monomer excimer systemskelep.web.elte.hu/ea/pmr5ea.pdf · • cation sensing by chemosensors in...

36
Monomerexcimer systems Two or more fluorophores are needed F + F* Æ [FF]* Excited dimer Diffusion controlled Homodimer (excimer), heterodimer (exciplex) Mainly hydrocarbon fluorophores (pyrene, anthracene etc.)

Upload: others

Post on 20-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Monomer‐excimer systems

    • Two or more fluorophores are needed

    • F + F* [FF]*

    • Excited dimer

    • Diffusion controlled

    • Homodimer (excimer), heterodimer (exciplex)

    • Mainly hydrocarbon fluorophores (pyrene,anthracene etc.)

  • Energetics of excimer formation

    • excimer band is always structureless and red shifted• Monomer / excimer ratio is independent of concentration• two-point-calibration

    S1

    S0

  • Basic principles of fluorescence• In sensors: guest induced formation or guestdissociation

  • Examples

    = Cd2+

  • Energy transfer systems

    • Two or more fluorophores areneeded

    • A + D* A* + D (vs. Innerfilter effect)

    • Spectral overlap, transitionmoments

    • Distance (

  • Energy transfer systems

    • Short range (Dexter) mechanism : electron exchange between overlapping molecular orbitals (

  • Energy transfer systems• Förster type of energy transfer (FRET)

    • Strongly distance dependent (molecular ruler)

    • Enzyme kinetic measurements

    • HOST-GUEST (receptor-ligandum)

    • Membrane diffusion / fusion

    • Conformational changes

    • Colocalisation

    • Imaging techniques (resolution increase)

  • Examples

  • ExamplesMolecular Beacon

  • Ion selective synthetic fluorescent chemosensors

  • General issues

    • Cation sensing by chemosensors in vivo• Fluorescent signal is much more sensitive than coloring (histochemical dyes)

    • Small size can diffuse through membranes• At present: calcium, magnesium, sodium, potassium, zinc, copper, iron, cadmium, mercury

    • Sensor design: as discussed before• Detection: translate binding event into a readable signal

  • Binding / dissociation constants

    • Ka =

    • Many factors can affect the ligands coordination sites (e.g. protonation etc.)  apparent stability constant:

    • Here M’ and L’ refers to all kinds of M and L species (free, protonated etc.) 

    [ ][ ] [ ]yx

    yx

    LMLM

    [ ][ ][ ]'' LM

    MLK appa =

  • Binding / dissociation constants

    • The apparent Ka can be altered in cellular environment (eg. Fura‐2 and Ca Kd = 145 nM in vitro and 371 nM in cells)

    • The presence of complex equilibria makes it difficult to determine selectivity of one ion over another

    • pM values refer to the –lg[M], where [M] is the free aqueous metal ion concentration under given conditions (e.g. pH, [M]tot; [L]tot ) 

  • • If pKa of the ligand’s donor atom is higher than pH ofsolution, protonation can efficiently compete withbinding

    • EDTA has larger Ka for Zn than TPEN

    • EDTA (pKa1 = 10.19) TPEN (pKa1 = 7.12)

    • The apparent Ka is more affected for EDTA, pM islower (free Zn is higher)

    • To judge ion selectivities the use of pM is highlyrecommended

    pM relevancy

  • Signal transduction strategies

    • Internal charge transfer (ICT) systems‐ Enable two‐point (ratiometric) detection

    • Photoinduced electron transfer (PET) systems– Signal evolution can be detected very sensitively

    • Excimers– Mainly for hybridization studies

    • Energy transfer systems– Hybridization – Distance measurements

  • Photoinduced electron transfer systems

    • Spacer separated receptor – fluorophore (donor‐acceptor)

    • Driving force of PET can be estimated: Rehm‐Weller equation

    Redox potentials of A, D, energy of the 0‐0 transition and work related to coulombic stabilization 

    • Coordination changes donor potential therefore increases ΔGET 

    • FE = φf’ /φf

    pET EAAEDDEG ω+Δ−−=Δ−+

    00)/()/(

  • Prediction

  • Examples

    Na+Over Ca, K, Mg, Li)

    Cd2+(excimer)

    (R)-2-phenylglycinol

    Zn2+

    Zn2+ and K+(Logic operations)

    Na+

  • Calcium selective indicators ‐modularity

  • Calcium selective indicators ‐modularity

    Green: Autofluorescence of flavoproteines (in mitochondria)

    Red: Rhod-2 (free calcium)

    Co-localization

  • Sodium selective indicators 

    Find optimal D/A match

    Tuning with different EWGs(11b)

  • Copper selective indicators 

    Copper is a soft LA that does not alter the donor’s potential very much – fine tuning is necessary

  • Internal charge transfer (ICT) sensors

    • Receptor and signaling units are integrated

    • Guest induces shifted emission maximum

    • Ratiometric sensing

  • Calcium ICT sensors

    Abs and em are shifted

    EM shift is much weaker Due to dumpening of Ca

  • Fura‐2 in cells

  • Zinc ICT sensors

    Zn coordinates to A red shifted emission

    (Zn in neurobiology)

  • Zinc ICT sensors

  • Zinc ICT sensors

    510 580580/510

  • Excimer sensors

    Aptamer: A DNA strand that recognizes an analyte

  • Excimer sensors

  • Examples

  • Excimer sensors

  • FRET sensors

  • FRET sensors – base pair separation

  • FRET sensors – base pair separation

    Monomer-excimer systemsEnergetics of excimer formationBasic principles of fluorescenceExamplesEnergy transfer systemsEnergy transfer systemsEnergy transfer systemsExamplesExamplesIon selective synthetic fluorescent chemosensorsGeneral issuesBinding / dissociation constantsBinding / dissociation constantsSlide Number 14pM relevancySignal transduction strategiesPhotoinduced electron transfer systemsSlide Number 18ExamplesCalcium selective indicators - modularityCalcium selective indicators - modularitySodium selective indicators Copper selective indicators Internal charge transfer (ICT) sensorsCalcium ICT sensorsFura-2 in cellsZinc ICT sensorsZinc ICT sensorsZinc ICT sensors Excimer sensors Excimer sensorsExamples Excimer sensors FRET sensors FRET sensors – base pair separation FRET sensors – base pair separation