mos transistorseng.staff.alexu.edu.eg/~mmorsy/courses/undergraduate/ee...mos transistors tanford...

38
tanford University araswat EE 216 Winter 2013 / MOSFET 1 Prof. Krishna Saraswat Department of Electrical Engineering Stanford University Stanford, CA 94305 [email protected] MOS Transistors

Upload: others

Post on 10-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!1

Prof. Krishna Saraswat

Department of Electrical Engineering Stanford University Stanford, CA 94305

[email protected]

MOS Transistors

Page 2: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!2

1930: Patent on the Field-Effect Transistor!

Julius Lilienfeld filed a patent describing a three-electrode amplifying device based on the semiconducting properties of copper sulfide. He did not demonstrate the device experimentally

Page 3: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!3

1960 - MOS Transistor Demonstrated!

John Atalla and Dawon Kahng at Bell demonstrate the first successful MOS field-effect amplifier.

Dawon Kahng

John Atalla

Page 4: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!4

Outline

•  Current-voltage characteristics!

•  Scaling and short channel behavior!

•  Future MOS technologies!

Page 5: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!5

MOS Transistor!

•  VG provides control of surface carrier densities: Q=CV !

•  For VG << VT , the structure consists of two diodes back to back and only leakage currents flow. !

•  When VG is only slightly below VT a depletion region will be formed. !

•  For VG > VT , an inversion layer, i.e., a conducting channel, exists between source and drain and current will flow.!

•  For any further increase in VG the excess potential will result in an increase in the electron density in the channel !

The theory developed for the MOS capacitor can be extended directly to the MOS Field-Effect-Transistor (MOSFET) by considering the following structure.!

−Vbs

Vg

Vds

x

y

p-type substrate

n source+ n drain+0 L

depletion

regioninversion

channel

W

polysilicon

gategate

oxide

z

Enhancement mode MOSFET

Page 6: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!6

NMOS Transistor 3D Band Diagram!

N-channel enhancement mode MOSFET, VT > 0!

P-channel enhancement mode MOSFET, VT < 0!

VG = VD = 0 no carriers in the channel!

VG > 0, VD = 0 carriers in the channel but no movement between source and drain!

VG > VT,, VD > 0 electrons flow from source to drain!

electron current

Source: Sze (1981)

Page 7: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!7

P

N+N+

V (+)

ΙD

+VDG

P

N+N+

V (+)

ΙD

+VD (small)G

InversionLayer

DepletionRegion

D

P

N+N+

V V > VG

Inversion layer ends

ID

VD

ID

VD

ID

VD

D

P

N+N+

V V = VG

Inversion layerpinches off

DSAT

ID

VD

DSAT

Linear region !ID α VD!

Saturation region ID constant with VD. (Assumption valid only for long channel)!

Inversion layer pinch off!Onset of saturation!

Before pinch off!

Variation of Drain Current with VD!

(a)

(b)

(c)

(d)

Page 8: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!8

Complementary MOS (CMOS) Technology

< 0

Vg < 0 Vg > 0 N-channel MOSFET P-channel MOSFET

All the polarities for P-channel MOSFET are opposite to that of N-channel MOSFET

Page 9: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!9

•  Increase in VG will result in an increase in the electron density in the channel and thus the drain current.!

• After pinch off drain current saturates.!

Current-voltage characteristics!

IDS

VDS

VGS

VG < VT!

N-channel MOSFET

IDS

VDS

VGS

•  For P-channel MOSFET, all of the polarities are reversed and the inversion layer exists for VG < VT!

P-channel MOSFET

Page 10: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!10

CMOS Inverter!

PMOS

NMOS

Vin Vout

146 THE CMOS INVERTER Chapter 5

following interpretation of the inverter. When Vin is high and equal to VDD, the NMOStransistor is on, while the PMOS is off. This yields the equivalent circuit of Figure 5.2a. Adirect path exists between Vout and the ground node, resulting in a steady-state value of 0V. On the other hand, when the input voltage is low (0 V), NMOS and PMOS transistorsare off and on, respectively. The equivalent circuit of Figure 5.2b shows that a path existsbetween VDD and Vout, yielding a high output voltage. The gate clearly functions as aninverter.

A number of other important properties of static CMOS can be derived from this switch-level view:

• The high and low output levels equal VDD and GND, respectively; in other words,the voltage swing is equal to the supply voltage. This results in high noise margins.

• The logic levels are not dependent upon the relative device sizes, so that the transis-tors can be minimum size. Gates with this property are called ratioless. This is incontrast with ratioed logic, where logic levels are determined by the relative dimen-sions of the composing transistors.

• In steady state, there always exists a path with finite resistance between the outputand either VDD or GND. A well-designed CMOS inverter, therefore, has a low out-put impedance, which makes it less sensitive to noise and disturbances. Typical val-ues of the output resistance are in kΩ range.

• The input resistance of the CMOS inverter is extremely high, as the gate of an MOStransistor is a virtually perfect insulator and draws no dc input current. Since theinput node of the inverter only connects to transistor gates, the steady-state inputcurrent is nearly zero. A single inverter can theoretically drive an infinite number ofgates (or have an infinite fan-out) and still be functionally operational; however,increasing the fan-out also increases the propagation delay, as will become clearbelow. So, although fan-out does not have any effect on the steady-state behavior, itdegrades the transient response.

Figure 5.2 Switch models of CMOS inverter.

VDD VDD

VoutVout

Vin = VDD Vin = 0

Rn

Rp

(a) Model for high input (b) Model for low input

chapter5.fm Page 146 Monday, September 6, 1999 11:41 AM

•  For |Vg| < |Vt| the transistor is off represented by open circuit!•  For |Vg| > |Vt| the transistor is on represented by a resistor!•  Output is an inverted form of input waveform!•  CMOS inverter is the most important building block of modern

logic circuits!•  What is the power dissipation in this circuit?!

Page 11: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!11

Beyond Pinch-off!Gradual Channel Approximation!

p y

Linear Region (small VD)!

si

x xxE

ερ )(

=∂∂

)( tgoxi VVCQ −−=yE

xE yx

∂>>

∂∂

))(()( tgoxi VyVVCyQ −−−≈

si

yx yxyE

xE

ερ ),(

=∂

∂+

∂∂

CoxVg = −(Qi +Qd )inversion

depletion

Vertical field Ex → inversion layer charge!Lateral field Ey → flow of carriers from source to drain !

Page 12: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!12

Current – Voltage Dependence!

dyydV

CdyydQ

oxi )()(

∫∞

=0

),()( dxyxnyns

y

Sheet Charge density!

( ) ( ) !"

#$%

&''(

)**+

,−−+

−=

dyydVqyQ

dyqyQdDqJ in

ine

)(/)(/)(µ Current / Width (z-direction)!

!"

#$%

&+!"

#$%

&−=

dyydVyQ

dyydQDJ in

ine

)()()(µ

Qi (y) = −qns (y) ≈ −Cox (Vg −V (y)−Vt )€

Je (y) = qDndn(y)dy

+ qµnn(y)Εy

Diffusion! Drift!

Charge/Area!

(1)!

Page 13: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!13

Current vs Voltage!

!"

#$%

&+!"

#$%

&−=

dyydVyQ

dyydQDJ in

ine

)()()(µ

y Diffusion! Drift!

Note that Ey and Qi(y) are negative!

When VGS>VT & VDS>VT diffusion current is negligible!!

dyydVyQJ ine)()(µ= ))(()( tgoxi VyVVCyQ −−−≈

∫∫ −−−=DSV

tGSoxn

L

e dVVVVCdyJ00

)(µ

JD = −WL

µnCox (VGS −Vt )VDS −12VDS2#

$ % &

' ( (2)!

Page 14: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!14

•  For the case where backside is grounded (VB = 0) VT is given by the equation,!

•  In many circuit applications backside is biased. For finite value of VB !

VG = VFB + Vox + φs - φp + VB

VT = VFB +toxεox

2εsqNa −2 φp( ) − 2φ p

Threshold Voltage!

(3)!

P

N+N+

V

VD

G

B

Page 15: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!15

Effect of Back Bias!

VB < 0 VB = 0

Page 16: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!16

Effect of Back Bias!•  In a normal MOS capacitor, application of VB will result mostly in

change in Vox as φs is fixed at -φp.

•  If there is a nearby n-type region (drain) which contacts with the inverted surface layer the situation changes. When the surface is inverted, there is basically a P-N junction at the surface. A reverse bias can be applied across the P-N junction.

•  If VB is zero, inversion occurs when φs = -φp.

•  If VB < 0, the semiconductor still attempts to invert when φs reaches -φp. However, with VB < 0 any inversion-layer carriers that do appear at the semiconductor surface migrate laterally into the source and drain because these regions are at a lower potential. Not until φs = -φp - VB, will the surface invert and normal transistor action begin. In essence, back biasing changes the inversion point in the semiconductor from -φp to -φp- VB.

Page 17: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!17

Effect of Back Bias!

• An applied reverse bias between the induced surface n-region and the bulk increases the charge Qd in the depletion region.

• Since the negative charge induced by VG - VB is shared between the depletion and inversion layers, an increase of the charge in the depletion layer means that there is less charge available to form the inversion layer for a given gate voltage.

• Looked at another way, more gate voltage must be applied to induce the same number of electrons in the inversion layer when there is a reverse bias.

• With reverse bias present, the surface potential at the onset of strong inversion becomes φs = -φp + (VD - VB) rather than φs = -φp.

Page 18: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!18

With VD and VB applied:

xdmax =2κsεo −2φp +VD −VB( )

qNa

VT =VD + VFB +toxεox

2 KsεoqNa VD − 2φp −VB( ) − 2φp(4)

where

Cox' =

εoxtox

A = CoxA

Page 19: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!19

! ! ! ! ! ! ! !!

For small values of VD and VB = 0, Expression for ID can be approximated by!!!!This is known as LINEAR REGION.!

These equations are valid only as long as an inversion layer exists all the way from source to drain (LINEAR REGION).!

As VD↑, the effective voltage between the gate and the channel near the drain will become less than VT. This happens when VG - VT = VD. This value of drain voltage is called the saturation voltage VDSAT (or pinch off voltage because the channel is pinched off at the drain), and for higher drain voltages, a channel will not exist all the way to the drain. !

(5)

D

P

N+N+

V V > VG

Inversion layerends (pinches off)

DepletionRegion

DSAT

ID =WL

µnεoxtox

(VGS −Vt )VDS −12VDS2$

% & '

( ) ≈WL

µnεoxtox(VGS −Vt )VDS

Page 20: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!20

Electrons drift along in the inversion layer and are injected into the depletion region. There the high electric field pulls them into the drain.!

Further increase in VD does not change ID (to first order), ID is constant for VD > VDSAT (SATURATION REGION).!

Exact VDSAT can be derived by letting QI (y=L) = 0 in equation !

!

!

! ! ! ! ! ! !

! ! ! ! ! ! !(6)!

D

P

N+N+

V V > VG

Inversion layerends (pinches off)

DepletionRegion

DSAT

0)()( , =−−−≈ tSatDgoxi VVVCLQ

)(, tgSatD VVV −=

))(()( tgoxi VyVVCyQ −−−≈

Page 21: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!21

If (6) is substituted into (5), the saturation current is!

! ! ! ! ! ! ! !(7)!

IDSAT≈W2L

µnεoxtox

VG − VT( )2

Further increase in VD does not change ID (to first order), ID ≈ constant for VD > VDSAT!

SATURATION REGION.!

Page 22: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!22

Why doesn’t increasing VD also increase I? If the current is constant, then the electric field, Ε, must also be constant along most of the channel.

Why does the current remain constant past pinchoff (saturation):

N+ N+

P

D

5V

S

Depleted

VG>VT

Page 23: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!23

Near pinchoff, the voltage is decreasing approximately linearly, hence the Ε field is “relatively” constant throughout.!

Why the current remains constant past pinchoff (saturation):!

N+ N+

P

D

5V

1 2 3 4 5S

DepletedVoltage

0

VG>VT

Page 24: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!24

•  At higher Vd, there is a larger depleted region, hence, greater voltage drop. !

•  Ε is still linear in the channel but very large in depletion region.!

•  Carriers rapidly get swept out of depletion region!

Why the current remains constant past pinchoff (saturation):!

N+ N+

P

DS

10V

1 2 3 456789

Depleted

0Voltage

VG>VT

Page 25: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!25

VT y( ) = VFB +1! C ox

2εsqNa −2φp − VB − V y( )( )[ ] − 2φp + V y( )

Exact Expressions!

QI y( ) = − " C ox VG − VFB + 2φp −V y( )[ ] + 2εsqNa 2 φp −VB + V y( )[ ]

ID =WL

µn " C ox VG −VFB + 2φp −VD

2%

& ' (

) * + , -

VD −232qεsNa VD − 2 φp −VB( )

32 − −2φp −VB( )

32

%

& '

(

) * / 0 1

VDSAT= VG −VFB + 2φp +

q εs Na

% C ox2 1 − 1 +

2 % C ox2 VG −VFB −VB( )

q εs Na

&

' ( (

)

* + +

Page 26: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!26

What about the Diffusion Current?!VGS=0 VDS=0 !

Ec!

Ev!

Ef!

VGS~0 VDS=+VDD!

Ec!

Ev!

Efn! VDD!

Sub-threshold regime

• Most of the VDS drops across the reverse-biased S-D Junction. The Channel bands are still ~ flat. Therefore Jdrift is negligible

• Gradient of free carriers along channel is large. Diffusion component Jdiffusion dominates.

!"

#$%

&+!"

#$%

&−=

dyydVyQ

dyydQDJ in

ine

)()()(µ

Diffusion! Drift!

Page 27: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!27

Subthreshold Behavior!

§ When the surface is in weak inversion (i.e., 0 < φs < -φp, VG < VT), a conducting channel starts to form and a low level of current flows between source and drain.!

§ Diffusion current due to carriers from source spilling over source barrier into channel due to application of VG to lower φs !

§ Weak dependence on VDS in long-channel FET!

VGS

ID

VT

Subthresholdcurrent

Ideal

VGS

Log[ID]

source

VG

Fermi Dirac distribution

drain

channel

Page 28: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!28

Sub-threshold Conduction!

Sub-threshold swing S is limited to mkT/q

VG

Log[ID]

IOFF

ION

Qe (y) ∝expφskT /q$

% &

'

( )

S =∂VG

∂(log ID )=∂VG∂φS

∂φS∂(log ID )

= 1+CS

Cox

$

% &

'

( ) kTq

Inversion charge

Drain current

Subthreshold swing

ID ∝Qe ∝expVG −VTmkT /q$

% &

'

( )

Gate to channel potential coupling m > 1 in MOSFET

60 mV/dec due to Fermi-Dirac distribution

VT €

φS =Cox

Cox + CS

VG −VT( ) =VG −VT( )m

Cox

Cs = Channel Capacitance

φs

VG!

m =Cox +CS

Coxwhere

Page 29: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!29

•  The intercept of √ID vs VD gives the value of threshold voltage VT. This technique is widely used to extract the value of VT.!

•  The region depicted by the dotted curve below VT is the WEAK INVERSION REGION.!

VT Extraction"

IDSAT≈

W2 L

µnεoxtox

VG − VT( )2

=W2 L

µnεoxtox

VD − VT( )2

VD = VG ! !

Page 30: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!30

Effect of Substrate (Back Gate) Bias!

The change in VT due to VB is described as!

! ! ! ! ! ! ! ! !(8)!

! ! ! ! ! ! ! ! !!

P

N+N+

V

VD

G

B

ΔVT =1# C ox

2εsqNa −2φp −VB − −2φp[ ]

≈1# C ox

2εsqNa −VB

= γ −VB

The body voltage (or backside bias) makes it easier or harder to reach inversion: --> Change in threshold voltage (VT).

(9)!

VT = VFB +toxεox

2 KsεoqNa − 2φp −VB( ) − 2φpFor small VD

Page 31: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!31

Where!!! ! ! ! ! ! ! !!

Equations (5) and (7) can be used to approximate the I-V characteristic if VT is replaced with VT + ∆VT.!

γ =1# C ox

2εsqNa = body factor (10)

Page 32: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!32

In the saturation region, as VD é, the depletion region near drain expands, the pinch-off point of the channel moves back towards source. The effective channel becomes shorter, ID é because it is proportional to µ/Leff. The depletion region expands as √VD assuming a step junction. Provided the device has a channel length >> ΔXD then the change in channel length is approximated by difference in the depletion width of a step junction.

V > V

P

N+N+

V DG D SAT

V D1V D2

Channel Length Modulation!

Δ L ≈ −2 εsq Na

VD − VDSAT( ) (11)

Page 33: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!33

Therefore, a finite output impedance results. For most applications, this is modeled as!

! ! ! ! ! ! ! ! !!

where λ = channel length modulation parameter!

IDSAT=

W2L

µn " C ox VG −VT( )2 1+λVD( )

The decrease in L is responsible for an increase in ID in the saturation region.!!

(12)

Ι

VD

D

Page 34: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!34

Circuit Models!

The MOS transistor may be modeled in the following manner, by inspection of its physical structure.

V

V

V

Page 35: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!35

Of the elements in the model, only the gate to channel capacitance is essential; the rest are parasitic elements which degrade performance. Technology improvements are generally designed to reduce these parasitics.

In many cases, the equivalent circuit can be reduced to the following for small signals:

↑G

S

D

CDB

C GD

g Vm G rdsCGS

Note that many of the parameters in the model are voltage sensitive. Accurate large signal model usually requires computer techniques.

Page 36: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!36

Defined from the ID-VD characteristics in both the linear and saturation regions

ID =WL

µnεoxtox

VG −VT[ ]VD

IDSAT ≈W2 L

µnεoxtox

VG −VT( )2

gm =∂ID∂VG VD = const

The transconductance or gain of the device is defined as:

Transconductance, gm!

Page 37: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!37

B. Gate Capacitances, CGS and CGD The gate capacitances vary as the device moves from the linear to saturation region,

CGS = 1/2 Cox to 2/3 Coxfrom linear to saturation (14)

CGD = 1/2 Cox to 1/3 Coxfrom linear to saturation (15)

gm =∂ID∂VG VD = const

≈WL

µnεoxtox

VD for VD <VDSAT , linear region

≈WL

µnεoxtox

VG −VT( ) for VD >VDSAT , saturation region

(13)

Page 38: MOS Transistorseng.staff.alexu.edu.eg/~mmorsy/Courses/Undergraduate/EE...MOS Transistors tanford University araswat ! 2! EE 216 Winter 2013 / MOSFET! 1930: Patent on the Field-Effect

tanford University araswat !

EE 216 Winter 2013 / MOSFET!38

Output Impedance, rds! The output impedance or resistance of the device is defined as:

Note: Small signal model applicable to analog applications is NOT APPLICABLE to digital applications.

rds =∂VD∂ID VG = const

≈1

WL

µnεoxtox

VG −VT( )&

' (

)

* +

for VD <VDSAT , linear region

≈1λID

for VD >VDSAT , saturation region (16)