 prob.; net ionic redox

equations, 691, 692 prob.; oxidation-

number method, 689, 689 table, 690

prob.; problem-solving flow-chart, 696

Redox reactions, 680–688, 806–807;

bioluminescence, 693; in electro-

chemistry, 707 act., 708–709, 711;

electronegativity and, 684; electron

transfer and, 680–682; forensics and,

697, 698 act.; identify, 685 prob.;

oxidation, 681; oxidation number,

219, 682, 686, 686 table, 687 prob.,

688; oxidizing agents, 683; reducing

agents, 683; reduction, 681; reversal

of (electrolysis), 728; rust formation,

679 act.; space shuttle launch and, 691

act.; summary of, 683 table; tarnish

removal, 683 act.

Reduction, 681

Reduction agent, 683

Reduction potential, 711

Reef aquariums, 287

Refrigerators, CFCs and, 7–8

Rem, 889

Replacement reactions, 293–294, 296–

297; double-replacement, 296–297;

single-replacement, 293–294, 295

prob.

Representative elements, 177, 184, 196

act.

Representative particles, 321; convert

moles to, 322; convert to moles, 323,

323 prob., 324 prob.; mass to moles to

particles conversions, 338, 338–339

prob.

Research: applied, 17; pure, 17

Research chemist, 185

Resonance, 258

Reversible reactions, 595

Rhombohedral unit cells, 421 table, 422

act.

RNA (ribonucleic acid), 843

Roentgen, Wilhelm, 860, 889

Rubber, 762

Rubidium, 906, 907

Rusting, 74, 77, 724–727; observe, 726

act.; prevent, 685, 725–727; redox

reactions in, 679 act., 724–725; as

spontaneous process, 542–543

Rutherford, Ernest, 110, 111–112, 112–

113, 862, 875

Rutherfordium, 185

SSaccharin, 810

Sacrificial anodes, 726

Safety, lab, 18, 19 table

Safety matches, 934

Salicylaldehyde, 796 table, 797

Salt bridges, 709

Salt hydrolysis, 665

Saltwater fish, 503

Saponification, 837, 837 act.

Saturated fats, 805

Saturated fatty acids, 835–836

Saturated hydrocarbons, 746

Saturated solutions, 493

s-Block elements, 184

Scandium, 185

Scanning tunneling microscope (STM),

107, 213

Schrodinger wave equation, 152

Science writer, 604

Scientific investigations. See also

CHEMLABs; Data Analysis Labs;

MiniLabs; Problem-Solving Labs;

accidental discoveries and, 18; applied

research, 17; pure research, 17; safety

and, 18; scientific method and, 12–16

Scientific law, 16

Scientific methods, 12–16; conclusion,

15; experiments, 14–15; hypothesis,

13; observation, 13, 13 act.; scientific

law and, 16; theory and, 16

Scientific notation, 40–43, 946–948;

addition and subtraction and, 41

prob., 42, 948; multiplication and

division and, 43, 43 prob., 948

Scintillation counter, 886

Scuba diving, helium and, 192

Seaborg, Glenn, 921

Second (s), 33

Secondary batteries, 720

Second ionization energy, 192

Second law of thermodynamics, 543,

546

Second period elements, 158 table,

161 table

Seed crystal, 495

Selenium, 936, 937, 939

Semimetals. See Metalloids

Sensitive teeth, 914

Serine, 827 table

Sex hormones, 839

Shape-memory alloys, 213

Ships, corrosion of hulls of, 725–726

Side chains, amino acid, 827

Sigma bonds, 244, 245

Rate-determining steps Sigma bonds

Page 149: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1048 Index

Index

Significant figures, 50–51, 51 prob.,

949–950, 951 prob.; adding and sub-

tracting, 53, 53 prob., 952, 953 prob.;

atomic mass values and, 328; multipli-

cation and division and, 54, 54 prob.,

952; rounding numbers and, 52, 952

Silicates, 214

Silicon, 84, 159 table, 181, 926–927, 929

Silicon computer chips, 929

Silicon dioxide, 929

Silver, 226 table, 920

Silver batteries, 719

Silver nitrate flame test, 92 act.

Simple sugars. See Monosaccharides

Single covalent bonds, 242–244

Single-replacement reactions, 293–294,

295 prob.; metal replaces hydrogen,

293; metal replaces metal, 293–294,

310 act.; nonmetal replaces nonmetal,

294, 294 act.

SI units, 32–37, 958 table

Skeleton equations, 284

Slime, 785 act.

Slope, line, 57, 962

Soap, 419, 634, 837 act.

Sodium, 136, 159, 159 table, 177, 906,

907, 908, 913

Sodium bicarbonate, 308

Sodium carbonate, 378 act.

Sodium chloride, 70, 73 table, 85, 205

act., 210, 211 table, 213, 729

Sodium hypochlorite, 683

Sodium perborate, 924

Sodium/potassium ATPase, 909

Sodium-potassium pump, 909

Soft water, 24 act.

Solar energy, 142, 354, 522

Solar fusion, 883

Solidification, 76. See also Freezing

Solids, 71, 420–424; amorphous, 424;

crystalline, 420–423, 422 act., 422

table; density of, 39 act., 420; molecu-

lar, 422

Solubility, 479, 493–497; factors affect-

ing, 492–494, 506 act.; of gases,

495–496, 497 prob.; guidelines for,

975 table; of polar molecules, 268;

saturated solutions and, 493; super-

saturated solutions and, 494–495;

temperature and, 493–494, 494 table;

unsaturated solutions and, 493

Solubility product constant ( K sp ),

614–619, 969 table; compare, 624 act.;

ion concentrations from, 617, 617

prob., 618–619; ion product constant

( Q sp ) and, 618–619, 619 prob.; molar

solubility from, 615–617, 616 prob.;

predicting precipitates, 618

Solubility product constant expres-

sions, 614–619; ion concentrations

from, 617, 618–619, 619 prob.; molar

solubility from, 616 prob., 616–617;

predicting precipitates, 618, 619 prob.;

writing, 614–615

Soluble, 479

Solutes, 299

Solution concentration. See

Concentration

Solution formation. See Solvation

Solutions, 81, 478–479; acidic. See

Acidic solutions; aqueous. See

Aqueous solutions; basic. See Basic

solutions; boiling point elevation,

500–501, 503 prob.; concentration,

475 act., 480–488; dilution of, 485,

486 prob.; electrolytes and colliga-

tive properties, 498–499; formation

(solvation), 489–492; freezing point

depression, 501–502, 502 act., 503

prob.; heat of solution, 475 act.,

492; milestones in understanding,

490–491; molar. See Molar solutions;

neutral, 636; osmotic pressure and,

504; saturated, 493; solubility and. See

Solubility; supersaturated, 494–495;

types of, 81 table, 479 table; unsatu-

rated, 493; vapor pressure lowering

and, 499–500

Solution systems, 81, 81 table

Solvation, 489–492; aqueous solutions

of ionic compounds, 490; aqueous

solutions of molecular compounds,

491; factors affecting, 492–494, 506

act.; heat of solution, 475 act., 492;

“like dissolves like”, 489

Solvents, 299

s orbitals, 154

Space-filling molecular model, 253, 746

Space shuttle, 691 act., 722

Space telescopes, 912

Spandex, 811

Species, 693

Specific heat, 519–520, 522, 976 table;

calorimetry and, 523–524, 525 prob.,

526 act.; heat absorbed, calculate, 520,

521 prob.; heat released, calculate,

520; solar energy and, 522; of various

substances, 520 table

Specific rate constant (k), 574

Spectator ions, 301

Spectroscopist, 139

Speed of light (c), 137, 969 table

Spontaneous processes, 542. See also

Reaction spontaneity (∆G)

Spontaneity, reaction rate and. See

Reaction spontaneity (∆G)

Square root, 949

Stainless steel, 228 table

Standard enthalpy (heat) of formation,

537–541, 538 table, 540 prob.

Standard hydrogen electrode, 711

Standardized Test Practice, 28–29,

66–67, 98–99, 132–133, 170–171,

202–203, 236–237, 278–279, 316–317,

364–365, 398–399, 438–439, 472–473,

512–513, 556–557, 590–591, 630–631,

676–677, 704–705, 740–741, 782–783,

822–823, 856–857, 898–899

Standard reduction potentials, 712;

applications of, 716; calculate, 713–

714, 715 prob.; determine, 712, 712

table; measure, 734 act.

Standard temperature and pressure

(STP), 452

Starch, 834

States of matter, 71–72; gases, 72, 72

act., 402–410; liquids, 71, 401 act.,

415–419; milestones in understand-

ing, 416–417; phase changes, 76–77,

425–430; solids, 71, 420–424; summa-

rize information on, 401 act.

Stationary phase, chromatography, 83

Stearic acid, 835

Steel, 227, 227 act.

Stereoisomers, 766. See also Optical

isomers

Sterling silver, 228 table

Steroids, 839

Steroid toxins, 839

Stock solutions, dilution of, 485, 486

prob.

Stoichiometry, 368–378; actual yield

and, 385; baking soda decomposition,

378 act.; interpret chemical equa-

tions, 370 prob.; mass-to-mass con-

versions, 377, 377 prob.; mole ratios

and, 371–372, 390 act.; mole-to-mass

conversions, 376, 376 prob.; mole-

to-mole conversions, 373–374, 375

prob.; particle and mole relationships

and, 368–369; percent yield and, 386,

386 prob., 388; problem-solving flow

chart, 374; product, calculate when

reactant is limiting, 380–381, 382–383

prob.; reactions involving gases. See

Gas stoichiometry; theoretical yield

and, 385; titration and. See Titration

Storage batteries, 720

Straight-chain alkanes, 750–751

Stratosphere, 5

Straussman, Fritz, 111

Strong acids, 644, 656

Strong bases, 648, 656

Strong electrolytes, 498

Significant figures Strong electrolytes

Page 150: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Index 1049

Index

Strong nuclear force, 865

Strontium, 186 prob., 910–911, 913, 914

Strontium-90, 870, 871 table

Strontium carbonate, 913

Strontium chloride, 914

Structural formulas, 253, 253, 746, 751

Structural isomers, 765

Structural proteins, 831

Subatomic particles, 114 table, 119 table

Sublimation, 83, 428

Suboctets, 259

Substances, 5, 70

Substituent groups, 752

Substituted cycloalkanes, naming, 756,

756–757 prob.

Substituted hydrocarbons: alcohols,

792–793; aldehydes, 796–797; amides,

800; amines, 795; carboxylic acids,

798; chemical reactions involving. See

Organic reactions; crosslinks (make

slime), 785 act.; esters, 799, 800 act.;

ethers, 794; functional groups, 785

act., 786, 787 table; halocarbons,

787–791; ketones, 797

Substitutional alloys, 228

Substitution reactions, 790–791

Substrates, 830

Subtraction: scientific notation and, 42;

significant figures and, 53

Sucrose, 73 table, 88, 205 act., 833

Sulfur, 159 table, 195, 936–937, 939

Sulfuric acid, manufacture of, 388, 939

Sunburn, 5

Sunlight, continuous spectrum of, 138

Sunscreen, 5

Sun, solar fusion in, 883

Superacids, 637

Super ball, properties of, 239 act.

Supercritical mass, 880

Supersaturated solutions, 494–495

Surface area: reaction rate and, 569–

570; solvation and, 492

Surface tension, 418–419

Surfactants, 419

Surroundings (thermochemical), 526

Suspensions, 476

Synthesis reactions, 289

System (thermochemical), 526

Systeme International d’Unites. See SI

units

TTable salt. See Sodium chloride

Tap water, hard and soft, 24 act.

Tarnish removal, 683, 683 act.

Tartaric acid, 767

Taste, 262

Taste buds, 262

Television, 108

Tellurium, 936, 937

Temperature, 403; change in as evidence

of chemical reaction, 282; chemical

equilibrium and, 609–610, 611 act.;

combined gas law and, 449, 450 prob.;

enzyme action and, 850 act.; evapora-

tion rate and, 432 act.; extreme and

ideal gas law, 458; gas pressure and

(Gay-Lussac’s law), 447, 448 prob.; gas

volume and (Charles’s Law), 441 act.,

444–445, 446 prob.; pain receptors

and, 815; reaction rate and, 570, 571

act., 583; solubility and, 493–494, 494

table; viscosity and, 418

Temperature inversion, 428

Temperature scales, 34–35; convert

between, 34, 35; gas laws and, 451

Tetraethyl lead, 930

Tetragonal unit cell, 421 table, 422 act.

Tetrahedral molecular shape, 261, 263

table

Thallium, 922, 923, 925

Theoretical chemistry, 11 table

Theoretical yield, 385

Theory, 16

Thermal conductivity, 226

Thermochemical equations, 529–533;

for changes of state, 530–531, 531

act.; Hess’s law, 534–536, 536 prob.;

standard enthalpy (heat) of formation,

537–541, 540 prob.; writing, 529

Thermochemical universe, 526, 546

Thermochemistry, 523–528; combus-

tion reactions, 532 prob., 533; enthalpy

and enthalpy changes, 526–528;

enthalpy (heat) of reaction, 527–528;

Hess’s law, 534–536, 536 prob.; molar

enthalpy (heat) of fusion, 530–531;

molar enthalpy (heat) of vaporization,

530; phase changes and, 530–531; sur-

roundings, 526; systems, 526; thermo-

chemical equations, 529–533

Thermocouples, 34

Thermodynamics, second law of, 543

Thermoluminescent dosimeter (TLD),

885

Thermonuclear reactions, 883

Thermoplastic polymers, 813

Thermosetting polymers, 813

Third ionization energy, 192

Third period elements, 159 table

Thixotropic substances, 476

Thomson, J. J., 108–109, 110, 212

Thomson, William (Lord Kelvin), 35

Thorium, 921

Three Mile Island, 880, 883

Thymine (T), 841

Time, 33

Tin, 226 table, 926–927, 930

Tinplate, 930

Titanium, 180, 181, 228, 918, 919

Titrant, 661

Titration, 660–663; acid-base indica-

tors and, 662, 663; end point of, 663;

molarity from, 663, 664 prob., 670

act.; steps in, 661

Tokamak reactor, 884

Tolerances, 49

Toluene, 774

Tools, zinc plating of, 295

Tooth decay, fluoride and, 622 act.

Torricelli, Evangelista, 406

Touch sensors, 920

Toxicologist, 59

Toxicology, 59

Trace elements, 195

Transactinide elements, 185

Trans-fatty acids, 767

trans- isomers, 766

Transition elements, 177, 916–921;

analytical tests for, 917; applications

of, 918–921; atomic properties, 917;

common reactions involving, 916;

inner transition metals, 180; locations

of strategic, 918; physical properties

of, 916; transition metals, 180

Transition metal ions, 208, 219, 219

table

Transition metals, 180, 185

Transition state, 564

Transmutation, 865, 875

Transport proteins, 830

Transuranium elements, 876

Triclinic unit cells, 421 table

Triglycerides, 836–837, 837 act.; phos-

pholipids, 838; saponification of, 838,

838 act.

Trigonal bipyramidal molecular shape,

263 table

Trigonal planar molecular shape, 261,

263 table

Trigonal pyramid molecular shape, 261,

263 table

Triple covalent bonds, 245, 246

Triple point, 429

Tritium, 904

Troposphere, 5

Tungsten, 226, 918

Turbidity, 478 act.

Tyndall effect, 478, 478 act.

Strong nuclear force Tyndall effect

Page 151: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1050 Index

Index

UUltraviolet radiation: overexposure to,

damage from, 5; ozone layer and, 5, 6

Ultraviolet (Lyman) series, 147, 150 act.

Unbalanced forces, 597

Unit cell, 421, 421 table, 422 act.

Units, 32–37; base SI, 33–35; converting

between, 957–958, 958 prob.; derived

SI, 35–37; English, 32

Universe (thermochemical), 526, 546

Unsaturated fatty acids, 835–836

Unsaturated hydrocarbons, 746

Unsaturated solutions, 493

Ununquadium, 185

Uranium-235, 878–879, 880

Uranium-238, 863, 880

Urea, 800

UV-B radiation, 5

VValence electrons, 161; chemical bonds

and, 207; periodic table trends, 182–

185, 186 prob.

Valence Shell Electron Pair Repulsion

(VSEPR) theory. See VSEPR model

Valine, 827 table

van der Waals forces, 269–270, 271

Vapor, 72

Vaporization, 426–427; molar enthalpy

(heat) of vaporization, 530, 531 act.

See also Boiling, Evaporation

Vapor pressure, 427

Vapor pressure lowering, 499–500

Variables, 14; controlling, 14–15;

dependent, 14, 56; independent, 14

Venom, 838

Vinegar-baking soda volcano, 669

Viscosity, 401 act., 417, 418

Visible (Balmer) series, 147, 148, 150 act.

Visible spectroscopy, 917

Visible spectrum, 138–139

Vitalism, 744

Vitamins, 383

Vocabulary margin features: alloy, 227;

anhydrous, 352; aromatic, 771; atom,

103; attain, 243; aufbau, 157; bond,

794; buffer, 667; capacity, 721; cis-, 766;

class, 799; combustion, 290; comple-

tion, 599; complex, 845; compound,

300; concentrated, 485; concentra-

tion, 561; concept, 113; conceptualize,

845; conduct, 215; conductor, 180;

conform, 642; conjugate, 639; convert,

595; correspond, 711; demonstrate,

547; deposit, 747; derive, 372; disac-

charide, 833; element, 85; eliminate,

751; environment, 75; evolve, 5; force,

419; formula, 284; gases, 403; generate,

878; homologous, 751; indicators, 663;

initial, 576; investigate, 566; meter, 33;

method, 694; mixture, 81; mole, 321,

456; monosaccharide, 833; neutral,

113; orient, 412; overlap, 244; ozone,

5; percent, 48; period, 159; periodic,

176; phenomenon, 141; polysaccha-

ride, 833; potential, 714; pressure, 495;

product, 381; radiation, 863; random,

544; ratio, 333, 462; recover, 21; reduce,

730; reduction, 681; resonance, 258;

saturated, 494; species, 693; specific,

119; stoichiometry, 369; stress, 607;

structure, 184; sum, 42; system, 543;

trans-, 766; transfer, 219; trigonal pla-

nar, 262; unstable, 867; weight, 10

Volt, 710

Volta, Alessandro, 709

Voltaic cell potentials. See

Electrochemical cell potentials

Voltaic cells, 709–711; chemistry of,

710–711; electrochemical cell poten-

tials, 711–714, 715 prob., 716–717,

734 act.; half-cells, 710

Voltaic pile, 709

Volume: chemical equilibrium and,

608–609; combined gas law and, 449,

450 prob.; determine mass of object

from, 38 prob.; gas pressure and

(Boyle’s law), 442–443, 443 prob., 444

act.; gas stoichiometry and, 460–461,

461 prob., 462, 462–463 prob.; gas

temperature and (Charles’ Law), 441

act., 444–445, 446 prob.; identify an

unknown by, 50 act.; SI units for,

35–36

Volumetric analysis, 341

VSEPR model, 261–262, 263 table, 264

prob., 272 act.

WWarfarin, 59

Water: adhesion and cohesion of, 419;

amphoteric nature of, 639; boiling of,

427, 969 table; capillary action, 419;

changes of state and, 76, 425–428;

chemical properties, 75; condensation

of, 428; covalent bonds in, 240, 243;

density of solid, 420; electrical con-

ductivity of, 205 act.; electrolysis of,

86; evaporation of, 426–427, 432 act.;

formation of in aqueous solutions, 303,

304 prob.; freezing, 428, 969 table; hard

v. soft, 24 act.; history in a glass of,

355; hydration reactions forming, 804;

hydrogen bonds in, 413–414; ion prod-

uct constant for ( K w ), 650–651, 651

prob.; law of multiple proportions and,

89; layering of in graduated cylinder,

31 act.; Lewis structure, 243; melting

of, 425–426; phase diagram, 429, 430;

physical properties, 73 table, 75; polar-

ity of, 267–268; as pure substance, 70;

sigma bonds in, 244, 245; solutions of.

See Aqueous solutions; surface tension

of, 419; thermochemistry, 530–531,

531 act.; turbidity and Tyndall effect,

478 act.; vaporization of, 426

Watson, James, 637, 841–842

Wavelength, 137, 140 prob.

Wave mechanical model of the atom.

See Quantum mechanical model of

atom

Wave model of light, 137–139; atomic

emission spectrum and, 144–145;

dual nature of light and, 143

Waves, 137–138; amplitude of, 137;

electromagnetic wave relationship,

137; frequency of, 137; wavelength of,

137, 140 prob.

Waxes, 838

Weak acids, 645, 648 table

Weak bases, 649

Weak electrolytes, 498

Weather balloons, 449

Weather patterns, density of air masses

and, 37

Weight, 9–10

Willstater, Richard, 912

Wohler, Friedrich, 744

Word equations, 284

XXenon, 944, 945

X-ray crystallography, 212

X rays, 137, 864, 914

Xylene, 772, 774

ZZewail, Ahmed, 581

Zinc, 208, 920

Zinc-carbon dry cells, 718–719

Zinc plating, 295

Ultraviolet radiation Zinc plating

Page 152: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Credits 1051

Photo CreditsCover SPL/Photo Researchers; iv (t)courtesy of Thandi Buthelezi, (tc)courtesy of Laurel Dingrando, (bc)courtesy of Nicholas Hainen, (b)courtesy of Dinah Zike; 2 (t)Ted Kinsman/Science Photo Library/Photo Researchers, (c)Beateworks Inc./Alamy, (b)Daniel Sambraus/Photo Researchers, (bkgd)BL Images Ltd/Alamy; 3 Tom Pantages; 4 (l)STScI/NASA/CORBIS, (r)Atlantide Phototravel/CORBIS; 5 CORBIS; 6 David Hay Jones/Science Photo Library/Photo Researchers; 7 NASA/Photo Researchers; 9 David Young-Wolff/PhotoEdit; 10 (l)AFP/Getty Images, (r)NASA Ames Research Center/Photo Researchers; 13 Art Vandalay/Getty Images; 14 (t)Matt Meadows, (b)Martyn F. Chillmaid/Science Photo Library/Photo Researchers; 15 Chuck Bryan/epa/CORBIS; 17 Hank Morgan/Science Photo Library/Photo Researchers; 18 (l)Charles D. Winters/Photo Researchers, (r)Dr Jeremy Burgess/Science Photo Library/Photo Researchers; 19 Matt Meadows; 21 NASA/Science Photo Library/Photo Researchers; 22 (l)Philippe Psaila/Science Photo Library/Photo Researchers, (r)Eye Of Science/Science Photo Library/Photo Researchers; 23 (tl)The Andy Warhol Foundation, Inc./Art Resource, NY, (tr)courtesy of Sharon Miller/NASA; 26 STScI/NASA/CORBIS; 30 Photri/T.Sanders; 31 Matt Meadows; 32 (l)Rhoda Peacher, (r)Janet Horton Photography; 34 Robert Rathe; 37 (t)Matt Meadows, (b)B. Runk/S. Schoenberger/Grant Heilman Photography; 40 The Hope Diamond/Smithsonian Institution, Washington DC/The Bridgeman Art Library; 42 Ed Young/CORBIS; 44 CORBIS; 49 Chris Gibson/Alamy; 52 Matt Meadows; 59 Jonathan Nourok/PhotoEdit; 68 Magnus Hjorleifsson/Getty Images; 70 (l)Luca Trovato/Getty Images, (r)Thomas Raupach/Peter Arnold, Inc.; 71 (t)Michael Newman/PhotoEdit, (b)Colin Young-Wolff/PhotoEdit; 72 (t)Richard T. Nowitz/CORBIS, (b)Spencer Grant/PhotoEdit; 73 (l)Sydney James/Getty Images, (r)Scientifica/Visuals Unlimited; 74 (l)Gibson Stock Photography, (r)Richard Megna, Fundamental Photography, NYC; 75 British Antarctic Survey/Science Photo Library/Photo Researchers; 76 (l)Ilianski/Alamy, (r)Design Pics Inc./Alamy; 77 (t)Alan Schein/zefa/CORBIS, (b)Astrid & Hanns-frieder Michler/Science Photo Library/Photo Researchers; 79 (l r)Richard Megna, Fundamental Photography, NYC; 80 (l)Custom Medical Stock Photo, (r)Envision/CORBIS; 81 Robert Fournier/Visuals Unlimited; 82 Martyn F. Chillmaid/Photo Researchers; 83 Tony Freeman/PhotoEdit; 84 (l)Barry Mason/Alamy, (c)Tony Freeman/PhotoEdit, (r)AP Photo/Breakthrough Films & Televisions Inc., Randy Brooke; 85 Science Museum/SSPL/The Image Works; 86 (tl)Andrew Lambert Photography/Photo Researchers, (tr)Charles D. Winters/Photo Researchers, (b)Larry Stepanowicz/Fundamental Photography, NYC; 90 Matt Meadows/Peter Arnold, Inc.; 91 Robert Corry; 100 (inset)Colin Cuthbert/Photo Researchers, (bkgd)CORBIS; 101 Tom Pantages; 102(l)PhotoLink/Getty Images, (t)Andre Jenny/Alamy, (r)Digital Vision/PunchStock, (b)Sean Daveys/Australian Picture Library/CORBIS; 103 (t)Science Photo Library/Photo Researchers, (b)The Art Archive/Museo Nazionale Palazzo Altemps Rome/Dagli Ort; 104 (t)Rischgitz/Getty Images, (b)Wellcome Library, London; 106 (l)Stockdisc/PunchStock, (r)European Space Agency/Science Photo Library/Photo Researchers; 107 Philippe Plailly/Science Photo Library/Photo Researchers; 110 SSPL/The Image Works; 111 (l)Bettmann/CORBIS, (r)CERN/Photo Researchers; 113Research Group of Professor C. J. Zhong/SUNY-Binghamton/Supported by NSF; 117 Dan Peha/viestiphoto.com; 120 Eitan Simanor/Alamy; 122 (l r)Image Source/Getty Images; 125 Mauro Fermariello/Science Photo Library/Photo Researchers; 126 Janet Horton Photography; 134 Roger Ressmeyer/CORBIS; 135 Matt Meadows; 136 137 Richard Megna, Fundamental Photography, NYC; 138 David Parker/Science Photo Library/Photo Researchers; 141 CORBIS; 142 Andrew Fox/CORBIS; 145 (t b)Richard Megna, Fundamental Photography, NYC; 149 John D. Norman/CORBIS; 153 Alberto Biscaro/Masterfile; 164 Matt Meadows; 172 Jim Sugar/Science Faction/Getty Images; 173 Tom Pantages; 175 Science Photo Library/Photo Researchers; 177Courtesy of Dell Inc.; 181 Miyoko Oyashiki/CORBIS Sygma; 185 Lawrence Berkley National Laboratory; 192 Brandon D. Cole/CORBIS; 195 3D4Medicalcom/Getty Images; 204 CORBIS; 205 Matt Meadows; 206 David Nardini/Getty Images; 208 Richard Megna, Fundamental Photography, NYC; 210 (l)Andrew Lambert Photography/Photo Researchers, (r)Charles D. Winters/Photo Researchers; 212 Colin Woods/Alamy; 213 (t)Manfred Kage/Peter Arnold, Inc., (c)Cat Gwynn/CORBIS, (b)Philippe Plailly/Science Photo Library/Photo Researchers; 214(l r)Traudel Sachs/Phototake, (c)Mark A. Schneider/Photo Researchers; 220 Richard Megna, Fundamental Photography, NYC; 228 Greg Huglin/SuperStock; 229 Macduff Everton/CORBIS; 230 Matt Meadows; 238 BIOS Gilson FranÁois/Peter Arnold, Inc.; 239 Matt Meadows; 240 Charles Krebs/Getty Images; 244 Visual Arts Library (London)/Alamy; 247 Charles O’Rear/CORBIS; 257 Suzanne Long/Alamy; 261 Matt Meadows; 268 Tony Craddock/Photo Researchers; 270 Scientifica/Visuals Unlimited; 271 (t)Peter Weber/Getty Images, (tcl)Perennou Nuridsany/Photo Researchers, (cr)Susumu Nishinaga/Photo Researchers, (b bcl)Prof. Kellar Autumn, Lewis & Clark College; 272 Matt Meadows; 280 (t)Robert Clay/Alamy, (b)Terry W. Eggers/CORBIS, (bkgd)Woodfall Wild Images/Alamy; 281 Matt Meadows; 282 Charles D. Winters/Photo Researchers; 283 (l)Mihaela Ninic/Alamy, (c)Phototake Inc./Alamy, (b)VStock/Alamy; 284Charles D. Winters/Photo Researchers; 287 Marilyn Genter/The Image Works; 290 (t)Josh Westrich/zefa/CORBIS, (bl)Jeff Vanuga/CORBIS, (br)Mary Evans Picture Library/The Image Works; 291 (l)Bettmann/CORBIS, (r)David Tipling/Alamy; 292 Courtesy of Mercedes-Benz Canada; 293 (l)Charles D. Winters/Photo Researchers, (r)Yoav Levy/Phototake; 295 Donald Pye/Alamy; 296 Andrew Lambert Photography/Photo Researchers; 299 Tom Pantages; 300 303 Matt Meadows; 305 Charles D. Winters/Photo Researchers; 309 (l)Darwin Dale/Photo Researchers, (r)Eye of Science/Photo Researchers, (bkgd)E.R. Degginger/Animals Animals - Earth Scenes; 310 Matt Meadows; 318 (t)Tom Pantages, (b)CORBIS, (bkgd)Tom Stack/Tom Stack & Associates; 319 320 321 Matt Meadows, 322 CORBIS; 325 326 327 Matt Meadows; 328 Jeff Greenberg/PhotoEdit; 335 Matt Meadows; 341 (l)Comstock Images/Alamy, (r)GECO UK/Photo Researchers; 346 Tony Freeman/PhotoEdit; 351 Alfred Pasieka/Photo Researchers; 352 354 356 Matt Meadows; 366 Clive Schaupmeyer/AGStockUSA/Science Photo Library/Photo Researchers; 368 Charles D. Winters/Photo Researchers; 371 Division of Chemical Education, Inc., American Chemical Society; 373 Richard Megna/Fundamental Photography, NYC; 375Rhonda Peacher Photography; 379 Aaron Haupt; 380 Chris McElcheran/Masterfile; 384 385 Matt Meadows; 388 Gunter Marx Photography/CORBIS; 389 3D4Medicalcom/Getty Images; 390Matt Meadows; 400 Richard W. Ramette; 401 Matt Meadows; 402 (l)Steve McCutcheon/Visuals Unlimited, (c)Lester V. Bergman/CORBIS, (b)Dirk Wiersma/Photo Researchers; 406 H. Turvey/Photo Researchers; 410 Tom Pantages; 415 Richard Megna/Fundamental Photography, NYC; 416 (t)Gabe Palmer/Alamy, (b)SSPL/The Image Works; 417 (l)Kent Wood/Photo Researchers, (r)Geoffrey Wheeler/Submission from National Institute of Standards and Technology; 418 Pier Munstermanu/Foto Nature/Minden Pictures; 419 Richard Megna, Fundamental Photography, NYC; 420 Daryl Benson/Masterfile; 421 (tl)Charles D. Winters/Science Photo Library/Photo

Researchers, (tc bl br)Mark A. Schneider/Visuals Unlimited, (tr)Jeff J. Daly, Fundamental Photography, NYC, (bcl)Carl Frank/Science Photo Library/Photo Researchers, (bcr)Roberto De Gugliemo/Science Photo Library/Photo Researchers; 422 Ross Frid/Visuals Unlimited; 423 Deborah Davis/PhotoEdit; 424 Wally Eberhart/Visuals Unlimited; 426 CORBIS; 428 (t)Richard Megna, Fundamental Photography, NYC, (b)Alissa Crandall/CORBIS; 431 Peter Scholey/Getty Images; 432 Matt Meadows; 440 (t)Patrick Ward/CORBIS, (b)Elizabeth Opalenik/CORBIS, (bkgd)CORBIS; 441 Matt Meadows; 448 Marie-Louise Avery/Alamy; 449 Roger Ressmeyer/CORBIS; 454 unlike by STOCK4B; 456 Cordelia Malloy/Science Photo Library; 457 Matt Meadows; 458 (l)Pasquale Sorrentino/Science Photo Library/Photo Researchers, (r)Paul Broadbent/Alamy Images; 459 (l)Barry Runk/Grant Heilman Photography, (r)Lee Pengelly/Alamy Images; 461 Thomas R. Fletcher/www.proseandphotos.com; 462 Denny Eilers/Grant Heilman Photography; 464 Janet Horton Photography; 465 Jason Cohn/Reuters/CORBIS; 466 Matt Meadows; 474 (t)David Papazian/Beateworks/CORBIS, (b)Peter Bowater/Alamy, (bkgd)Tom Feiler/Masterfile; 475 Matt Meadows; 476 Tom Pantages; 478 Matt Meadows/Peter Arnold, Inc.; 480 Tom Pantages; 482 AP Photo/L.G. Patterson; 484 Matt Meadows; 485 Richard Megna, Fundamental Photography, NYC; 489 Matt Meadows; 490 (l)Hulton-Deutsch Collection/CORBIS, (r)SuperStock; 491 (t)Richard Megna/Fundamental Photography, NYC, (b)courtesy of DuPont; 492 (t b)Tiercel Photographics, (c)Rhonda Peacher Photography; 493 Andrew Lambert Photography/Science Photo Library; 494 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 495 Theo Allofs/Visuals Unlimited; 496 (t)Marilyn Genter/The Image Works, (bl)Rachel Epstein/PhotoEdit, (br)CORBIS; 498 FP, Fundamental Photography, NYC; 501 (l)AP Photo/Gerry Broome, (r)Tom Pantages; 505 Courtesy of Dr. Christopher L. Sabine, National Oceanic and Atmospheric Administration; 506 Tom Pantages; 508 Leonard Lessin/Peter Arnold, Inc.; 511 Courtesy NODC; 514 Purestock/Getty Images; 515 Matt Meadows; 516 (l)Agence Zoom/Getty Images, (r)Donald Miralle/Getty Images; 517 Alan Sirulnikoff/Photo Researchers; 519 (l)Stephen Chernin/Getty Images, (r)Bob Krist/CORBIS; 521 Matt Meadows; 522 Eurelios/Phototake; 524 Tom Pantages; 526 Matt Meadows; 527 Tim Fuller; 528 Phil Degginger/Alamy; 533 Janet Horton Photography; 534 (l)CORBIS, (r)Mark A. Schneider/Visuals Unlimited; 537 Will & Deni McIntyre/Photo Researchers; 539 Jeff Maloney/Getty Images; 542 Ton Koene/Visuals Unlimited; 544 Dinodia Photo Library/PixtureQuest; 545 Matt Meadows; 546 Jon Arnold Images/Alamy; 549 (t)AP Photo, (b)Joshua Matz/Grant Heilman Photography; 550 Matt Meadows; 552 Wesley Hitt/Alamy; 554 Frank Cezus/Getty Images; 554 Marc Muench/Getty Images; 558 (inset)PhotriMicroStock/J.Greenberg, (bkgd)Transtock Inc/Alamy; 559 Matt Meadows; 560 (l)Motoring Picture Library/Alamy, (cl)The Car Photo Library, (cr)John Terence Turner/Taxi/Getty Images, (r)Getty Images; 563 Masterfile Corporation; 567 Charles D. Winters/Photo Researchers; 568 Tom Pantages; 569 Richard Megna, Fundamental Photography, NYC; 570 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 571 Tom Pantages; 572 (l)Arco Images/Alamy, (r)SuperStock; 574 (l)Mark Thomas/Science Photo Library/Photo Researchers, (r)Dr Jurgen Scriba/Science Photo Library/Photo Researchers; 581 Stephen Wilkes/Getty Images; 584 Matt Meadows; 592 Stock Connection Distribution/Alamy; 593 Matt Meadows; 594 Randall Hyman Photography; 597 Tim Fuller; 598 Oote Boe/Alamy; 600 Martyn Chillmaid /Photolibrary; 601 Dr. A. Leger/ISM/Phototake; 603 Plowes ProteaPix; 606 Shalom Ormsby/Blend Images/Getty Images; 608 Getty Images; 610 Richard Megna, Fundamental Photography, NYC; 612 Tim Brakemeier/dpa/CORBIS; 614 (l)James L. Amos/CORBIS, (r)1996-98 AccuSoft Inc., All right/Robert Harding World Imagery/CORBIS; 615 Yoav Levy/Phototake; 618 620 Tom Pantages; 623 Mount Everest from the South. AlpineAscents.com Collection; 624 Matt Meadows; 625 David Taylor/Photo Researchers; 627 Matt Meadows; 629 Marie-Louise Avery/Alamy; 632 (t b)Tim Fuller, (bkgd)Jane Faircloth/TRANSPARENCIES, Inc.; 633 Matt Meadows; 634 (l)Pat O’Hara/CORBIS, (r)W. Wayne Lockwood, M.D./CORBIS; 635 (l cl r)Tom Pantages, (cr)Eric Fowke/PhotoEdit; 636 With kind permission of the University of Edinburgh/The Bridgeman Art Library; 637 (tl)courtesy of the Archives, California Institue of Technology, (r)Kazuyoshi Nomachi/CORBIS, (bl)Pasieka/Science Photo Library/Photo Researchers; 638 Spencer Grant/PhotoEdit; 639 Ciaran Griffin/Getty Images; 643 Jim Wark/Peter Arnold, Inc.; 644 645 Matt Meadows; 646 Louise Lister/Getty Images; 652 (t)Ingram Publishing/Alamy, (cl)Sue Wilson/Alamy, (cr)foodfolio/Alamy, (bl)Eric Fowke/PhotoEdit, (br)Janet Horton Photography; 654 Peter Dean/Grant Heilman Photography; 656 Matt Meadows; 658 (l)Matt Meadows, (r)Andrew Lambert Photography/Science Photo Library/Photo Researchers; 659 660 661 662 663 664 665 Matt Meadows; 666 Sisse Brimberg/Getty Images; 668 Dr. Dennis Kunkel/Visuals Unlimited; 669 (l)Charles D. Winters/Photo Researchers, (r)CORBIS; 672 673 674 Matt Meadows; 678 (inset)Tom Pantages, (bkgd)Jeff Daly/Fundamental Photography, NYC; 679 Tom Pantages; 680 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 681 Tom Pantages; 682 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 685 Dean Conger/CORBIS; 686 John Cancalosi/Peter Arnold, Inc.; 689 L. S. Stepanowicz/Visuals Unlimited; 693 E. R. Degginger/Photo Researchers; 694 Tom Pantages; 697 (t)Mikael Karlsson/Alamy, (b)Adrian Neumann/[email protected]; 700 Tom Pantages; 701 (t)Peticolas/Megna, Fundamental Photography, NYC, (cl)Tony Freeman/PhotoEdit, (cr)Ian Pilbeam/Alamy; 702 Tom Pantages; 703 (t)Richard Megna, Fundamental Photography, NYC, (bl br)Yuliya Andrianova/Echo Ceramics; 706 (l)Tom Pantages, (tr) bobo/Alamy, (br)Khalid Ghani/NHPA, (bkgd)Michael Durham/Nature Picture Library; 707 Matt Meadows; 709 Royal Institution/SSPL/The Image Works; 710 (t)Rafael Macia/Photo Researchers, (b)Chuck Franklin/Alamy; 719 (l)Tom Pantages, (r)Sami Sarkis/Alamy; 721 Stockbyte Platinum/Alamy; 722 (tl)Paul Silverman, Fundamental Photography, NYC, (tr)Paul Rapson/Science Photo Library/Photo Researchers, (r)Ferruccio/Alamy; 723 Pasquale Sorrentino/Photo Researchers; 724 Ilianski/Alamy; 725 Roger Ressmeyer/CORBIS; 726 Geoff Butler; 730 Tom Pantages; 731 Jeff Greenberg/PhotoEdit; 733 Tom Pantages; 742 Steve Starr/CORBIS; 743 Andrew Lambert Photography/Science Photo Library/Photo Researchers; 744 Panorama Media (Beijing)Ltd./Alamy; 745 A. T. Willett/Alamy; 748 Keith Dannemiller/Alamy; 749 Rachel Epstein/PhotoEdit; 752 (l)Michael Newman/PhotoEdit, (r)Janet Horton Photography; 757 Robin Nelson/PhotoEdit; 762 Michael Newman/PhotoEdit; 764 Paul A. Souders/CORBIS; 767 (l)Masterfile, (r)Beth Galton/Getty Images; 770 R H Productions/Getty Images; 772 (tl)Paul Silverman, Fundamental Photography, NYC, (tr)CORBIS, (bl)Colin Garratt, Milepost 92½/CORBIS, (br)SSPL/The Image Works; 774 PicturePress/Getty Images; 775 Peter Titmuss/Alamy; 776 Matt Meadows; 784 (inset)Science Pictures Ltd/Science Photo Library/Photo Researchers, (bkgd)Waina Cheng/Photolibrary; 785 786 Matt Meadows; 787 David Hoffman Photo Library/Alamy; 789 DK Limited/CORBIS; 790 Keith Wood/Getty Images; 791 Paul Almasy/CORBIS; 797 Bill Aron/PhotoEdit; 798 Norm Thomas/Photo Researchers; 799 (l)Masterfile, (r)J.Garcia/photocuisine/CORBIS; 802 Cordelia Molloy/Photo Researchers; 803 Chuck Franklin/Alamy; 807 (t)NASA/ESA/STScI/Science Photo Library/Photo

Page 153: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

1052 Credits

Credits

Researchers, (b)CORBIS; 809 Alan L. Detrick/Science Photo Library/Photo Researchers; 810 (t)Myrleen Ferguson Cate/PhotoEdit, (bl)SSPL/The Image Works, (br)Victor De Schwanberg/Science Photo Library/Photo Researchers; 811 (l)Bettmann/CORBIS, (r)Danita Delimont/Alamy; 812 (t)Siede Preis/Photodisc Green/Getty Images, (tc)David Young-Wolff/PhotoEdit, (b)CORBIS, (bc)Dorling Kindersley/Getty Images; 813 David R. Frazier Photolibrary, Inc.; 815 Neil Emmerson/Robert Harding World Imagery/Getty Images; 816 Matt Meadows; 824 (t)Eye Of Science/Science Photo Library/Photo Researchers, (c)Dr. Kessel & Dr. Kardon/Tissues & Organs/Visuals Unlimited, (b)Steve Gschmeissner/Photo Researchers, (bkgd)AK PhotoLibrary/Alamy; 825 Matt Meadows; 826 (l) John Conrad/CORBIS, (r)Ron Niebrugge/Alamy; 829 Janet Horton Photography; 831 (l)CORBIS, (r)Medical-on-Line/Alamy; 833 IndexStock; 834 (l)Foodcollection.com/Alamy, (r)Brand X Pictures/Alamy; 835 D. Hurst/Alamy; 836 Michael Newman/PhotoEdit; 838 Pat O’Hara/CORBIS; 839 Joe Mc Donald/Animals Animals/Earth Scenes; 846 (t)CORBIS, (b)AP Photo/Joe Cavaretta; 847 (t)David Young-Wolff/PhotoEdit, (b)Alex Farnsworth/The Image Works; 848 Wally McNamee/CORBIS; 849 (t)epa/CORBIS, (b)Mary Schweitzer; 855 CORBIS; 858 (t)ADEAR/RDF/Visuals Unlimited, (c)ISM/Phototake, (b)Science Photo Library/Photo Researchers, (bkgd)John Terence Turner/Taxi/Getty Images; 859 Comstock Images/Alamy; 860 (l)alwaysstock, LLC/Alamy, (r)Lee C. Coombs/Phototake; 861 C. Powell, P. Fowler & D. Perkins/Photo Researchers; 864 Reuters/CORBIS; 874 Pixtal/SuperStock; 880 vario images GmbH & Co.KG/Alamy; 881 Savintsev Fyodor/ITAR-TASS/CORBIS; 882 (t)Catherine Pouedras/Science Photo Library/Photo Researchers, (bl)Bettmann/CORBIS, (br)John Hopkins Medical Institute/AIP/Photo Researchers; 883 (t)epa/CORBIS, (b)D. Ducros/Photo Researchers; 884 (t)EFDA-JET/Photo Researchers; 886 Martin Bond/Science Photo Library/Photo Researchers; 887 Custom Medical Stock Photo/cmsp.com; 888 (tl)ISM/Phototake, (tr)WDCN/Univ. College London/Photo Researchers, (b)Mediscan; 891 Johan Reinhard; 901 CORBIS; 904 (l)SPL/Photo Researchers, (r)Matt Meadows; 905 (t)European Southern Observatory/Photo Researchers, (b)Melanie Stetson Freeman/The Christian Science Monitor via Getty Images; 906 Richard Megna/Fundamental Photography, NYC; 907 (l)David Taylor/Science Photo Library/Photo Researchers, (c cl)Jerry Mason/Science Photo Library/Photo Researchers, (cr r)Tom Pantages, (t)NASA/epa/

CORBIS, (b)Michael Dalton, Fundamental Photography, NYC; 909 Geoffrey Wheeler; 910 Charles D. Winters/Photo Researchers; 911 (l)Andrew Lambert/Photo Researchers, (r)Fundamental Photography, NYC; 912 (l)Mark A. Schneider/Photo Researchers, (r)courtesy of Northrop Grumman Space Technology; 913 (t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/CORBIS; 914 (t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers; 915 (l)Fred Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS; 916 Cordelia Molloy/Science Photo Library/Photo Researchers; 917 Martyn F. Chillmaid/Photo Researchers; 918 Colin Walton/Alamy; 919 (t)Roger Harris/Photo Researchers, (c)Tom Pantages, (b)Kalicoba/Alamy; 920 (t)The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)Theodore Clutter/Photo Researchers; 921 (t)ISM/Phototake, (b)Fritz Goro/Time & Life Pictures/Getty Images; 924 (t)Tom Pantages, (tc)Greg Stott/Masterfile, (b)Toshiba Corporation images, (bc)Eye of Science/Photo Researchers; 925 (t)Judith Collins/Alamy, (b)Collection CNRI/Phototake; 926 Andrew Lambert Photography/Science Photo Library/Photo Researchers; 927 David Taylor/Photo Researchers; 928 (tl)Chemical Design/Science Photo Library/Photo Researchers, (tr)Johner Images/Getty Images, (b)Dr Tim Evans/Science Photo Library/Photo Researchers; 929 Phil Schermeister/CORBIS; 930 (t)Martin Dohrn/naturepl.com, (c)Goodshoot-Jupiterimages France/Alamy, (b)Allan H Shoemake/Taxi/Getty Images; 931 Chinch Gryniewicz, Ecoscene/CORBIS; 933 Tom Pantages; 934 (t)Wally Eberhart/Visuals Unlimited, (c)Dr P. Marazzi/Photo Researchers, (b)Al Francekevich/CORBIS; 935 (t,bl)Michael Newman/PhotoEdit, (br)Janet Horton; 937 Chuck Place Photography; 938 (t)Scientifica/Visuals Unlimited, (b)Glow Images/Alamy; 939 Leslie Garland Picture Library/Alamy; 940 Larry Stepanowicz/Visuals Unlimited; 941 Andrew Lambert Photography/Science Photo Library/Photo Researchers; 942 Michael Newman/PhotoEdit; 944 (l)Charles D. Winters/Photo Researchers, (r)Ted Kinsman/Science Photo Library/Photo Researchers; 945 (t)epa/CORBIS, (bl)Phototake Inc./Alamy, (br)Wolfgang Kaehler/CORBIS; 946 (l)Chris Bjornberg/Photo Researchers, (r)Daniele Pellegrini/Photo Researchers; 947 (t)Julian Baum/Science Photo Library/Photo Researchers, (b)CORBIS; 952 Matt Meadows; 956 ABN Stock Images/Alamy; 958 Matt Meadows; 959 Bill Aron/PhotoEdit; 964 Matt Meadows; 965 Elena Rooraid/PhotoEdit; 967 Geoff Butler

Page 154: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

About the Photo:When a piece of sodium metal is dropped into a flask of bromine gas, the vigorous reaction produces heat and sparks of light.

Access your Student Edition on the Internet so you don't need to bring your textbook home every night. You can link to fea-tures and get additional practice with these online study tools.

Check out the following features on your Online Learning Center:

Study Tools Section Self-Check Quizzes

Chapter Tests• Interactive Tables• Interactive Time Line• Interactive Figures

Standardized Test Practice Vocabulary PuzzleMaker Personal TutorStudy to Go Online Student EditionMultilingual Science Glossary

ExtensionsPeriodic Table Links WebQuest ProjectsCareer Links Science Fair IdeasMath Handbook Internet ChemLabsPrescreened Web Links

For TeachersTeacher Bulletin BoardTeaching Today, and much more!

glencoe.comChemistryChemistry nline

Page 155: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Eye SafetyProper eye protection should be worn at all times by anyone performing or observing science activities.

Clothing ProtectionThis symbol appears when sub-stances could stain or burn clothing.

Animal SafetyThis symbol appears when safety of animals and students must be ensured.

RadioactivityThis symbol appears when radioactive materials are used.

HandwashingAfter the lab, wash hands with soap and water before removing goggles

Safety SymbolsTh ese safety symbols are used in laboratory and investigations in this book to indicate possible hazards.

Learn the meaning of each symbol and refer to this page oft en. Remember to wash your hands thoroughly

aft er completing lab procedures.

SAFETY SYMBOLS HAZARD EXAMPLES PRECAUTION REMEDY

DISPOSAL Special disposal procedures need to be followed.

certain chemicals, living organisms

Do not dispose of these materials in the sink or trash can.

Dispose of wastes as directed by your teacher.

BIOLOGICALOrganisms or other biological materials that might be harmful to humans

bacteria, fungi, blood, unpreserved tissues, plant materials

Avoid skin contact with these materials. Wear mask or gloves.

Notify your teacher if you suspect contact with material. Wash hands thoroughly.

EXTREME TEMPERATURE

Objects that can burn skin by being too cold or too hot

boiling liquids, hot plates, dry ice, liquid nitrogen

Use proper protection when handling.

Go to your teacher for first aid.

SHARPOBJECT

Use of tools or glassware that can easily puncture or slice skin

razor blades, pins, scalpels, pointed tools, dissecting probes, broken glass

Practice common-sense behavior and follow guidelines for use of the tool.

Go to your teacher for first aid.

FUMEPossible danger to respiratory tract from fumes

ammonia, acetone, nail polish remover, heated sulfur, moth balls

Make sure there is good ventilation. Never smell fumes directly. Wear a mask.

Leave foul area and notify your teacher immediately.

ELECTRICALPossible danger from electrical shock or burn

improper grounding, liquid spills, short circuits, exposed wires

Double-check setup with teacher. Check condition of wires and apparatus.

Do not attempt to fix electrical problems. Notify your teacher immediately.

IRRITANTSubstances that can irritate the skin or mucous membranes of the respiratory tract

pollen, moth balls, steel wool, fiberglass, potassium permanganate

Wear dust mask and gloves. Practice extra care when handling these materials.

Go to your teacher for first aid.

CHEMICALChemicals that can react with and destroy tissue and other materials

bleaches such as hydrogen peroxide; acids such as sulfuric acid, hydrochloric acid; bases such as ammonia, sodium hydroxide

Wear goggles, gloves, and an apron.

Immediately flush the affected area with water and notify your teacher.

TOXICSubstance may be poisonous if touched, inhaled, or swallowed.

mercury, many metal compounds, iodine, poinsettia plant parts

Follow your teacher’s instructions.

Always wash hands thoroughly after use. Go to your teacher for first aid.

FLAMMABLEOpen flame may ignite flammable chemicals, loose clothing, or hair.

alcohol, kerosene, potassium permanganate, hair, clothing

Avoid open flames and heat when using flammable chemicals.

Notify your teacher immediately. Use fire safety equipment if applicable.

OPEN FLAMEOpen flame in use, may cause fire.

hair, clothing, paper, synthetic materials

Tie back hair and loose clothing. Follow teacher's instructions on lighting and extinguishing flames.

Always wash hands thoroughly after use. Go to your teacher for first aid.

Page 156: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

PERIODIC TABLE OF THE ELEMENTS

Hydrogen

1

H1.008

Lithium

3

Li6.941

Sodium

11

Na22.990

Potassium

19

K39.098

Rubidium

37

Rb85.468

Cesium

55

Cs132.905

Francium

87

Fr(223)

Radium

88

Ra(226)

Barium

56

Ba137.327

Strontium

38

Sr87.62

Calcium

20

Ca40.078

Magnesium

12

Mg24.305

Beryllium

4

Be9.012

1

1 2

2

3

4

5

6

7

93 4 5 6 7 8

Hydrogen

1

H

1.008

Element

Atomic number

Symbol

Atomic mass

State ofmatter

Gas

Liquid

Solid

Synthetic

Yttrium

39

Y88.906

Zirconium

40

Zr91.224

Niobium

41

Nb92.906

Molybdenum

42

Mo95.94

Scandium

21

Sc44.956

Titanium

22

Ti47.867

Vanadium

23

V50.942

Chromium

24

Cr51.996

Technetium

43

Tc(98)

Ruthenium

44

Ru101.07

Manganese

25

Mn54.938

Iron

26

Fe55.847

Cobalt

27

Co58.933

Rhodium

45

Rh102.906

Actinium

89

Ac(227)

Lanthanum

57

La138.905

Hafnium

72

Hf178.49

Tantalum

73

Ta180.948

Dubnium

105

Db(262)

Seaborgium

106

Sg(266)

Hassium

108

Hs(277)

Meitnerium

109

Mt(268)

Bohrium

107

Bh(264)

Tungsten

74

W183.84

Rhenium

75

Re186.207

Osmium

76

Os190.23

Iridium

77

Ir192.217

Rutherfordium

104

Rf(261)

Lanthanide series

Actinide series

The number in parentheses is the mass number of the longest lived isotope for that element.

Cerium

58

Ce140.115

Thorium

90

Th232.038

Uranium

92

U238.029

Neptunium

93

Np(237)

Plutonium

94

Pu(244)

Americium

95

Am(243)

Neodymium

60

Nd144.242

Promethium

61

Pm(145)

Samarium

62

Sm150.36

Europium

63

Eu151.965

Praseodymium

59

Pr140.908

Protactinium

91

Pa231.036

Page 157: Mr. Miller - Table of Contents · 2018-11-01 · Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name,

Metal

Metalloid

Nonmetal

Recentlyobserved

10 11 12

13 14 15 16 17

18

The names and symbols for elements 112, 113, 114, 115, 116, and 118 are temporary. Final names will be selected when the elements’ discoveries are verified.

Gadolinium

64

Gd157.25

Terbium

65

Tb158.925

Dysprosium

66

Dy162.50

Holmium

67

Ho164.930

Erbium

68

Er167.259

Thulium

69

Tm168.934

Ytterbium

70

Yb173.04

Lutetium

71

Lu174.967

*

Curium

96

Cm(247)

Berkelium

97

Bk(247)

Californium

98

Cf(251)

Einsteinium

99

Es(252)

Fermium

100

Fm(257)

Nobelium

102

No(259)

Lawrencium

103

Lr(262)

Mendelevium

101

Md(258)

Platinum

78

Pt195.08

Gold

79

Au196.967

Nickel

28

Ni58.693

Copper

29

Cu63.546

Zinc

30

Zn65.39

Palladium

46

Pd106.42

Silver

47

Ag107.868

Cadmium

48

Cd112.411

Darmstadtium

110

Ds(281)

Roentgenium

111

Rg(272)

Mercury

80

Hg200.59

Lead

82

Pb207.2

Gallium

31

Ga69.723

Germanium

32

Ge72.61

Arsenic

33

As74.922

Indium

49

In114.82

Tin

50

Sn118.710

Aluminum

13

Al26.982

Silicon

14

Si28.086

Phosphorus

15

P30.974

Sulfur

16

S32.066

Chlorine

17

Cl35.453

Boron

5

B10.811

Carbon

6

C12.011

Nitrogen

7

N14.007

Oxygen

8

O15.999

Fluorine

9

F18.998

* *Ununquadium

114

Uuq(289)

*Ununtrium

113

Uut(284)

Ununbium

112

Uub(285)

Thallium

81

Tl204.383

Bismuth

83

Bi208.980

Polonium

84

Po208.982

Ununhexium

116

Uuh(291)

*Ununpentium

115Uup(288)

Helium

2

He4.003

Astatine

85

At209.987

Radon

86

Rn222.018

Krypton

36

Kr83.80

Xenon

54

Xe131.290

Argon

18

Ar39.948

Neon

10

Ne20.180

* *Ununoctium

118

Uuo(294)

Selenium

34

Se78.96

Bromine

35

Br79.904

Antimony

51

Sb121.757

Tellurium

52

Te127.60

Iodine

53

I126.904