morphometricity: measuring the neuroanatomical...

35
1 Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu a,b , Tian Ge a,c,d , Avram J. Holmes a,e,f , Jordan W. Smoller c,d , Randy L. Buckner a,g , and Bruce Fischl a,b ; for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)* a Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA; b Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02138, USA; c Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; d Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA; e Department of Psychology, Yale University, New Haven, CT, 06520, USA; f Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; g Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02128, USA. * Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Upload: others

Post on 15-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

1

Morphometricity:MeasuringtheNeuroanatomicalSignatureofaTrait

MertR.Sabuncua,b,TianGea,c,d,AvramJ.Holmesa,e,f,JordanW.Smollerc,d,RandyL.Bucknera,g,and

BruceFischla,b;fortheAlzheimer’sDiseaseNeuroimagingInitiative(ADNI)*

aAthinoulaA.MartinosCenterforBiomedicalImaging,DepartmentofRadiology,Massachusetts

GeneralHospital,Charlestown,MA02129,USA;bComputerScienceandArtificialIntelligence

Laboratory,MassachusettsInstituteofTechnology,Cambridge,MA02138,USA;cPsychiatricand

NeurodevelopmentalGeneticsUnit,CenterforHumanGeneticResearch,MassachusettsGeneral

Hospital,Boston,MA02114,USA;dStanleyCenterforPsychiatricResearch,BroadInstituteofMIT

andHarvard,Cambridge,MA02138,USA;eDepartmentofPsychology,YaleUniversity,NewHaven,

CT,06520,USA;fDepartmentofPsychiatry,MassachusettsGeneralHospital,HarvardMedicalSchool,

Boston,MA02114,USA;gDepartmentofPsychologyandCenterforBrainScience,HarvardUniversity,

Cambridge,MA02128,USA.

*DatausedinpreparationofthisarticlewereobtainedfromtheAlzheimer’sDiseaseNeuroimaging

Initiative(ADNI)database(adni.loni.usc.edu).Assuch,theinvestigatorswithintheADNIcontributed

tothedesignandimplementationofADNIand/orprovideddatabutdidnotparticipateinanalysisor

writingofthisreport.AcompletelistingofADNIinvestigatorscanbefoundat:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Page 2: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

2

Abstract

Complexphysiologicalandbehavioraltraits,includingneurologicalandpsychiatricdisorders,often

associatewithdistributedanatomicalvariation.Thispaperintroducesaglobalmetric,called

morphometricity,asameasureoftheanatomicalsignatureofdifferenttraits.Morphometricityis

definedastheproportionofphenotypicvariationthatcanbeexplainedbymacroscopicbrain

morphology.Weestimatemorphometricityviaalinearmixedeffectsmodelthatutilizesan

anatomicalsimilaritymatrixcomputedbasedonmeasurementsderivedfromstructuralbrain

MagneticResonanceImaging(MRI)scans.Weexaminedover3,800uniqueMRIscansfrom9large-

scalestudiestoestimatethemorphometricityofarangeofphenotypes,includingclinicaldiagnoses

suchasAlzheimer’sdisease;andnonclinicaltraitssuchasmeasuresofcognition.Ourresults

demonstratethatmorphometricitycanprovidenovelinsightsabouttheneuroanatomicalcorrelates

ofadiversesetoftraits,revealingassociationsthatmightnotbedetectablethroughtraditional

statisticaltechniques.

Significance

Neuroimaginghaslargelyfocusedontwogoals:mappingassociationsbetweenneuroanatomical

featuresandphenotypes,andbuildingindividual-levelpredictionmodels.Thispaperpresentsa

complementaryanalyticstrategycalledmorphometricitythataimstomeasuretheneuroanatomical

signaturesofdifferentphenotypes.Inspiredbypriorworkonheritability,wedefinemorphometricity

astheproportionofphenotypicvariationthatcanbeexplainedbybrainmorphology,e.g.,as

capturedbystructuralbrainMagneticResonanceImaging(MRI).Inthedawningeraoflarge-scale

datasetscomprisingtraitsacrossabroadphenotypicspectrum,morphometricitywillbecriticalin

prioritizingandcharacterizingbehavioral,cognitive,andclinicalphenotypesbasedontheir

neuroanatomicalsignatures.Furthermore,theproposedframeworkwillbesignificantindissecting

thefunctional,morphological,andmolecularunderpinningsofdifferenttraits.

Page 3: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

3

Introduction

Thestructural,functional,andmolecularpropertiesofthebrainsupportnumeroustraitsspanning

thebehavioral,cognitiveandclinicalspectra.Neuroanatomicalfeaturesareinturninfluencedby

factorssuchasage,sex,training,andgenetics[1-4].Neuroimagingallowsustocharacterizethese

bidirectionalassociationsbyrevealingvariationinbrainstructureandfunctionacrossindividuals.

Conventionalmethodsthatweusetoprobetheseassociationsaimtoanatomicallymapeffects,build

predictionmodels,ortesthypotheses.Yet,wedonothaveastandardtechniquetomeasureand

comparetheoftenspatiallydistributedandcomplexpatternsofneuroanatomicalcorrelatesof

differentphenotypes.Herewepresentanovelmetriccalledmorphometricitythatoffersthis

capability.

Todate,structuralneuroimagingstudieshaveprimarilyreliedonthreeclassesofanalyticapproaches.

Thefirststrategyishypothesis-drivenandutilizesaregressionmodeltoexamineassociations

betweenbehavioraltraitsorclinicalconditionsandasmallnumberofaprioriimage-derived

measurements,suchasthoserestrictedtoananatomicalregionofinterest(ROI)[5].TheROI-based

approachprovidesusefulinsightsabouttheunderlyingbiologyandcanbeefficientinlimitedsample

sizescenarios,butisrestrictedtothetestedhypothesis.Thesecondapproachisexploratoryandaims

tocomputemapsofassociationsbyconductingbrain-widetests[6],asexemplifiedinvoxel-based

morphometry(VBM)[7],orvertex-wisecorticalthicknessanalysis[seee.g.,8].Suchmassive

univariateanalysescanofferacomprehensivepictureoftheunderlyinganatomicalassociations,yet

theycanalsobeinefficientinrevealingsubtle,multivariatepatternsofassociation,becauseeach

anatomicallocationistypicallyexaminedinisolationandtheburdenofmultipletestingcorrection

canconstrainstatisticalpower.ThethirdclassincludesmultivariatetechniquessuchasCanonical

CorrelationAnalysis(CCA)[9],PartialLeastSquares(PLS)[10],Bayesianinferencealgorithms[11],or

othermachinelearningmethods[12,13].Thesestudiesarefocusedoneitherdiscoveringthe

multivariatepatternsofassociationordemonstratingindividual-levelpredictioncapabilities,butthe

biologicalinterpretationoftrainedmultivariatemodelscanbechallenging[14].Furthermore,these

methodsoftensufferfromhighcomputationaldemand,andcanbesensitivetoimplementation

details,suchasthechoiceoflearningrule,optimizationalgorithm,andlocaloptimaintraining.

Page 4: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

4

Wepresentmorphometricityanalysisasanovelapproachtoexaminetheglobalstatistical

associationbetweenbrainmorphologyandobservabletraits.Inspiredbypriorworkontrait

heritabilityinpopulationandstatisticalgenetics[15,16],wedefinemorphometricityasthe

proportionofphenotypicvariationthatcanbeexplainedbybrainmorphology,e.g.,ascapturedby

measurementsderivedfromstructuralbrainMagneticResonanceImaging(MRI)scans.UnlikeROI-

basedormassiveunivariateassociationtests,morphometricityanalysisisnotconcernedwithspecific

anatomicalstructuresorthepreciseanatomiclocalizationofeffects.Incontrasttotheapplicationof

machinelearningtopopulationdata,theprimaryaimofmorphometricityanalysisisnottomaximize

individual-levelpredictionaccuracy,butexamineandquantifystatisticalassociations.Theproposed

strategythusaffordsauniqueperspectiveonthebiologicalunderpinningsofdifferentphenotypes,

andallowsustocompareandcontrastimagingmodalities,typesofanatomicalmeasurements,and

processingstreams.

Morphometricityisgroundedinlinearmixedeffects(LME)modeling,aclassicalstatisticalframework

thatwasrecentlyemployedinpopulationgeneticstoquantifytheheritabilityofatraitusinggenome-

widegeneticvariants[17-19].Themodelrelatesthevariationinbrainmorphologycomputedfrom

brain-wide,MRI-derivedmeasurementstothevariationinobservabletraits,andcanbefittedusing

well-established,robustcomputationaltools.Inourimplementation,weuseFreeSurfer[20],afreely

available,widelyused,andextensivelyvalidatedbrainMRIanalysissoftwarepackage,to

automaticallyprocessstructuralMRIscansandobtainavectorofvolumetricmeasurementsacross

subcorticalstructuresandcorticalthicknessmeasurementsacrosstheentirecorticalmantle,which

constituteacomprehensivedescriptionofthestructuralneuroanatomy.

Weappliedthemorphometricityanalysistoover3,800uniquebrainMRIscansfrom9large-scale

studiesandcomputedthemorphometricityofclinicalconditionsincludingAlzheimer’sdisease,

attention-deficithyperactivitydisorder(ADHD),schizophrenia,autismspectrumdisorder,and

Parkinson’sdisease;andnonclinicaltraitsincludingsex,age,intelligence,educationlevel,andan

arrayofcognitivemeasures.Ourresultsdemonstratethatmorphometricityanalysispromisestooffer

auniqueperspectiveontherelationshipbetweenbrainanatomy,andbehavioral,cognitiveand

physiologicaltraits.

Page 5: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

5

Results

OverviewoftheModel.Theproposedmorphometricityanalysisisbasedonthefollowinglinear

mixedeffects(LME)model:

𝒚 = 𝑿𝜷 + 𝒂 + 𝝐, (1)

where𝒚isan𝑁-dimensionalcolumnvectorofaquantitativephenotypewith𝑁beingthesamplesize

(i.e.,numberofsubjects),𝑿isthe(design)matrixofconfoundingvariables(sometimescalled

covariatesornuisancevariables)suchasageandsex,𝜷isthe(fixedeffect)coefficientvector,𝒂 ∼

N(𝟎, 𝜎/0𝑲/)isan𝑁-dimensionalrandomeffectvectordrawnfromazero-meanmultivariateGaussian

distributionwithacovariancematrixthatisequaltothescaledanatomicsimilaritymatrix(ASM)𝑲/,

andtheelementsofthenoisevector𝝐areassumedtobedrawnfromindependentandzero-mean

Gaussiandistributionswithhomogeneousvariance𝜎30.TheASMencodesglobalmorphological

resemblancebetweenpairsofindividualsinthesample,andinprinciplecanbeanynon-negative

definitematrixwithitsdiagonalelementsconstrainedtobeequalto1onaverage,and𝜎/0canthus

beinterpretedasthetotalvariancecapturedbytheASM.Inthispaper,weconsideredtwotypesof

intuitiveandwidelyusedmetricsthatquantifythesimilarityofvolumetricandcorticalthickness

measurementsextractedfromstructuralbrainMRIscansbetweenpairsofindividuals:(1)alinear

similaritymetric(i.e.,innerproductbetweennormalizedimagingmeasurements);and(2)anonlinear

Gaussian-typesimilaritymetric(seeMethods).Usingamodelselectionapproach,wefoundthatthe

Gaussiansimilaritymetricprovidedconsistentlybetterdescriptionofthedataacrossthetraitswe

studied(seeMethodsandSupplementaryTableS1).Therefore,allreportedmorphometricity

estimateswerebasedontheGaussianmetric.

Formally,wedefinemorphometricitybasedontheLMEmodelofEquation(1)as:

𝑚0 ≐𝜎/0

𝜎/0 + 𝜎30=𝜎/0

𝜎60,(2)

where𝜎60isthephenotypicvariance.Morphometricityisthustheproportionofphenotypicvariation

thatcanbeexplainedbybrainmorphology,thevariationofwhichiscapturedbytheASM.Estimates

ofmorphometricitycanbecomputedbypluggingtherestrictedmaximumlikelihood(ReML)

estimates[21,22]ofthevariancecomponents,𝜎/0and𝜎30,intoEquation(2).

Page 6: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

6

Weextendthisdefinitiontothecase-controldesign,i.e.,binarydiseasetraits(affectedvs.

unaffected),usingtheclassicalliability-thresholdmodel,whichiswidelyemployedinpopulationand

statisticalgeneticstudies[23,24].Themodelassumesthattheunderlyingdiseaseliability(whichisa

quantitativevariable)followsaGaussiandistributionandindividualsarecases(affected)iftheir

liabilityexceedsathreshold.Themorphometricityestimate𝑚0foradiseasetraitontheobserved

scale,obtainedbyfittingthemodelofEquation(1)tothebinaryphenotypedata,canbeeasily

transformedtotheliabilityscale[24,25]:

𝑚90 = 𝑚0 𝐾(1 − 𝐾)

𝜑(𝑡)0𝐾(1 − 𝐾)𝑃(1 − 𝑃) ,(3)

where𝑚90isthemorphometricityontheliabilityscale,𝐾istheprevalenceofthediseaseinthe

generalpopulation(i.e.,theproportionofthepopulationhavingthedisease),𝑃istheprevalenceof

thediseaseinthestudysample,𝑡 = ΦBC(1 − 𝐾)istheliabilitythreshold,ΦisthestandardGaussian

cumulativedistributionfunction,and𝜑isthestandardGaussiandensityfunction.Inrealdisease

studies,casesareoftenconsiderablyoversampledrelativetotheirpopulationprevalence(knownas

non-randomascertainment),inwhichcase𝑃islargerthan𝐾.Transformingmorphometricity

estimatesfromtheobservedscaletotheliabilityscalemakesthemindependentofpopulationand

sampleprevalence,andthuscomparableacrossdifferentdiseases.

OverviewoftheData.WeanalyzedbrainMRIscansandtraitdatafromover3,800uniqueindividuals

spanning9large-scalestudies:theHarvard/MassachusettsGeneralHospitalBrainGenomic

SuperstructProject(GSP)[26],theHumanConnectomeProject(HCP)[27],theAlzheimer’sDisease

NeuroimagingInitiative(ADNI)[28],theAttention-DeficitHyperactivityDisorder(ADHD200)sample

[29],theOpenAccessSeriesofImagingStudies(OASIS)cross-sectionalsample[30],theCenterfor

BiomedicalResearchExcellence(COBRE)schizophreniasample[31],theMINDClinicalImaging

Consortium(MCIC)schizophreniasample[32],theAutismBrainImagingDataExchange(ABIDE)[33],

andtheParkinsonProgressionMarkerInitiative(PPMI)[34].SeetheMethodssectionforfurther

detailsonthedatasets.Thetraitsofinterestweregroupedintothreecategories:clinicaldiagnoses,

generalnonclinicaltraitsandmeasuresofcognition.

MorphometricityofClinicalDiagnoses.TheclinicaltraitsweexaminedincludedAlzheimer’sdisease,

attention-deficithyperactivitydisorder(ADHD),schizophrenia,autismspectrumdisorder,and

Page 7: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

7

Parkinson’sdisease.Table1liststhecharacteristicsofthecorrespondingsamples,alongwith

morphometricityestimates(ontheliabilityscale)andassumedpopulationprevalencevalues[35-41].

Figure1showstheestimatedmorphometricityvaluesontheliabilityscale.Ouranalysesrevealed

thatAlzheimer’sdiseaseissubstantiallymorphometric(witha95%confidenceintervalof[0.94-1.00]),

suggestingthatthisclinicalconditionisassociatedwithasubstantialanatomicalsignature.Onthe

otherhand,ADHD,schizophreniaandautismshowedmoderatemorphometricityvalues,allgreater

than0.35.Finally,wefoundthatParkinson’sdiseasewasmodestlymorphometric,withanestimated

liability-scalevalueof0.20.Allexaminedclinicalconditionswerestatisticallysignificantlyassociated

withwhole-brainmacroscopicmorphology,i.e.,theestimatedmorphometricityvalueswere

significantlylargerthanzero(allp-values<0.005).SupplementaryTableS2listspointestimatesof

morphometricityandtheirstandarderrorscomputedviajackkniferesampling[42].Theseresultsare

instrongagreementwiththeparametricestimatesinTable1.

Wehadaccesstotwoindependentsamplesthatallowedustoreplicateourmorphometricity

estimatesofAlzheimer’sdisease(OASIS)andschizophrenia(COBRE).Weobservedthattherewas

strongagreementbetweentheestimatesfromindependentsamples(Figure1).SupplementaryTable

S3providesfurtherdataaboutthesereplicationanalyses.

MorphometricityofGeneral,NonclinicalTraits.Thenonclinicaltraitsweexaminedwereage,general

intelligence(IQ),sex,andeducationlevel.Table2liststhecharacteristicsofthesamplesusedinthe

primaryanalyses,alongwiththeestimatesofmorphometricity.Theseresultsrevealedthatallthe

examinedgeneraltraitsaresignificantlyandsubstantiallymorphometric(Figure2);all

morphometricitypointestimatesweregreaterthan0.8,andallp-values<1e-8.SupplementaryTable

S2listsmorphometricityestimatesandtheirstandarderrorscomputedviajackkniferesampling.

TheseresultsandtheparametricestimatesinTable1arevirtuallyidentical.

Wehadaccesstoindependentreplicationsamplesforallthegeneralnonclinicaltraitsweexamined.

ItcanbeseeninFigure2thatthereplicationanalysesrevealedremarkablyconsistent

morphometricityestimates.SupplementaryTableS4providesfurtherdataaboutthesereplication

analyses.

Page 8: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

8

ContrastingwithROI-basedAssociationAnalyses.Themostcommonanalyticstrategyintoday’s

neuroimagingstudiesinvolvesexaminingassociationsbetweentraitsandmeasurementsfrom

regionsofinterest(ROIs).Ourgoalinthisanalysiswastocontrasttheproposedwhole-brain

morphometricityanalysiswithsuchROI-basedtechniques.Werestrictedouranalysistothesix

phenotypes(age,IQ,sex,education,Alzheimer’sdisease,andschizophrenia),forwhichwehadtwo

independentdatasets.Wethenusedoneofthesamples(thereplicationsampleintheanalyses

above)forthediscoveryofthemostsignificantlyassociatedROIwiththetrait,andtheothersample

(theprimarysampleintheanalysesabove)toquantifythestrengthandmagnitudeofassociation.

SupplementaryTableS5liststhestructuresthatexhibitedthestrongestassociationwiththetraitsin

thediscoveryanalysis.

Figure3visualizesthemagnitudeofassociationbetweentheROI-basedmeasurementsand

phenotypicvariation,assessedusingthesameLMEmodelingframeworkofwhole-brain

morphometricity.Here,wereplacedtheglobalASMwithonecomputedbasedonROImeasurements

(seeMethodsforfurtherdetails).ItcanbeseenthattheproportionofvarianceexplainedbyROI-

basedmeasurementswasconsistentlylowerthanwhole-brainmorphometricityestimates(with

generalintelligenceexhibitingthesmallestdiscrepancy).Mostnotably,foreducationand

schizophrenia,ROI-basedassociationsweremuchweaker(bothinmagnitudeandstatistical

significance)thanwhole-brainassociations(Figure3andSupplementaryTableS5).Infact,education

andschizophreniadidnotexhibitastatisticallysignificantcorrelationwithindividualROI-based

measurements,whilewhole-brainmorphometricityanalysesrevealedsignificantassociations.

MorphometricityAnalysisofCognitiveMeasures.WeusedthemostrecentreleaseoftheHuman

ConnectomeProject(HCP)data(downloadedonDecember15,2015)tocomputemorphometricity

estimatesforanarrayofcognitivemeasures.Ourprimaryanalysisreliedon190non-twinsubjectsof

non-HispanicEuropeanancestry(28.9+/-3.8years,47.3%female),drawnfromseparatefamilies(i.e.,

therewerenosiblingsinthissample).Figure4showsthemorphometricityestimatescomputedfor

variablesthatmeasuresustainedattention,non-verbalandverbalepisodicmemory,working

memory,executivefunction,delaydiscounting,language(vocabularycomprehensionandreading

decoding),spatialorientation,processingspeed,fluidintelligence,andself-regulation(impulsivity).

Weconductedasecondary(replication)analysison208non-Hispanicwhitetwins(29.4+/-3.2years,

Page 9: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

9

61.4%female),withonetwindrawnfromeachfamily,andthustherewerenosiblingsinthis

replicationsample.Figure4showstheresultsobtainedfromthissecondaryanalysisaswell.

Ourresultsdemonstratedthatallexaminedvariables,exceptforthemeasureofself-regulation,are

statisticallysignificantlymorphometric.Wenotefurtherthattherewasanimportantamountof

variabilityinthedegreeofmorphometricityacrosscognitivemeasures.Thisvariationwasremarkably

consistentbetweentheprimaryandsecondaryanalyses.Measuresofattention,cognitiveflexibility,

workingmemory,verbalepisodicmemory,andinhibitionweresubstantiallymorphometric(with

estimatesgreaterthan0.80inbothprimaryandsecondaryanalyses).Measuresoflanguage,non-

verbalepisodicmemory,spatialorientation,processingspeed,andfluidintelligenceweremoderately

morphometric(withpointestimatesgreaterthan0.50).

Discussion

Morphometricity:ANovelMetrictoQuantifyWhole-brainAssociationswithaTrait.Inthispaper,

weintroducedanoveltechniqueforanalyzingtheneuroanatomicalunderpinningsofvariousclinical,

physiological,andbehavioraltraitsusinglarge-scaleneuroimagingdata.Incontrastwithassociation

testingtechniqueswidelyusedintoday’sneuroimagingstudies,ourapproachdoesnotfocusona

prioriROIsorconductindependent(massiveunivariate)interrogationsateachcandidateregionor

voxel.Instead,morphometricityisaglobalquantificationofthewhole-brainanatomicalsignatureof

atrait.

Whiletheproposedapproachisintimatelyrelatedtoimage-basedmultivariateprediction

performance,therearetwocharacteristicsofmorphometricitythatmakeitdifferentfromthe

applicationofmachinelearning.Firstly,themetricdoesnotrequirecross-validation,whichisoften

thetechniqueutilizedinmachinelearningtogaugepredictionaccuracy.Cross-validationisusually

computationallydemanding,andreliesontheunbiasedsettingofmodelparameters(whichmightbe

achievedviaanestedcrossvalidationstrategy),andrepeatedandbalancedpartitioningofdatainto

trainandtestsets.Incontrast,theproposedLME-basedapproachexploitstheentiredatasettofit

themodelandestimatetheunknownvariancecomponentparameters,andinturnmorphometricity,

Page 10: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

10

inanunbiasedfashion.Secondly,morphometricityisaclassicalstatisticalmeasureofexplained

varianceandisthereforefamiliartointerpret.

Morphometricityhasmanyparallelstoheritabilityingenetics[15,16].Bothconcepts,statisticalin

nature,areaboutphenotypicvariationandtheproportionofvarianceexplained.Thus,the

interpretationhastobecarriedoutwithinaprobabilisticframework,islimitedbythestudied

population,dependsonthetechniqueusedtoquantifythetrait,andcanbeconfoundedby

unmeasuredvariablesactingthroughunknownmechanisms.Thebiasesduetoconfoundssuchas

(cryptic)relatednessbetweensubjectsorpopulationadmixturearewell-studiedinheritability

analysis.Asweelaboratebelow,morphometricityalonecannotbeusedtoinfercausalrelationships,

buthastobefollowedupwithfurtherstudiesthatwillhomeinonpotentialmechanisms.Thecore

differencebetweenmorphometricityandheritabilityisthedirectionofassociation.Inheritability,

thisdirectionisknownandfixed,becausethereisnoknownbiologicalmechanismthatwouldallow

thephenotypetoalterthegenotype.Inmorphometricity,however,thedirectionalitycangoeither

wayandhastobedissectedwithfurtherbiologicalstudies.

TraitsCanBeMorphometrictoDifferentDegrees.Virtuallyalltraitsweexaminedinthisstudywere

significantlymorphometric.However,ouranalysesalsorevealedinterestingvariationinthewhole-

brainanatomicalsignatureofdifferenttraits.Certainphenotypes,suchasAlzheimer’sdisease,age,

and(maybesurprisingly)generalintelligence(IQ)weresubstantiallymorphometric(withestimates

exceeding0.90),whileothermeasures,suchasnon-verbalepisodicmemory,spatialorientation,

processingspeed,andfluidintelligenceexhibitedmoderatemorphometricity.Furthermore,the

psychiatricdisordersweexamined(schizophrenia,ADHDandautism)wereallmoderately

morphometric,unequivocallypointingtoaneuroanatomicalsubstratefortheseclinicalconditions.

Theproposedmorphometricityanalysisisthefirstcoherentframeworkthatenablesustodirectly

quantifyandcomparethemorphologicalsignaturesofsuchdiversesetsoftraits.

Thetraitswepresentedinthisstudyhavebeenexaminedextensivelyinpriorstructural

neuroimagingstudiestorevealmorphologicalcorrelates.Whilemanyofthesestudiesreliedon

regionalorvoxel-levelassociationteststhatareconductedateachlocationindependently,thereis

growingevidencethatmultiplebrainregionsareimplicatedincomplex,multivariaterelationships

Page 11: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

11

withmanycommonphenotypes.Forexample,patternsofatrophyinneurodegenerativeconditions

suchasAlzheimer’sdiseasehavebeenshowntospreadthroughlarge-scale,distributedbrain

networksthatcanbecircumscribedbasedonresting-stateactivity[43].Furthermore,developmental

mechanismssuchasneuronalmigration,synapseformation,myelination,andsynapticpruningfollow

predictableandrobustspatiotemporalpatterns,whicharelikelyassociatedwithbehavioraltraits

suchasintelligenceanddisruptedinpsychiatricdisorderssuchasschizophrenia[44,45].Ourdata

fromROI-basedanalysessupportthepremiseofanalyzingbrain-widepatterns,ratherthanisolated

regions,forassociationsbetweenneuroanatomicalfeaturesandbehavioralorclinicalphenotypes.

MorphometricityEstimatesAreConsistentAcrossIndependentSamples.Formostofthetraitswe

examinedinthisstudy,wereplicatedouranalysesonindependentdata.Allpointestimatesfell

within95%confidenceintervalsoftheestimatescomputedonthecorrespondingindependentdata.

Theseresultssuggestedthatthepresentedmorphometricityestimatesareconsistentacrossdifferent

samples.Wepresenttheseresultswithacautionarynotehowever.Asweemphasizedabove,

morphometricityisastatisticalmetricthatdependsonthestudiedpopulationandthemeasurement

ofthetrait.Thus,variationsinthepatientcompositionforexampleorchangesindiagnosticcriteria

willinevitablyleadtodifferentestimatesofmorphometricity.Inourreplicationanalyses,these

factorsseemedtoplayonlyaminorrole.

Whole-brainMorphometricityAnalysesCanBeMorePowerfulthanROI-basedAnalyses.We

presentmorphometricityanalysisasanalternativetotheclassicalregion-basedinterrogation

conductedinneuroimaging,whichisoftenfocusedondiscoveringorcharacterizingbiomarkersand

mappingbiologicaleffects.Thecentralchallengeinregion-basedapproachesisthatweneedto

eitherconfineouranalysestoaprioriROIs,orexhauststatisticalpowerbyprobingalargenumberof

candidateregions.Inourexperiments,weconductedadirectcomparisonbetweenwhole-brain

morphometricityanalysisandanROI-basedapproach.Toidentifytrait-specificROIs,adiscovery

analysiswasrunonindependentsamplesofeachtrait.TheassociationsbetweentheidentifiedROIs

andtraitswerethentestedinnon-overlappingsamples.IdentifyingthemostassociatedROIand

estimatingthemagnitudeofassociationinindependentsamplesavoidedtheissueofcircularanalysis

[46,47],andproducedunbiasedmorphometricityestimatesforindividualROIs.Ourresults

demonstratedthatwhole-brainmorphologyconsistentlyexplainedmoreofthephenotypicvariation

Page 12: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

12

thansingleROIs.Furthermore,morphometricityanalysiscouldrevealassociationsthatwerenot

detectablewhenfocusedonisolatedregions.Forexample,educationandschizophreniawerefound

tobenotsignificantlyassociatedwithvolumetric/thicknessmeasurementsofanyoftheindividual

ROIs;yet,bothtraitsweremoderatelyandsignificantlymorphometricinwhole-brainanalyses,which

indicatesthattheymayhavespatiallydistributedneuroanatomicalsignaturesthatcannotbe

capturedbyindividualROIs.Inaddition,whole-brainmorphometricityanalysisoffersthecapabilityof

capturinginteractionsbetweenbrainregionsandthuscanbemorepowerfulthananalyzingeachROI

independently.

PotentialLimitationsandDrawbacksofMorphometricity.Morphometricityisastatisticalmetricand

assumesaparticular,linearmodeloftherelationshipbetweenvariables.Onecriticalcomponentof

themodelistheAnatomicalSimilarityMatrix(ASM),whichcapturesthecovariancestructureofthe

randomeffectthataccountsforthemorphologicalvariationinthesample.Inthiswork,we

consideredalinearmetricandanonlinearGaussian-typemetrictoquantifythesimilarityof

volumetric/thicknessmeasurementsbetweenpairsofsubjects,andemployedamodelselection

techniquetofindthemetricthatbetterdescribesthedata.OuranalysessuggestthattheGaussian

metricisconsistentlybetterthanthelinearmetricacrossthetraitswestudied,andcapturesa

significantportionofrelevantinter-subjectvariationunderdifferentconditions.However,wehave

notattemptedtoexhaustivelyexploreothertypesofsimilaritymetrics,whichmayemphasize

differentaspectsofthedataandproducedifferentresults.Alternatively,theASMcanbebuiltusinga

bottom-upapproachandexpressedasacombinationofelementarymatrices,andtheparametersof

thiscombinationcanbetreatedasunknownvariables.Byincreasingtheunknownsinthemodel,

however,thisapproachwilllikelyreducestatisticalpower.

AnotherimportantpointtoconsideristhatASMshouldreflectbrain-wideglobalmorphologyand

cannotbeoptimizedforaspecifictrait.Thislatterobservationiscriticaltobeabletoobjectively

comparemorphometricityestimatesacrossdifferenttraits.OurglobaldefinitionofASMand

morphometricity,however,constrainstheinterpretationoftheresults.Certaintraitswithvery

dramaticyetfocaleffects,mightnotyieldlargemorphometricityestimates,sincetheproposed

modelisinsensitivetolocalizedeffects.

Page 13: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

13

Finally,asinanyassociationtestingframework,theinterpretationofmorphometricityanalysis

resultsshouldbedoneverycarefullyandconsiderconfoundingmechanisms.Thisiswellunderstood

inthecontextofheritability,wherenon-genetic(e.g.,dietary,cultural,socioeconomic)influences

thatvaryacrossracialgroupsorfamiliescanconfoundgeneticanalyses.Similardrawbacksapplyto

morphometricity.Forexample,siblingsmighthavesimilarbrainmorphologiesandphenotypic

expressions,yettheremightnotbeanycausallinkbetweenbrainmorphologyandthephenotype.

Therefore,werecommendrunningmorphometricityanalysesonasetofunrelatedsubjects.

Furthermore,weadviseconstrainingtheanalysis(ifpossible)toahomogeneoussampleofuniform

ancestry,andexplicitlycontrollingforotherpotentialconfoundingfactors,suchasage,sex,andscan

site.

PotentialUsesandExtensionsofMorphometricity.Morphometricityanalysiscanbeusedto

prioritizeimagingmodalities,acquisitionparameters,andprocessingpipelines.Forexample,there

areagrowingnumberofsoftwarepackagesthatallowustoautomaticallyextractnumerous

structuralmeasurementsfrombrainimages.Differentconstructionsoffeaturevectorsanddifferent

metricsthatquantifythesimilarityofimagingfeaturesbetweenindividualswillresultindistinct

ASM’s,whichcanbecomparedwiththemodelselectionframeworkemployedinthisstudy.

Therefore,morphometricityanalysisoffersawaytoquantitativelyandobjectivelyidentifythe

imagingfeaturesandinter-subjectsimilaritymetricthatbestdescribethetrait-relevantaspectsof

whole-brainmorphology.

Alternatively,onecanimagineestimatingthefunctional,structural,connectomic,andmolecular

signaturesofatraitwithinasinglestatisticalmodel,whereeachofthesecomponentsisrepresented

witharandomeffectandthecorrespondingsimilaritymatrixcomputedfromarelevantmodality.

Similarly,onecanpartitionthephenotypicvariationintocontributionsfrom,forinstance,corticaland

subcorticalfeatures,ordifferentlarge-scalebrainnetworks.Thisstrategymightoffernovelinsights

abouttheneuralcorrelatesofcertainphenotypesbyintegratingmultiplemodalitiesand/ormodeling

spatialheterogeneityinaunifiedanalyticframework.Thisnovelperspectivemightalsoallowusto

quantifythecomplementaryinformationcontainedindifferentimagingmodalitiesandspatial

locations.

Page 14: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

14

Aslongitudinalimagingstudiescontinuetogrow,itwillbeinterestingtoextendmorphometricityto

examinetherelationshipsbetweentemporaldynamicsinbrainmorphology(e.g.,globalatrophy

rates)andclinicalorbehavioraltraits.Weenvisionemployingthelinearmixedeffectsstrategyto

modellongitudinaldata[48,49],andwewilldefinethemorphometricityoflongitudinalchangesin

phenotypeswithinthisframework.

Finally,theproposedframeworkcanalsoofferanovelperspectiveonexaminingrelationships

betweendifferentphenotypes.Weplantoextendmorphometricity,whichisessentiallythedegree

ofassociationbetweenglobalbrainmorphologyandaphenotype,toquantifythe“morphological

correlation”betweenphenotypes.Thiswillbeanalogoustogeneticcorrelationanalysis[50],which

quantifiesthegeneticoverlapbetweentraits.Webelievethatmorphologicalcorrelationwillbean

invaluabletooltoexaminethecomplexbiologicalrelationshipsbetweenthevariousdimensionsof

humanbehaviorandwillinformbasicandtranslationalresearchintoexploringandredefiningthe

landscapeofbraindiseases.

Page 15: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

15

Methods

TheImagingMeasurements.Inthisstudy,weusedtheextensivelystudiedFreeSurfer-derived

measurementstodescribethewhole-brainmorphology.Theimagingmeasurementsincluded

volumesofnon-corticalstructures[51](leftandrightcerebralwhitematter,lateralventricle,inferior

lateralventricle,cerebellumwhitematter,cerebellumcortex,thalamusproper,caudate,putamen,

pallidum,hippocampus,amygdala,andthe3rdand4thventricles)andthicknessmeasurementsof

corticalregions[52](leftandrightsuperiorfrontal,rostralmiddlefrontal,caudalmiddlefrontal,pars

opercularis,parstriangularis,parsorbitalis,lateralorbitofrontal,medialorbitofrontal,precentral,

paracentral,frontalpole,superiorparietal,inferiorparietal,supramarginal,postcentral,precuneus,

superiortemporal,middletemporal,inferiortemporal,banksofthesuperiortemporalsulcus,

fusiform,transversetemporal,entorhinal,temporalpole,parahippocampal,lateraloccipital,lingual,

cuneus,pericalcarine,rostralanteriorfrontal,caudalanteriorfrontal,posteriorparietal,isthmus

parietal,andinsula).

TheAnatomicalSimilarityMatrix.Theanatomicalsimilaritymatrix(ASM)playsacentralroleinthe

proposedmorphometricityanalysis.TheASMisan𝑁×𝑁symmetricmatrix,where𝑁isthenumberof

subjectsintheanalyzedsample.EntriesintheASMquantifythepairwiseglobalsimilaritybetween

thebrainmorphologiesoftwoindividuals.Inprinciple,theASMcanbeanynon-negativedefinite

matrixwithitsdiagonalelementsconstrainedtobeequalto1onaverage.Inthisstudy,we

consideredtwowidelyusedsimilaritymetrics(linearandGaussian)toconstructtheASM.

Assumethat𝑣FGdenotesthe𝑘-thimagingmeasurementsfromsubject𝑖,𝑀isthetotalnumberof

measurements,and𝑠Gisthesamplestandarddeviationofthe𝑘-thmeasurement.ThefirstASMwe

consideredusesalinearkernel.Thus,thesimilarityismeasuredasthelinearcorrelationbetween

pairsofimagingvectorsandthe(𝑖, 𝑗)-thentryiscomputedas:

1𝑀

𝑣FG𝑣MG𝑠G0G

.(4)

Thisisequivalenttomodelingtherandomeffect𝒂inEquation(1)asalinearcombinationofthe

imagingfeatures:𝒂 = 𝒁𝒖,where𝒁isan𝑁×𝑀matrixcomprisingthestandardizedimaging

measurements(i.e.,the(𝑖, 𝑘)-thentryof𝒁is𝑣FG/𝑠G),and𝒖isan𝑀×1randomvectordistributedas

𝒖 ∼ N 𝟎, STU

V𝑰 ,i.e.,eachimagingmeasurementisassociatedwithanindependentandnormally

Page 16: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

16

distributedeffectsize.Thecovarianceof𝒂canthenbecomputedas𝜎/0 ∙ 𝒁𝒁Y/𝑀,i.e.,𝒁𝒁Y/𝑀isthe

ASMwithitsentriesexplicitlystatedinEquation(4).

ThesecondASMweconsideredwascomputedusingaGaussiankernelonstandardizedimaging

features,withthe(𝑖, 𝑗)-thentrydefinedas:

exp −(𝑣FG − 𝑣MG)0

𝑀𝑠G0G

.(5)

NotethateachASMdefinitioncorrespondstodifferentmodelsoftrait-relevantvariation.For

example,theGaussiankernelcancapturenonlinearandmultivariateassociationsbetweenbrain

morphologyandtraits.Onecanfurtherdecidetoweighdifferentfeaturesdifferently,basedonfor

example,someaprioriinformationabouttraitrelevance.EachoftheseASMchoiceswillcorrespond

toaparticularsemi-parametricregressionmodel,wherethemorphologicalassociationiscaptured

withafunctionthatbelongstoaspecificspaceoffunctionsinducedbytheutilizedkernel[53].Below,

wedescribeanempiricalstrategytochoosethemostappropriateASMmodelfromaselectionof

candidates.

Inthepresentedstudy,foragivensimilaritymetric,wecomputedanASMforthecorticalthickness

measurementsandanASMforthehead-size-normalizedvolumesofnon-corticalstructures(i.e.,

dividedbytotalintracranialvolumeestimates).TheglobalASMwasthencomputedastheaverageof

thecorticalandnon-corticalASM’s.

ModelSelection.ToselecttheASMthatcanbestdescribethedata,weusedamodelselection

techniquederivedforLMEmodelsandproposedin[53].Specifically,foragivenASM𝑲/,ifwe

denote𝑽 = 𝜎/0𝑲/ + 𝜎30𝑰astheReMLestimateofthecovarianceof𝒚,𝑷 = 𝑽B𝟏 −

𝑽B𝟏𝑿(𝑿𝑽B𝟏𝑿)B𝟏𝑿𝑽B𝟏,anddefine𝑺 = 𝑰 − 𝜎30𝑷,itcanbeshownthattr(𝑺),i.e.,thetraceofthe

matrix𝑺,isameasureofmodelcomplexity.Liuetal.[53]thusproposedthefollowingAkaike

InformationCriterion(AIC)andBayesianInformationCriterion(BIC)intheLMEmodelingframework:

AIC = 𝑁log 𝑅𝑆𝑆 + 2tr 𝑺 ,BIC = 𝑁log 𝑅𝑆𝑆 + log 𝑁 ∙ tr 𝑺 ,(6)

where𝑅𝑆𝑆 = (𝒚 − 𝒚)Y 𝒚 − 𝒚 =𝜎30(𝑁 − tr 𝑺 )istheresidualsumofsquares(RSS)oftheLME

model.BothAICandBICrewardthegoodness-of-fit(thefirstterm)ofthemodelandpenalize

Page 17: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

17

complexmodels(thesecondterm)toavoidoverfitting.BIChasalargerpenaltytermthanAICfor

large𝑁andthusfavorssimplermodels.WeselectedtheASMthatgavesmallerAIC/BICvalues.

TheAnalysisPipeline.WefirstranFreeSurferonallstructuralbrainMRIscansavailableineachofthe

analyzedstudies,anddroppedthesubjectsthatFreeSurferfailedtocompletesuccessfully.Next,we

conductedautomaticqualitycontrolonthemeasurementscomputedbyFreeSurferbyidentifying

outliers–if>25%oftheutilizedmorphometricvariablesexhibitedvaluesthatweremorethan2

standarddeviationsawayfromthepopulationmean,wedeemedthatsubjectanoutlierand

discardedit.Fortheremainingsubjects,wecomputedpairwisesimilaritymeasuresbasedonthe

linearorGaussiankerneldescribedabove.Ifthereweretwosubjectsthatexhibitedacorticaland

non-corticalsimilaritymeasuregreaterthan0.95,wedroppedoneofthosesubjects,accountingfor

thepossibilitythatthiswasaduplicatecaseoracloselyrelatedindividual.Finally,weincludedsex

andageascovariatesinallouranalyses(unlesssexoragewasthetraitofinterest,inwhichcasethat

variablewasnotincluded).WefurtherintroduceddummyvariablesthatindicatedsiteIDswhen

analyzingmulti-sitedata(exceptforADNI,wheretherewerealargenumberofsites,yettheimaging

parameterswerecarefullycalibratedacrosssites[28]).

Givenindividual-leveldataandtheASM,wefitthemodelofEquation(1)toestimatethevariance

componentparametersviatheRestrictedMaximumLikelihood(ReML)algorithm[21,22].InMatlab,

weimplementedanefficientFisherscoringmethodtoiterativelymaximizetherestrictedlikelihood

ofthemodel.Thestandarderrorofthevariancecomponentestimatescanbederivedusingthe

inverseoftheFisherinformationmatrixwhenthealgorithmconverges.Empiricallyweconfirmedthe

parametricestimatesusingjackkniferesampling(seeSupplementaryTableS2).Significanceofthe

morphometricityestimatewasobtainedviaalikelihoodratiotest,comparingLMEmodelswithand

withouttherandomeffects.Becausethenullhypothesis(𝜎/0 = 0)liesontheboundaryofthe

parameterspace,thelikelihoodratioteststatisticfollowsahalf-halfmixtureof𝜒p0(achi-square

distributionwithallprobabilitymassatzero)and𝜒C0(achi-squaredistributionwithonedegreeof

freedom)[54].Implementationsofthedevelopedmorphometricitytoolsareavailableat:

http://people.csail.mit.edu/msabuncu/morphometricity.

Page 18: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

18

ROI-basedMorphometricityAnalysis.Inordertocomparetheproposedwhole-brain

morphometricityanalysistomoreconventionalROI-basedanalyses,weimplementedanROI-based

adaptationofEquation(1).Here,insteadofcomputingtheASMusinganarrayofvariablesthatspan

thebrain,wecomputedROI-basedASMsonlyusingasingleROIbiomarker–thevariablethathad

thestrongestassociationwiththetraitofinterest.ToidentifytheROIbiomarkerofeachtrait,we

conductedanindependentdiscoveryanalysisonanon-overlappingsample,examiningthe

associationbetweeneachofthecandidateimagingvariablesandthetraitinaregressionanalysis,

whileappropriatelycontrollingforage,sex,andsite.Theimagingvariablethatexhibitedthesmallest

p-valuewasthenidentifiedastheROIbiomarkerforthetraitofinterestandusedinthe

morphometricityanalysis.WenotethatfortheROI-discoveryanalysesweutilizedthereplication

(secondary)samplesofthewhole-brainmorphometricityanalyses.Thisway,wecomputedtheROI-

basedmorphometricityresultsusingtheprimarysamples.

TheData.WeemployedbaselinebrainMRIscans(T1-weightedacquiredon1.5Tmachines),clinical

diagnosis,anddemographicvariablesfromphase1oftheADNI[28].IntheADHD200sample[29],

casesweredefinedasthosewithevidenceofnon-typicaldevelopmentandanADHD-Combined

diagnosis,asperthepublishedphenotypickey

[http://fcon_1000.projects.nitrc.org/indi/adhd200/general/ADHD200_PhenotypicKey.pdf].Inthe

cross-sectionalOASISsample[30],subjects(of60yearsorolder)withaclinicaldementiarating(CDR)

greaterthan0wereclassifiedashavingdementia.Elderlysubjectswitha0CDRwereclassifiedas

healthycontrols.Forthe20controlsubjectswithrepeatscans,weonlyusedthedatafromthefirst

imagingsession.IntheCOBREsample[31],schizophreniasubjectswereidentifiedaccordingtothe

phenotypefile[http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html].TheMCICdatawas

compiledfromasharedrepositoryofmulti-sitebrainimagingdatacollectedfortheclinical

investigationofschizophrenia[32].TheABIDEanalyses[33]wereconductedonsubjectswhowere

olderthan10years,andcasesweredefinedasthosehavinganon-zerodiagnosticgroupentryinthe

phenotypetable[http://fcon_1000.projects.nitrc.org/indi/abide/].InthePPMIanalyses[34],cases

weredeterminedtobethosediagnosedwithParkinson’sDiseaseatbaselineandcontrolswerethose

whowereclinicallyhealthyandnotprodromal,againatbaseline[http://www.ppmi-info.org/access-

data-specimens/download-data/].

Page 19: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

19

Allgeneraltraitanalyseswereconductedonhealthycontrolsamples(seecriteriaofrelevantstudy).

BoththeOASISandGSPsamplescoverasubstantialportionoftheadultlifespanandthuswereused

toestimatethemorphometricityofage.AllGSPanalyseswereconstrainedtounrelated,healthy

controlsofnon-HispanicEuropeanancestry,withhigh-qualitystructuralbrainMRIscansacquiredon

a12-channelcoil[26].Inthegeneralintelligence(IQ)analyses,weutilizedtheWechslerAbbreviated

ScaleofIntelligenceasthephenotype(bothintheADHD200andABIDEsamples).Forthe

morphometricityanalysisofsex,wecreatedsubsamplesthatweregender-balanced(50%female)

andage-matchedbetweensexes.InthePPMIdata,educationwasmeasuredinyears(minimum9

andmaximum24),whereasintheOASISsample,educationlevelswereencodedas;1:lessthanhigh

schoolgraduate,2:highschoolgraduate,3:somecollege,4:collegegraduate,and5:beyondcollege.

Inthecognitivemeasureanalyses,weemployedthedemographicandbehavioralmeasuresreported

inthe‘openaccess’and‘restricted’subjectinformationspreadsheetsavailablefromtheHCP

databasewebsite[http://www.humanconnectome.org/data].TheHCPcollectedarangeofwell-

validatedandreliablebehavioralmeasures,includingthosefromtheNIHToolboxAssessmentof

NeurologicalandBehavioralFunction,andseveraladditionalmeasurestoassessdomainsnot

coveredbytheNIHToolbox.Formoreinformationontherationalebehindthedevelopmentofthe

behavioralbatteriesusedinHCP,see[55].

AllMRIscansfromADNI,OASIS,ADHD200,MCIC,COBRE,PPMI,andHCPwereprocessedwith

FreeSurferversion5.3.TheGSPMRIscanswereprocessedwithFreeSurferversion4.5.

Page 20: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

20

Acknowledgements

SupportforthisresearchwasprovidedinpartbytheNationalInstituteforBiomedicalImagingand

Bioengineering(P41EB015896,R01EB006758,R21EB018907,R01EB019956),theNationalInstituteon

Aging(5R01AG008122,R01AG016495),theNationalInstituteforNeurologicalDisordersandStroke

(R01NS0525851,R21NS072652,R01NS070963,R01NS083534,5U01NS086625),andwasmade

possiblebytheresourcesprovidedbySharedInstrumentationGrants1S10RR023401,1S10RR019307,

and1S10RR023043.AdditionalsupportwasprovidedbytheNIHBlueprintforNeuroscienceResearch

(5U01-MH093765),partofthemulti-institutionalHumanConnectomeProject.

DatawereprovidedinpartbytheBrainGenomicsSuperstructProject(GSP)ofHarvardUniversity

andMGH,withsupportfromtheCenterforBrainScienceNeuroinformaticsResearchGroup,

AthinoulaA.MartinosCenterforBiomedicalImaging,CenterforHumanGeneticResearch,and

StanleyCenterforPsychiatricResearch.20individualinvestigatorsatHarvardandMGHgenerously

contributeddatatotheoverallproject.

ThisresearchwasalsofundedinpartbyNIHgrantsR01NS083534,R01NS070963,and

1K25EB013649-01and1R21AG050122-01A1(toMRS);K01MH099232(toAJH);K24MH094614and

R01MH101486(toJWS);anMGHECORTostesonPostdoctoralFellowshipAward(toTG).JWSisa

TepperFamilyMGHResearchScholar.BFhasafinancialinterestinCorticoMetrics,acompanywhose

medicalpursuitsfocusonbrainimagingandmeasurementtechnologies.BF'sinterestswerereviewed

andaremanagedbyMassachusettsGeneralHospitalandPartnersHealthCareinaccordancewith

theirconflictofinterestpolicies.

Page 21: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

21

TablesandFigures

Figure1:Morphometricityestimatesofvariousdiseases(ontheliabilityscale)computedusingthe

Gaussiananatomicalsimilaritymatrix(ASM)ofEquation(5).Eachbarisannotatedwithstudy

namesusedtocomputetheseestimates.ForAlzheimer’sdiseaseandschizophrenia,wehad

independentsamplesusedtocomputereplicationestimates(purplebars).Errorbarsindicate

standarderroroftheestimates.

Page 22: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

22

Figure2:MorphometricityestimatesofgeneralnonclinicaltraitscomputedusingtheGaussian

anatomicalsimilaritymatrix(ASM)ofEquation(5).IQdenotesgeneralintelligence.Eachbaris

annotatedwithstudynamesusedtocomputetheseestimates.Bluebarscorrespondtoresultsfrom

theprimaryanalyses,whereaspurplebarscorrespondtoindependentreplicationanalyses.Errorbars

indicatestandarderroroftheestimates.

Page 23: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

23

Figure3:ROI-basedmorphometricityestimatesofgeneralnonclinicaltraits(age,intelligence,sex,

andeducation),Alzheimer’sdisease(AD),andschizophrenia(SCZ).ForADandSCZ,morphometricity

estimateshavebeentransformedtotheliabilityscale.Redcirclesdenotewhole-brain

morphometricityestimatesforeachtrait.Errorbarsindicatestandarderroroftheestimates.

Page 24: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

24

Figure4:Morphometricityestimatesofvariousmeasuresofcognitioncomputedondatafromthe

HumanConnectomeProject(HCP)andusingtheGaussiananatomicalsimilaritymatrix(ASM).Blue

andpurplebarscorrespondtoprimaryandsecondaryanalyses,respectively.Errorbarsindicate

standarderroroftheestimates.

Page 25: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

25

Table1:Samplecharacteristicsandmorphometricityestimatesforanalyzeddiseasetraits.

*P<5e-3,**P<5e-4,***P<5e-5

Disease Case N Case Age (mean±std)

Case Fem% Control N

Control Age (mean±std)

Control Fem %

Study Name

Alzheimer's 154 74.6±7.6 46.8 219 75.9±5 48.4 ADNIADHD 122 11.6±3.2 75.4 384 11.8±2.9 62.2 ADHDSchizophrenia 92 33±11.2 75.0 85 32.8±11.7 67.1 MCICAutism 209 17.6±7.9 14.4 305 17.3±7.2 18.4 ABIDEParkinson's 376 61.4±9.7 35.1 152 60.4±11.4 47.8 PPMI

Assumed Prevalance

Morphometricity (liability scale)

Standard Error

13% 1.00*** 0.031% 0.55** 0.161% 0.50*** 0.031% 0.38*** 0.060.2% 0.20* 0.06

Table2:Samplecharacteristicsandmorphometricityestimatesfortheanalyzedgeneralnonclinicaltraits.

Trait Name Sample

Size Age (mean±std)

[min-max] Female

% Study Name

Age 1073 22±5.8 [18-81] 56 GSPIQ 155 11.3±2.8 [7.2-17.7] 60 ADHDSex 1074 25.3±13.7 [18-84] 50 GSPEducation 152 60.4±11.4 [30-82] 34.8 PPMI

Morhopmetricity Estimate

Standard Error

1.00 0.010.95 0.050.93 0.020.81 0.08

Page 26: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

26

References

1. Smith,C.D.,Chebrolu,H.,Wekstein,D.R.,Schmitt,F.A.,&Markesbery,W.R.(2007).Ageand

gendereffectsonhumanbrainanatomy:avoxel-basedmorphometricstudyinhealthyelderly.

Neurobiologyofaging,28(7),1075-1087.

2. Draganski,B.,Gaser,C.,Kempermann,G.,Kuhn,H.G.,Winkler,J.,Büchel,C.,&May,A.(2006).

Temporalandspatialdynamicsofbrainstructurechangesduringextensivelearning.TheJournal

ofNeuroscience,26(23),6314-6317.

3. Thompson,P.M.,Cannon,T.D.,Narr,K.L.,VanErp,T.,Poutanen,V.P.,Huttunen,M.,...&Dail,R.

(2001).Geneticinfluencesonbrainstructure.Natureneuroscience,4(12),1253-1258.

4. Thompson,P.M.,Ge,T.,Glahn,D.C.,Jahanshad,N.,&Nichols,T.E.(2013).Geneticsofthe

connectome.Neuroimage,80,475-488.

5. Poldrack,R.A.(2007).RegionofinterestanalysisforfMRI.Socialcognitiveandaffective

neuroscience,2(1),67-70.

6. Penny,W.D.,Friston,K.J.,Ashburner,J.T.,Kiebel,S.J.,&Nichols,T.E.(Eds.).(2011).Statistical

parametricmapping:theanalysisoffunctionalbrainimages:theanalysisoffunctionalbrain

images.Academicpress.

7. Ashburner,J.,&Friston,K.J.(2000).Voxel-basedmorphometry—themethods.Neuroimage,

11(6),805-821.

8. Salat,D.H.,Buckner,R.L.,Snyder,A.Z.,Greve,D.N.,Desikan,R.S.,Busa,E.,...&Fischl,B.(2004).

Thinningofthecerebralcortexinaging.Cerebralcortex,14(7),721-730.

9. Avants,B.B.,Cook,P.A.,Ungar,L.,Gee,J.C.,&Grossman,M.(2010)Dementiainducescorrelated

reductionsinwhitematterintegrityandcorticalthickness:amultivariateneuroimagingstudy

withsparsecanonicalcorrelationanalysis.Neuroimage,50(3):1004-16.

10. McIntosh,A.R.,Lobaugh,N.J.(2004)Partialleastsquaresanalysisofneuroimagingdata:

applicationsandadvances.Neuroimage,23:S250-63.

11. Friston,K.,Chu,C.,Mourão-Miranda,J.,Hulme,O.,Rees,G.,Penny,W.,&Ashburner,J.(2008).

Bayesiandecodingofbrainimages.NeuroImage,39(1),181-205.

12. Pereira,F.,Mitchell,T.,&Botvinick,M.(2009).MachinelearningclassifiersandfMRI:atutorial

overview.Neuroimage,45(1),S199-S209.

Page 27: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

27

13. Sabuncu,M.R.,Konukoglu,E.,&Alzheimer’sDiseaseNeuroimagingInitiative.(2015).Clinical

predictionfromstructuralbrainMRIscans:alarge-scaleempiricalstudy.Neuroinformatics,13(1),

31-46.

14. Haufe,S.,Meinecke,F.,Görgen,K.,Dähne,S.,Haynes,J.D.,Blankertz,B.,&Bießmann,F.(2014).

Ontheinterpretationofweightvectorsoflinearmodelsinmultivariateneuroimaging.

Neuroimage,87,96-110.

15. Wray,N.,&Visscher,P.(2008).Estimatingtraitheritability.NatureEducation,1(1),29.

16. Visscher,P.M.,Hill,W.G.,&Wray,N.R.(2008).Heritabilityinthegenomicsera—conceptsand

misconceptions.NatureReviewsGenetics,9(4),255-266.

17. Yang,J.,Benyamin,B.,McEvoy,B.P.,Gordon,S.,Henders,A.K.,Nyholt,D.R.,...&Goddard,M.E.

(2010).CommonSNPsexplainalargeproportionoftheheritabilityforhumanheight.Nature

genetics,42(7),565-569.

18. Yang,J.,Lee,S.H.,Goddard,M.E.,&Visscher,P.M.(2011).GCTA:atoolforgenome-wide

complextraitanalysis.TheAmericanJournalofHumanGenetics,88(1),76-82.

19. Ge,T.,Nichols,T.E.,Lee,P.H.,Holmes,A.J.,Roffman,J.L.,Buckner,R.L.,...&Smoller,J.W.

(2015).Massivelyexpeditedgenome-wideheritabilityanalysis(MEGHA).Proceedingsofthe

NationalAcademyofSciences,112(8),2479-2484.

20. Fischl,B.(2012).FreeSurfer.Neuroimage,62(2),774-781.

21. Patterson,H.D.,&Thompson,R.(1971).Recoveryofinter-blockinformationwhenblocksizesare

unequal.Biometrika,58(3),545-554.

22. Harville,D.A.(1977).Maximumlikelihoodapproachestovariancecomponentestimationandto

relatedproblems.JournaloftheAmericanStatisticalAssociation,72(358),320-338.

23. Lynch,M.,&Walsh,B.(1998).Geneticsandanalysisofquantitativetraits(Vol.1).Sunderland,

MA:Sinauer.

24. Dempster,E.R.,&Lerner,I.M.(1950).Heritabilityofthresholdcharacters.Genetics,35(2),212-

236.

25. Lee,S.H.,Wray,N.R.,Goddard,M.E.,&Visscher,P.M.(2011).Estimatingmissingheritabilityfor

diseasefromgenome-wideassociationstudies.TheAmericanJournalofHumanGenetics,88(3),

294-305.

Page 28: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

28

26. Holmes,A.J.,Hollinshead,M.O.,O’Keefe,T.M.,Petrov,V.I.,Fariello,G.R.,Wald,L.L.,...&

Smoller,J.W.(2015).BrainGenomicsSuperstructProjectinitialdatareleasewithstructural,

functional,andbehavioralmeasures.Scientificdata,2.

27. VanEssen,D.C.,Smith,S.M.,Barch,D.M.,Behrens,T.E.,Yacoub,E.,Ugurbil,K.,&WU-MinnHCP

Consortium.(2013).TheWU-Minnhumanconnectomeproject:anoverview.Neuroimage,80,62-

79.

28. Jack,C.R.,Bernstein,M.A.,Fox,N.C.,Thompson,P.,Alexander,G.,Harvey,D.,...&Dale,A.M.

(2008).TheAlzheimer'sdiseaseneuroimaginginitiative(ADNI):MRImethods.JournalofMagnetic

ResonanceImaging,27(4),685-691.

29. Milham,M.P.,Fair,D.,Mennes,M.,&Mostofsky,S.H.(2012).TheADHD-200consortium:a

modeltoadvancethetranslationalpotentialofneuroimaginginclinicalneuroscience.Frontiersin

systemsneuroscience,6,62.

30. Marcus,D.S.,Wang,T.H.,Parker,J.,Csernansky,J.G.,Morris,J.C.,&Buckner,R.L.(2007).Open

AccessSeriesofImagingStudies(OASIS):cross-sectionalMRIdatainyoung,middleaged,

nondemented,anddementedolderadults.Journalofcognitiveneuroscience,19(9),1498-1507.

31. COBRE.http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

32. Gollub,R.L.,Shoemaker,J.M.,King,M.D.,White,T.,Ehrlich,S.,Sponheim,S.R.,...&O’Leary,D.

(2013).TheMCICcollection:asharedrepositoryofmulti-modal,multi-sitebrainimagedatafrom

aclinicalinvestigationofschizophrenia.Neuroinformatics,11(3),367-388.

33. DiMartino,A.,Yan,C.G.,Li,Q.,Denio,E.,Castellanos,F.X.,Alaerts,K.,...&Deen,B.(2014).The

autismbrainimagingdataexchange:towardsalarge-scaleevaluationoftheintrinsicbrain

architectureinautism.Molecularpsychiatry,19(6),659-667.

34. Marek,K.,Jennings,D.,Lasch,S.,Siderowf,A.,Tanner,C.,Simuni,T.,...&Poewe,W.(2011).The

Parkinsonprogressionmarkerinitiative(PPMI).Progressinneurobiology,95(4),629-635.

35. Alzheimer'sAssociation.(2014).2014Alzheimer'sdiseasefactsandfigures.Alzheimer's&

Dementia,10(2),e47-e92.

36. Hebert,L.E.,Scherr,P.A.,Bienias,J.L.,Bennett,D.A.,&Evans,D.A.(2003).Alzheimerdiseasein

theUSpopulation:prevalenceestimatesusingthe2000census.Archivesofneurology,60(8),

1119-1122.

Page 29: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

29

37. Polanczyk,G.,deLima,M.S.,Horta,B.L.,Biederman,J.,&Rohde,L.A.(2007).Theworldwide

prevalenceofADHD:asystematicreviewandmeta-regressionanalysis.Americanjournalof

psychiatry.

38. Lee,S.H.,DeCandia,T.R.,Ripke,S.,Yang,J.,Sullivan,P.F.,Goddard,M.E.,...&International

SchizophreniaConsortium.(2012).Estimatingtheproportionofvariationinsusceptibilityto

schizophreniacapturedbycommonSNPs.Naturegenetics,44(3),247-250.

39. Simonoff,E.,Pickles,A.,Charman,T.,Chandler,S.,Loucas,T.,&Baird,G.(2008).Psychiatric

disordersinchildrenwithautismspectrumdisorders:prevalence,comorbidity,andassociated

factorsinapopulation-derivedsample.JournaloftheAmericanAcademyofChild&Adolescent

Psychiatry,47(8),921-929.

40. Keller,M.F.,Saad,M.,Bras,J.,Bettella,F.,Nicolaou,N.,Simón-Sánchez,J.,...&Schulte,C.(2012).

Usinggenome-widecomplextraitanalysistoquantify‘missingheritability’inParkinson'sdisease.

Humanmoleculargenetics,21(22),4996-5009.

41. Cross-DisorderGroupofthePsychiatricGenomicsConsortium.(2013).Geneticrelationship

betweenfivepsychiatricdisordersestimatedfromgenome-wideSNPs.Naturegenetics,45(9),

984-994.

42. Efron,B.,&Tibshirani,R.J.(1994).Anintroductiontothebootstrap.CRCpress.

43. Seeley,W.W.,Crawford,R.K.,Zhou,J.,Miller,B.L.,&Greicius,M.D.(2009).Neurodegenerative

diseasestargetlarge-scalehumanbrainnetworks.Neuron,62(1),42-52.

44. Huttenlocher,P.R.(1994).Synaptogenesis,synapseelimination,andneuralplasticityinhuman

cerebralcortex.Threatstooptimaldevelopment:Integratingbiological,psychological,andsocial

riskfactors,27,35-54.

45. Lewis,D.A.,&Levitt,P.(2002).Schizophreniaasadisorderofneurodevelopment.Annualreview

ofNeuroscience,25(1),409-432.

46. Vul,E.,Harris,C.,Winkielman,P.,&Pashler,H.(2009).PuzzlinglyhighcorrelationsinfMRIstudies

ofemotion,personality,andsocialcognition.Perspectivesonpsychologicalscience,4(3),274-290.

47. Kriegeskorte,N.,Simmons,W.K.,Bellgowan,P.S.,&Baker,C.I.(2009).Circularanalysisin

systemsneuroscience:thedangersofdoubledipping.Natureneuroscience,12(5),535-540.

48. Bernal-Rusiel,J.L.,Greve,D.N.,Reuter,M.,Fischl,B.,Sabuncu,M.R.,&Alzheimer'sDisease

NeuroimagingInitiative.(2013).Statisticalanalysisoflongitudinalneuroimagedatawithlinear

mixedeffectsmodels.Neuroimage,66,249-260.

Page 30: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

30

49. Bernal-Rusiel,J.L.,Reuter,M.,Greve,D.N.,Fischl,B.,Sabuncu,M.R.,&Alzheimer'sDisease

NeuroimagingInitiative.(2013).Spatiotemporallinearmixedeffectsmodelingforthemass-

univariateanalysisoflongitudinalneuroimagedata.NeuroImage,81,358-370.

50. Lee,S.H.,Yang,J.,Goddard,M.E.,Visscher,P.M.,&Wray,N.R.(2012).Estimationofpleiotropy

betweencomplexdiseasesusingsingle-nucleotidepolymorphism-derivedgenomicrelationships

andrestrictedmaximumlikelihood.Bioinformatics,28(19),2540-2542.

51. Fischl,B.,Salat,D.H.,Busa,E.,Albert,M.,Dieterich,M.,Haselgrove,C.,...&Montillo,A.(2002).

Wholebrainsegmentation:automatedlabelingofneuroanatomicalstructuresinthehumanbrain.

Neuron,33(3),341-355.

52. Desikan,R.S.,Ségonne,F.,Fischl,B.,Quinn,B.T.,Dickerson,B.C.,Blacker,D.,...&Albert,M.S.

(2006).AnautomatedlabelingsystemforsubdividingthehumancerebralcortexonMRIscans

intogyralbasedregionsofinterest.Neuroimage,31(3),968-980.

53. Liu,D.,Lin,X.,&Ghosh,D.(2007).SemiparametricRegressionofMultidimensionalGenetic

PathwayData:Least-SquaresKernelMachinesandLinearMixedModels.Biometrics,63(4),1079-

1088.

54. Molenberghs,G.,&Verbeke,G.(2007).Likelihoodratio,score,andWaldtestsinaconstrained

parameterspace.TheAmericanStatistician,61(1),22-27.

55. Barch,D.M.,Burgess,G.C.,Harms,M.P.,Petersen,S.E.,Schlaggar,B.L.,Corbetta,M.,...&Nolan,

D.(2013).Functioninthehumanconnectome:task-fMRIandindividualdifferencesinbehavior.

Neuroimage,80,169-189.

Page 31: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

SupportingInformationfor“Morphometricity:MeasuringtheNeuroanatomical

SignatureofaTrait”

MertR.Sabuncu,TianGe,AvramJ.Holmes,JordanW.Smoller,RandyL.Buckner,andBruceFischl;

fortheAlzheimer’sDiseaseNeuroimagingInitiative(ADNI)*

SupplementaryTableS1:AkaikeInformationCriterion(AIC)andBayesianInformationCriterion(BIC)

values(Equation6)fortheprimarymorphometricityanalysesconductedwiththeLinear(Equation4)

andGaussian(Equation5)kernels.

AIC(x104) BIC(x104)

Disease/Trait Gaussian Linear Gaussian LinearAlzheimer's(ADNI) -1.508 -0.309 -1.362 -0.163ADHD -2.040 -0.655 -1.826 -0.441Schizophrenia (MCIC) -0.772 -0.216 -0.716 -0.160Autism (ABIDE) -2.022 -0.637 -1.804 -0.419Parkinson's -0.522 -0.194 -0.491 -0.163Age (GSP) -2.967 -0.276 -2.433 0.258IQ (ADHD 200) -0.521 -0.107 -0.474 -0.059Sex (GSP) -3.559 -0.992 -3.024 -0.457Education (PPMI) -0.512 -0.188 -0.477 -0.153

Page 32: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

SupplementaryTableS2:Parametricandjackknifeestimatesofmorphometricityandstandarderrors.Morphometricityestimatesfordiseasetraitsareontheliabilityscale.

Morphometricity StandardError

Disease/Trait Parametric Jackknife Parametric JackknifeAlzheimer's(ADNI) 1.00 1.00 0.03 0.03 ADHD (ADHD 200) 0.55 0.55 0.16 0.17 Schizophrenia (MCIC) 0.50 0.50 0.03 0.03 Autism (ABIDE) 0.38 0.38 0.06 0.06

Parkinson's 0.20 0.20 0.06 0.06

Age (GSP) 1.00 1.00 0.01 0.01 IQ (ADHD 200) 0.95 0.95 0.05 0.06 Sex (GSP) 0.93 0.93 0.02 0.02

Education (PPMI) 0.81 0.81 0.08 0.07

Page 33: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

SupplementaryTableS3:Independentreplicationonnon-overlappingdata:samplecharacteristics

andmorphometricityestimatesforanalyzeddiseasetraits.

Disease Case N Case Age (mean±std)

Case Fem% Control N

Control Age (mean±std)

Control Fem %

Study Name

Assumed Prevalance

Morphometricity (liability scale)

Standard Error

Alzheimer's 100 76.8±7.1 59.0 98 75.9±9.0 73.4 OASIS 13% 1.00 0.06Schizophrenia 56 35.8±12.4 16.1 73 35.7±11.6 31.5 COBRE 1% 0.45 0.08

Page 34: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

SupplementaryTableS4:Independentreplicationonnon-overlappingdata:samplecharacteristics

andmorphometricityestimatesforanalyzedgeneralnonclinicaltraits.

Trait Name Sample

Size Age (mean±std)

[min-max] Female % Study Name

Trait (mean±std) [min-max]

Morhopmetricity Estimate

Standard Error

Age 124 68.0±13.7 [33-94] 72.6 OASIS N/A 1.00 0.03IQ 108 17.5±8.0 [10.5-56.2] 14.8 ABIDE 109.33±11.0[84-133] 0.95 0.06Sex 298 11.3±2.9 [7.17-21.74] 50 ADHD N/A 0.90 0.05Education 124 68.0±13.7 [33-94] 72.6 OASIS 3.5±1.2 [1-5] 0.79 0.13

Page 35: Morphometricity: Measuring the Neuroanatomical …people.csail.mit.edu/msabuncu/morphometricity/...Morphometricity: Measuring the Neuroanatomical Signature of a Trait Mert R. Sabuncu

SupplementaryTableS5:ROI-basedmorphometricityestimatesforthetraitswithtwoindependent

samples.MostassociatedROIswereidentifiedonindependentsample.*Fordiseasetraitswelist

morphometricityestimatesontheliabilityscale.

Trait Name ROI-basedMorphometricity StandardError P-value MostassociatedROIAge 0.82 0.03 <1e-15 3rdVentricleIQ 0.87 0.05 <1e-15 RightLateralVentricleSex 0.44 0.07 1.9e-9 RightThalamusEducation 0.00 0.06 1.00 RightHippocampusAlzheimer's* 0.66 0.16 2.6e-5 RightHippocampusSchizophrenia* 0.06 0.05 0.22 RightInferiorLateralVentricle