mox thermal conductivity (xt-ads driver fuel)

10
IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 1 MOX thermal conductivity (XT-ADS driver fuel) V. Sobolev, B. Arien SCK·CEN, Boeretang 200, Mol, Belgium

Upload: sigourney-sandoval

Post on 31-Dec-2015

19 views

Category:

Documents


0 download

DESCRIPTION

MOX thermal conductivity (XT-ADS driver fuel). V. Sobolev, B. Arien SCK·CEN, Boeretang 200, Mol, Belgium. Introduction. Isotopic composition of the XT-ADS fuel has been described in Deliverable D1.1 of DM1. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 1

MOX thermal conductivity (XT-ADS driver fuel)

V. Sobolev, B. Arien

SCK·CEN, Boeretang 200, Mol, Belgium

Page 2: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 2

1. Introduction

• Isotopic composition of the XT-ADS fuel has been described in Deliverable D1.1 of DM1.

• Recommendations on main thermal and mechanical properties of the driver MOX and MA oxide fuels have been presented in Deliverable D3.4 of DM3.

• However, uncertainty still exists on irradiation degradation of thermal conductivity and other thermophysical and mechanical parameters of fuel.

• Up to now the EFR recommendations (of 1993) are used for irradiation induced degradation of MOX thermal conductivity, in spite of the fact that they are not in good agreement with later published recommendations.

Page 3: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 3

2. MOX thermal conductivity: open literature

recommendations

SourcePu content in HM, wt%

Pu fraction effect

Stoichio-metry dependence

Burnup dependence

Tang et al. (1978) ~20 - - -MATPRO-11.3 (1979) 5-30 - - -Martin (1982) 12-30 - + -Philipponneau (1992) ~20 - + +EFR (1993) ~20 - + +Baron (1998) 0-30 + + +HALDEN (1999) 3-12 - + +Duriez et al.(2000) 3-15 - + -

Carbajo et al. (2001) 3-15 - + -

Duriez&NFI (2003) 3-15 - + +

Page 4: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 4

2. MOX thermal conductivity: literature

recommendations

1

2

3

4

5

6

7

8

9

10

500 1000 1500 2000 2500

Temperature (K)

The

rmal

con

duct

ivit

y (

W m

-1 K

-1)

Tang (1978) 20 at.%Pu in HMMATPRO-11 (1979) 5-30 at.% Pu in HMMartin (1982) 12-30 at.% Pu in HMCOMETHE BN (1982) 30 wt.%Pu in HMPhilipponneau (1992) 20 at.%Pu in HMCEA (1992) 20-30 wt.%Pu in HMEFR(1993) 20-30 wt.%Pu in HM Baron (1998) 30 wt.%Pu in HMHALDEN (1999) 3-12 wt%Pu in HMDuriez (2000) 3-15 at.%Pu in HMCarbajo (2001) 3-12 wt.%Pu in HMUO2, Harding&Martin (1989)

MOX fuel (100%TD)O/M = 2, Bu = 0

Page 5: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 5

3. MOX thermal conductivity: fresh,

stoichiometric fuel

2.0

2.5

3.0

3.5

4.0

500 1000 1500 2000 2500

Temperature (K)

The

rmal

con

duct

ivit

y (

W m

-1 K

-1)

Tang (1978) 20 at.%Pu in HM

MATPRO-11 (1979) 5-30 at.% Pu in HM

Martin (1982) 12-30 at.% Pu in HM

COMETHE BN (1982) 30 wt.%Pu in HM

CEA (1992) 20-30 wt.%Pu in HM

Philipponneau (1992) 20 at.%Pu in HM

EFR(1993) 20-30wt.%Pu in HM

Baron (1998) 30 wt.%Pu in HM

HALDEN (1999) 3-12 wt%Pu in HM

Duriez (2000) 3-15 at.%Pu in HM

Carbajo (2001) 3-12 wt.%Pu in HM

UO2, Harding&Martin (1989)

MOX fuel (100%TD) O/M = 2.00 Bu =0

Page 6: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 6

4. Effect of stoichiomety deviation

1.5

2.0

2.5

3.0

3.5

4.0

500 1000 1500 2000 2500

Temperature (K)

The

rmal

con

duct

ivit

y (

W m

-1 K

-1)

Martin (1982) 12-30 at.% Pu in HM

COMETHE BN (1982) 30 wt.%Pu in HM

CEA (1992) 20-30 wt.%Pu in HM

Philipponneau (1992) 20 at.%Pu in HM

EFR(1993) 20-30wt.%Pu in HM

Baron (1998) 30 wt.%Pu in HM

Duriez (2000) 3-15 at.%Pu in HM

Carbajo (2001) 3-12 at.%Pu in HM

UO2, Harding&Martin (1989)

MOX fuel (100%TD) O/M = 1.98

Page 7: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 7

4. Stoichiometry deviation: supplementary thermal resistivity

0.0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500

Temperature (K)

The

rmal

res

ista

nce

(W

m W

-1)

Martin (1982) 12-30 at.% Pu in HM

COMETHE BN (1982) 30 wt.%Pu in HM

Philipponneau (1992) 20 at.%Pu in HM

EFR(1993) 20-30wt.%Pu in HM

Baron (1998) 30 wt.%Pu in HM

Duriez (2000) 3-15 at.%Pu in HM

Carbajo (2001) 3-12 at.%Pu in HM

MOX fuel (100%TD) O/M = 1.98, Bu = 0

Baron’s correlation overestimates; others are in a good agreement

Page 8: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 8

5. Burnup effect on thermal conductivity

1.5

2.0

2.5

3.0

3.5

4.0

500 1000 1500 2000 2500

Temperature (K)

The

rmal

con

duct

ivit

y (

W m

-1 K

-1) Philipponneau (1992) 20 at.%Pu in HM

EFR(1993) 20-30wt.%Pu in HM

Baron (1998) 30 wt.%Pu in HM

HALDEN (1999) 3-12 wt%Pu in HM

Carbajo (2001) 3-12 wt.%Pu in HM

Duriez&NFI (2003) 3-15 at.%Pu in HM

UO2, Harding&Martin (1989)

MOX fuel (100%TD) Bu = 10 at.%

Page 9: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 9

5. Burnup effect: supplementary thermal

resistivity

0.0

0.2

0.4

0.6

500 1000 1500 2000 2500

Temperature (K)

The

rmal

res

ista

nce

(K

m W

-1)

Philipponneau (1992) 20 at.%Pu in HM

EFR(1993) 20-30wt.%Pu in HM

Baron (1998) 30 wt.%Pu in HM

HALDEN (1999) 3-12 wt%Pu in HM

Carbajo (2001) 3-12 wt.%Pu in HM

Duriez&NFI (2003) 3-15 at.%Pu in HM

MOX fuel (100%TD) Bu = 10 at.%

EFR & Philipponneau correlations strongly underestimate;

Modified Duriez-NFI gives best estimate for others.

Page 10: MOX thermal conductivity  (XT-ADS driver fuel)

IP-Eurotrans, DM1-WP1.5 meeting, Lyon, October 10-11, 2006 10

ConclusionsConclusions

MOX thermal conductivity dependence on Pu content is neglected in most of models. Baron’s correlation takes it into account.

Baron’s correlation overestimates the effects of non-stoichiometry and burnup.

EFR model strongly underestimates the effect of burnup.

HALDEN, Carbajo (Lucata burnup model) and modified Duriez-NFI correlations can be used for prediction of burnup effect in XT-ADS MOX.