monolithic vr demonstration board for chipset and ddr2/3 ...€¦ · monolithic vr demonstration...

37
September 2008 Rev 1 1/37 AN2787 Application note Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction PM6641 demonstration board order code: STEVAL-ISA050V1 (previously coded as PM6641EVAL). The PM6641 demonstration board is a monolithic voltage regulator (VR) module with internal power MOSFETs, specifically designed to supply DDR2/3 memory and chipset in ultramobile PC and real estate constrained portable systems. It integrates three independent, adjustable, constant frequency buck converters, a ±2 Apk low dropout (LDO) linear regulator, and a ±15 mA low-noise buffered reference. Each regulator is provided with basic undervoltage (UV) and overvoltage (OV) protections, programmable soft-start and current limit, active soft-end, and pulse skipping at light loads. This document describes all features of the PM6641 demonstration board. Figure 1. PM6641 demonstration board www.st.com

Upload: others

Post on 04-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

September 2008 Rev 1 1/37

AN2787Application note

Monolithic VR demonstration board for chipsetand DDR2/3 supply for ultramobile PC (UMPC) applications

IntroductionPM6641 demonstration board order code: STEVAL-ISA050V1 (previously coded as PM6641EVAL).

The PM6641 demonstration board is a monolithic voltage regulator (VR) module with internal power MOSFETs, specifically designed to supply DDR2/3 memory and chipset in ultramobile PC and real estate constrained portable systems.

It integrates three independent, adjustable, constant frequency buck converters, a ±2 Apk low dropout (LDO) linear regulator, and a ±15 mA low-noise buffered reference.

Each regulator is provided with basic undervoltage (UV) and overvoltage (OV) protections, programmable soft-start and current limit, active soft-end, and pulse skipping at light loads.

This document describes all features of the PM6641 demonstration board.

Figure 1. PM6641 demonstration board

www.st.com

Page 2: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Contents AN2787

2/37

Contents

1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Demonstration kit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Component assembly and layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Recommended equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.1 JP1 VDDQ output discharge (DSCG pin) . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.2 JP3 switching regulator phase control (SET_PH1 pin) . . . . . . . . . . . . . . 15

7.3 JP4 1.8 V (VDDQ) external/internal divider (VFB_1S8 pin) . . . . . . . . . . . 16

7.4 JP5 1.5 V external/internal divider (VFB_1S5 pin) . . . . . . . . . . . . . . . . . . 17

7.5 JP6 1.05 V external/internal divider (VFB_1S05 pin) . . . . . . . . . . . . . . . . 17

7.6 JP7 current limit (CSNS pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 STEVAL-ISA050V1 evaluation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10.1 SW regulators turn-on (soft-start) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10.2 SW regulator - working mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10.3 Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10.4 Load transient responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10.6 Phase management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10.7 Fault management (OVP, UVP, UVLO, thermal) . . . . . . . . . . . . . . . . . . . 30

10.8 SW regulators current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10.9 Soft-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Page 3: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 Contents

3/37

10.10 Thermal behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Page 4: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

List of figures AN2787

4/37

List of figures

Figure 1. PM6641 demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. PM6641 demonstration board schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 3. Top side component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 4. Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 5. Layer 2 view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 6. Layer 3 view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 7. Bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 8. Bottom side component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 9. JP1 DSCG pin setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 10. JP3 phase control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 11. JP4 1.8 V divider selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 12. JP5 1.5 V divider selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 13. JP6 1.05 V divider selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 14. PM6641 demonstration board programmed current limit vs. CSNS resistor . . . . . . . . . . . 18Figure 15. JP8 setting switching frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 16. PM6641 demonstration board test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 17. VDDQ turn-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 18. VDDQ, VTT and VTTREF turn-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 19. PWM mode: VDDQ output voltage, phase voltage and inductor current, current

load = 2.3 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 20. Pulse skip mode: VDDQ output voltage, phase voltage and inductor current, current

load = 0 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 21. Forced PWM mode (soft OV): VDDQ output voltage, phase voltage, inductor current

and Power Good signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 22. VDDQ (1.8 V) load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 23. 1.5 V load regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 24. 1.05 V load regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 25. VTT load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 26. VTTREF load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 27. VDDQ, VTT and VTTREF, VDDQ load transient response, IVDDQ = 0 to

2.3 A at 2.5 A/µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Figure 28. 1.5 V output voltage and inductor current, 1.5 V rail load transient response,

1.5 V = 0 to 1.25 A at 2.5 A/µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Figure 29. 1.05 V output voltage and inductor current, 1.05 V rail load transient response.

I1.05 V = 0 to 1.75 A at 2.5 A/µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Figure 30. VDDQ, VTTREF, VTT and VTT output current, VTT rail load transient response,

IVTT = –1 A to +1 A at 2.5 A/µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Figure 31. SW regulators efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Figure 32. SW regulators phases, 120 deg phase shift. SETPH1 pin tied to AGND . . . . . . . . . . . . . . 29Figure 33. SW regulators phases, no phase shift - synchronous clock, SETPH1 pin tied to AVCC . . 30Figure 34. VDDQ, VTT, VTTREF output voltage, VDDQ temporarily shorted to 3.3 V, output

overvoltage protection triggered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 35. VDDQ, VTT, VTTREF output voltage and VDDQ inductor current, VDDQ feedback pin

temporarily shorted to GND, output undervoltage protection triggered . . . . . . . . . . . . . . . 31Figure 36. VDDQ (1.8 V), 1.5 V, 1.05 V output voltage and AVCC input power supply, input

undervoltage lockout triggered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 37. VDDQ (1.8 V), 1.5 V, 1.05 V and VTT rails output voltage, thermal shutdown triggered . . 32Figure 38. 1.5 V rail output voltage, 1.5 V inductor current and output current, peak current limit

Page 5: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 List of figures

5/37

reached. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 39. VDDQ(1.8 V), VTT and VTTREF rail output voltage, EN_1S8 and EN_VTT tied to

AGND - soft off with tracking discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 40. VDDQ(1.8 V), VTT and VTTREF rail output voltage. EN_1S8 and EN_VTT tied to

AGND - soft off without tracking discharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 41. PM6641 demonstration board surface temperature when loaded with typical currents,

Tamb = 23 °C, VIN = 3.3 V, FSW = 660 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Page 6: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Main features AN2787

6/37

1 Main features

Switching section

0.8 V ±1% voltage reference

2.7 V to 5.5 V input voltage range

Fast response, constant frequency, current mode control

Three independent, adjustable, SMPS for DDR2/3 (VDDQ) and chipset supply

S3-S5 states compliant with DDR2/3 section

Active soft-end for all outputs

Selectable tracking discharge for VDDQ

Separate Power Good signals

Pulse skipping at light load

Programmable current limit and soft-start for all outputs

Latched OVP, UVP protection

Thermal protection

Reference and termination voltages (VTTREF and VTT)

±2 Apk LDO for DDR2/3 termination (VTT) with foldback

Remote VTT output sensing

High-Z VTT output in S3

±15 mA low-noise DDR2/3 buffered reference (VTTREF)

Page 7: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 Demonstration kit schematic

7/37

2 Demonstration kit schematic

Figure 2. PM6641 demonstration board schematic

C26 06

03-1

00p

C4

0805

-10u

C16 06

03-1

00n

C27 06

03-1

00p

R10

0603

-180

k

TP8

GN

D 1

R20

0603

-68k

TP6

AGN

D

1

C28 06

03-1

00p

R2

0603

-4R

3

VIN

TP16

AGN

D

1

C18 06

03-3

3n

VCC

TP15

LDO

IN

1

C30 06

03-1

00p

VCC

AVCC

C19

0603

-22n

C7

B C

ase

- 220

u

TP4

PG_1

S05

1

C31 06

03-1

00p

+C

13EL

SM

D C

-10u

1 2

R33

0603

-join

AVC

C

TP12

VOU

T_1S

05

1

C2

0805

-10u

AVCC

R12

0603

-47k

R3

0603

-100

k

TP14

VTT 1

R4

0603

-68k

C6

B C

ase

- 220

u

C17

0603

-100

n

TP5

VCC 1

R11

0603

-100

k

+C

5EL

SM

D C

-10u

1 2

C21

0603

-22n

R17

0603

-68k

C25 06

03-1

00p

TP1

VTTR

EF

1

C32 06

03-1

5p

JP1

STR

IP 3

13

2

R31

0603

-join

C11

1206

-22u

1

2

TP13

GN

D1

JP3

STR

IP 3

13

2

R34

0603

-join

U1

PM66

41_Q

FPN

AGN

D_1

1

SET_

SWF

2

VOU

T_1S

83

CSN

S4

SGN

D_1

S8_1

5

SGN

D_1

S8_2

6

VSW

_1S8

_17

VSW

_1S8

_28

VIN

_1S8

_19

VIN

_1S8

_210

VFB_

1S8

11

CO

MP_

1S8

12

SS_1S813

SS_1S05 14

COMP_1S05 15

VFB_1S05 16

SGND_1S05_117

VSW_1S05_119

VSW_1S05_2 20

VIN_1S05_2 22

PG_1S0523

PG_1S824

EN_V

TT36

EN_1

S535

EN_1

S05

34

VIN

_1S5

33

VSW

_1S5

_232

VSW

_1S5

_131

SGN

D_1

S5_2

30

SGN

D_1

S5_1

29

VFB_

1S5

28

CO

MP_

1S5

27

SS_1

S526

PG_1

S525

SGND_1S05_218

VIN_1S05_1 21

VCC48

VTT_FB47

DSCG46

VTTREF45

LDO_IN44

VTT43

VTT_GND42

AVCC41

AGND_240

SET_PH139

AGND_338

EN_1S837

THER

MAL

49

AVC

C

L2

2839

-1u5

12

C23

0603

-470

p

L328

39-1

u

12

R19

0603

-68k

+C

8EL

SM

D C

-10u

1 2

TP18

AUX 1

C33 06

03-1

5p

C12

0805

-10u

TP2

PG_1

S8 1

AVC

C

TP7

VIN

1

C15

B C

ase

- 220

u

C22

0603

-330

p

C20

0603

-22n

C1 06

03-1

u

JP4

STR

IP 3

13

2

L1

2839

-1u

12

R5

0603

-150

k

JP5

STR

IP 3

13

2

R7

0603

-100

k

R8

0603

-120

k

R32

0603

-join

+

C14

EL S

MD

C-1

0u

12

AVC

C

TP10

VOU

T_1S

5

1

TP3

PG_1

S5 1

C34

0603

-15p

AUX

AUX

TP9

VOU

T_1S

8

1

R21

0603

-68k

R6

0603

-120

k

R22

0603

-68k

JP7

STR

IP 21 2

R30

0603

-join

R13

0603

-68k

AUX

TP17

GN

D

1

C3

0805

-10u

R23

0603

-68k

JP8

STR

IP 21 2

SW1

SW D

IP-4

1 2 3 45678

VIN

C24

0603

-330

p

C9

B C

ase

- 220

u

R18

0603

-68k

C10

B C

ase

- 220

u

R1

0603

-4R

3

TP11

GN

D 1

VIN

C29 06

03-1

00p

JP6

STR

IP 3

13

2

R9

0603

-56k

Page 8: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Bill of material AN2787

8/37

3 Bill of material

Table 1. PM6641 demonstration board list of components

Qty Component Description Package Part number MFR Value Note

1 C1Ceramic, 10 V,

X5R, 20%SMD 0603 Standard 1 µ

4C2, C3, C4,

C12Ceramic, 10 V,

X5R, 20%SMD 0805 GRM21BR61A106KE19 Murata 10 µ

4C5, C8, C13,

C14SMD C case n.m.

5C6, C7, C9, C10, C15

Ceramic, 4 V, X5R, 20%

SMD 1206 AMK316BJ107ML Taiyo Yuden 100 µ

1 C11Ceramic, 6.3 V,

X5R, 10%SMD 1206 GRM31CR60J226KE19 Murata 22 µ

2 C16, C17Ceramic, 16 V,

X7R, 10%SMD 0603 Standard 100 n

1 C18Ceramic, 25 V,

X7R, 10%SMD 0603 GRM188R71E333KA01 Murata 33 n

3C19, C20,

C21Ceramic, 16 V,

X7R, 10%SMD 0603 Standard 22 n

2 C22, C24Ceramic, 50 V,

C0G, 5%SMD 0603 Standard 330 pF

1 C23Ceramic, 50 V,

C0G, 5%SMD 0603 Standard 470 pF

4C25, C26, C27, C28

Ceramic, 50 V, C0G, 5%

SMD 0603 Standard 100 pF

3C29, C30,

C31Ceramic, 50 V,

C0G, 5%SMD 0603 n.m.

3C32, C33,

C34Ceramic, 50 V,

C0G, 5%SMD 0603 n.m.

2 R1, R2Chip resistor,

0.1 W, 1%SMD 0603 Standard 3R3

1 R3Chip resistor,

0.1 W, 1%SMD 0603 Standard 100 kΩ

9

R4, R13 R17, R18, R19, R20, R21, R22,

R23

Chip resistor, 0.1 W, 1%

SMD 0603 Standard 68 kΩ

1 R16Chip resistor,

0.1 W, 1%SMD 0603 n.m.

1 R5Chip resistor,

0.1 W, 1%SMD 0603 Standard 150 kΩ

Page 9: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 Bill of material

9/37

2 R6, R8Chip resistor,

0.1 W, 1%SMD 0603 Standard 120 kΩ

1 R7Chip resistor,

0.1 W, 1%SMD 0603 Standard 100 kΩ

1 R9Chip resistor,

0.1 W, 1%SMD 0603 Standard 56 kΩ

1 R10Chip resistor,

0.1 W, 1%SMD 0603 Standard 180 kΩ

1 R11Chip resistor,

0.1 W, 1%SMD 0603 Standard 100 kΩ

1 R12Chip resistor,

0.1 W, 1%SMD 0603 Standard 47 kΩ

3R32, R33,

R34Chip resistor,

0.1 W, 1%SMD 0603 Standard 0 Ω short

2 R30, R31Chip resistor,

0.1 W, 1%SMD 0603 n.m.

2 L1, L3SMT 11Arms,

9.5 mΩ SMD 2827 744312100 /LF Würth 1.0 µH

1 L2SMT 9 Arms,

10.5 mΩ SMD 2827 744312150 /LF Würth 1.5 µH

1 U1 IC VR - 48-pin VFQFPN 7x7 PM6641 STMicroelectronics

5JP1, JP3, JP4, JP5,

JP6Header, 3-pin SIP3

2 JP7, JP8 Header, 2-pin SIP2

5TP1, TP2, TP3, TP4,

TP18

Header, single pin

13

TP5, TP6, TP7, TP8, TP9, TP10,

TP11, TP12, TP13, TP14, TP15, TP16,

TP17

Test point

1 SW1 Switch 4-SPST DIP-8 Standard

Table 1. PM6641 demonstration board list of components (continued)

Qty Component Description Package Part number MFR Value Note

Page 10: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Component assembly and layout AN2787

10/37

4 Component assembly and layout

Figure 3. Top side component placement

Figure 4. Top view

Page 11: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 Component assembly and layout

11/37

Figure 5. Layer 2 view

Figure 6. Layer 3 view

Page 12: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Component assembly and layout AN2787

12/37

Figure 7. Bottom view

Figure 8. Bottom side component placement

Page 13: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 I/O interface

13/37

5 I/O interface

The PM6641 demonstration board has the following test points given in Table 2.

Table 2. PM6641 demonstration board input/output interface

Test point Description

VCC (TP5) +5 V IC supply, positive terminal

LDOIN (TP15) LDO (VTT) linear regulator input power supply

AUX (TP18) Auxiliary 3.3 V for pull-up (not required)

AGND (TP6, TP16) VCC, LDO, VTT and VTTREF common return

VIN (TP7) Power supply input voltage positive terminal

GND (TP8, TP11, TP13, TP17) Power supply and switching regulator outputs common return

V1S8 (TP9) 1.8 V (VDDQ) switching regulator output

V1S5 (TP10) 1.5 V switching regulator output

V1S05 (TP12) 1.05 V switching regulator output

VTT (TP14) LDO (VTT) linear regulator output

VTTREF (TP1) Voltage reference (VTTREF) buffer output

PG1S8 (TP2) 1.8 V (VDDQ) switching regulator Power Good signal

PG1S5 (TP3) 1.5 V switching regulator Power Good signal

PG1S05 (TP4) 1.05 V switching regulator Power Good signal

Page 14: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Recommended equipment AN2787

14/37

6 Recommended equipment

5 V power supply

3.3 V, 20 W power supply

Active loads

Digital multimeters

500 MHz four-trace oscilloscope

Page 15: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 Configuration

15/37

7 Configuration

The PM6641 demonstration board allows the user to test all the main features of the VR PM6641, acting on 7 different jumpers and 4 switches. SW1 (4 SPST switches) lets the user enable the switching regulators and the VTT linear regulator.

In the following sections each jumper is analyzed.

7.1 JP1 VDDQ output discharge (DSCG pin)The JP1 jumper is used to choose between the tracking discharge or nontracking discharge of the 1.8 V rail (VDDQ) output.

When the 1.8 V rail is deactivated (EN_1S8 goes low) and the DSCG is set high, tracking discharge takes place:

The 1.8 V rail regulator is discharged by the internal MOSFETs

The 0.9 V LDO and VTTREF work tracking with half of the 1.8 V rail

When the 0.9 V LDO and VTTREF reach a voltage threshold of about 300 mV, the nontracking discharge mode is performed by closing the internal discharge MOSFETs.

If the nontracking discharge mode is chosen, when EN_1S8 goes low, the 1.8 V and 0.9 V rails and the VTTREF buffer are independently discharged by internal MOSFETs.

Figure 9. JP1 DSCG pin setting

7.2 JP3 switching regulator phase control (SET_PH1 pin)The JP3 jumper allows selecting two different oscillator settings in order to change the delay between the pulses that start the control cycle. The inner clock is divided in order to obtain three slower clocks with a fixed delay of 120 deg. By setting JP3 as depicted in Figure 10, it is possible to synchronize the 1.8 V, 1.5 V and 1.05 V switching regulator clocks or to select 120 deg delay in order to decrease the total RMS input current.

Non Tracking Discharge

Tracking Discharge

Page 16: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Configuration AN2787

16/37

Figure 10. JP3 phase control

The 120 deg phase shifting is the default configuration in which the inner clock is divided and three pulses delayed by 120 deg are obtained to trigger the switching regulator loops.

The synchronous clocking allows all the regulators to start at the same pulse, avoiding the jitter due to simultaneous turn-on and off of different sections, but increasing the overall RMS input current.

7.3 JP4 1.8 V (VDDQ) external/internal divider (VFB_1S8 pin)The JP4 jumper allows selecting the internal divider or the external divider for the 1.8 V switching regulator. When the VFB_1S8 pin is connected directly to the output capacitor, the internal divider is enabled and this section provides 1.8 V output voltage. When the multifunction pin VFB_1S8 is tied to the central tap of an external divider, the switching regulator becomes adjustable, with the following output voltage:

Equation 1

Figure 11. JP4 1.8 V divider selection

120deg Phase Shifting

Synchronous

JP3

V8.01R

RVout

6

5 ⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+=

Internal Divider Enabled

External Divider Enabled

Page 17: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 Configuration

17/37

7.4 JP5 1.5 V external/internal divider (VFB_1S5 pin)The JP5 jumper allows selecting the internal divider or the external divider for the 1.5 V switching regulator. When the VFB_1S5 pin is connected directly to the output capacitor, the internal divider is enabled and this section provides 1.5 V output voltage. When the multifunction pin VFB_1S5 is tied to the central tap of an external divider, the switching regulator becomes adjustable, with the following output voltage:

Equation 2

Figure 12. JP5 1.5 V divider selection

7.5 JP6 1.05 V external/internal divider (VFB_1S05 pin)The JP6 jumper allows selecting the internal divider or the external divider for the 1.05 V switching regulator. When the VFB_1S05 pin is connected directly to the output capacitor, the internal divider is enabled and this section provides 1.05 V output voltage. When the multifunction pin VFB_1S5 is tied to the central tap of an external divider, the switching regulator becomes adjustable, with the following output voltage:

Equation 3

Figure 13. JP6 1.05 V divider selection

V8.01RR

Vout8

7 ⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+=

External Divider Enabled

Internal Divider Enabled

V8.01R

RVout

10

9 ⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+=

Internal Divider Enabled

External Divider Enabled

Page 18: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Configuration AN2787

18/37

7.6 JP7 current limit (CSNS pin)Each switching regulator current limit is set by inserting a resistor between the CSNS pin and AGND. By changing this resistor value, all the current limits change, as shown in Figure 14.

Figure 14. PM6641 demonstration board programmed current limit vs. CSNS resistor

If the CSNS pin is tied to AVCC, the current limit is set through the inner reference resistor (equal to 50 kΩ).

Figure 15. JP8 setting switching frequency

Peak Current Limit

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

50 70 90 110 130 150 170

Rcsns [kOhm]

Cur

rent

Lim

it [A

]

CL_1V8

CL_1V5

CL_1V05

Adjusted Switching Frequency

Default Switching Frequency

Page 19: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 Test setup

19/37

8 Test setup

Figure 16 shows the suggested setup connections between the PM6641 demonstration board, the loads, and the external supply.

Figure 16. PM6641 demonstration board test setup

Page 20: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Getting started AN2787

20/37

9 Getting started

The following step-by-step power-up and power-down sequences are provided in order to correctly evaluate the PM6641 demonstration board performance.

Power-up sequence

Connect power supplies as shown in the PM6641 demonstration board test setup (Figure 16) and insert the meters in order to perform the desired performance evaluation. Connect the scope-probes as desired

Set the JP1 through JP8 jumpers in order to properly configure the PM6641 demonstration board. Set the SW1 switches (EN_1S8, EN_VTT, EN_1S5, EN_1S05) to the ON position. Do not change jumper settings when the board is powered

Set the VCC supply to 5 V ±5% and the current limit to 100 mA

Set the VIN supply to a voltage in the range 2.7 V to 3.6 V

Set all active loads to 0 A

Turn-on the VIN supply

Turn-on the VCC supply

Vary the 1.8 V (VDDQ) load from 0 A to 4 A

Vary the 1.5 V load from 0A to 2.5 A

Vary the 1.05 V load from 0A to 3.5 A

Vary the 0.9 V (VTT) load from 0 A to 2 A to test source capability. To test sink capability use the alternative VTT load connection shown in Figure 16

Vary VTTREF load to test source capabilty.

Power-down sequence

Decrease VTTREF and VTT loads to 0 A

Turn-off the 1.8 V (VDDQ), 1.5 V, 1.05 V loads

Decrease VCC supply from 5 V to 3.8 V in order to test the input undervoltage lockout (UVLO)

Increase VCC supply from 3.8 V to 5 V to restart the device

Use the EN_1S8 and En_VTT switches to enter/exit the S0-S3-S5 states

Turn-off the VCC supply

Turn-off the VIN supply.

Page 21: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

21/37

10 STEVAL-ISA050V1 evaluation tests

10.1 SW regulators turn-on (soft-start)When the EN_xx pin is toggled high, the correspondent SW regulator performs the soft-start as programmed through the external soft-start capacitor. Figure 17 depicts VDDQ (1.8 V) turn-on with CSS = 22 nF.

Figure 17. VDDQ turn-on

Page 22: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

STEVAL-ISA050V1 evaluation tests AN2787

22/37

Figure 18. VDDQ, VTT and VTTREF turn-on

10.2 SW regulator - working modeEach switching regulator changes working mode with the appropriate load. When the load is heavy, the SW enters PWM mode, but when the load is light, pulse skip mode is entered. Each SW regulator is also able to sink current from the output (forced PWM mode when a soft overvoltage occurs).

Page 23: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

23/37

Figure 19. PWM mode: VDDQ output voltage, phase voltage and inductor current, current load = 2.3 A

Page 24: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

STEVAL-ISA050V1 evaluation tests AN2787

24/37

Figure 20. Pulse skip mode: VDDQ output voltage, phase voltage and inductor current, current load = 0 A

Figure 21. Forced PWM mode (soft OV): VDDQ output voltage, phase voltage, inductor current and Power Good signal

Page 25: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

25/37

10.3 Load regulation

Figure 22. VDDQ (1.8 V) load regulation

Figure 23. 1.5 V load regulation

Page 26: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

STEVAL-ISA050V1 evaluation tests AN2787

26/37

Figure 24. 1.05 V load regulation

Figure 25. VTT load regulation

Figure 26. VTTREF load regulation

Page 27: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

27/37

10.4 Load transient responses

Figure 27. VDDQ, VTT and VTTREF, VDDQ load transient response, IVDDQ = 0 to 2.3 A at 2.5 A/µs

Figure 28. 1.5 V output voltage and inductor current, 1.5 V rail load transient response, 1.5 V = 0 to 1.25 A at 2.5 A/µs

Page 28: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

STEVAL-ISA050V1 evaluation tests AN2787

28/37

Figure 29. 1.05 V output voltage and inductor current, 1.05 V rail load transient response. I1.05 V = 0 to 1.75 A at 2.5 A/µs

Figure 30. VDDQ, VTTREF, VTT and VTT output current, VTT rail load transient response, IVTT = –1 A to +1 A at 2.5 A/µs

Page 29: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

29/37

10.5 Efficiency

Figure 31. SW regulators efficiency

10.6 Phase managementFigure 32 and 33 show the SW regulators loaded with 1.3 A (VDDQ rail), 1.25 A (1.5 V rail) and 1.75 A (1.05 V rail). By connecting the SETPH1 pin to AGND or to AVCC the following two different phase shifts are allowed.

Figure 32. SW regulators phases, 120 deg phase shift. SETPH1 pin tied to AGND

Page 30: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

STEVAL-ISA050V1 evaluation tests AN2787

30/37

Figure 33. SW regulators phases, no phase shift - synchronous clock, SETPH1 pin tied to AVCC

10.7 Fault management (OVP, UVP, UVLO, thermal)Each switching regulator is able to detect the output overvoltage and undervoltage. When the OV is detected the high-side MOSFET is turned off and the low-side MOSFET is turned on. When the UV is detected, the power MOSFETs are both turned off and the discharge MOSFET is turned on (soft-end). The soft-end is also performed when the junction temperature is higher than 150 °C.

Figure 34. VDDQ, VTT, VTTREF output voltage, VDDQ temporarily shorted to 3.3 V, output overvoltage protection triggered

Page 31: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

31/37

Figure 35. VDDQ, VTT, VTTREF output voltage and VDDQ inductor current, VDDQ feedback pin temporarily shorted to GND, output undervoltage protection triggered

When the input undervoltage is detected, the VDDQ (1.8 V) rail performs the output voltage soft-end. The 1.5 V and 1.05 V rails turn-off the high-side power MOSFET and turn-on the low-side one.

Page 32: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

STEVAL-ISA050V1 evaluation tests AN2787

32/37

Figure 36. VDDQ (1.8 V), 1.5 V, 1.05 V output voltage and AVCC input power supply, input undervoltage lockout triggered

Figure 37. VDDQ (1.8 V), 1.5 V, 1.05 V and VTT rails output voltage, thermal shutdown triggered

Page 33: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

33/37

10.8 SW regulators current limitCycle-by-cycle the high-side MOSFET current is monitored and if it's higher than the programmed current limit, the high-side MOSFET is immediately turned off.

Figure 38. 1.5 V rail output voltage, 1.5 V inductor current and output current, peak current limit reached

10.9 Soft-endEach SW regulator, when turned off, performs the output voltage soft-end by turning off the power MOSFET and turning on the discharge MOSFET. When the output voltage is lower than about 300 mV, the low-side power MOSFET is turned on. VTTREF and VTT can track half of VDDQ also during the soft off.

These rails are allowed two different modes of discharge: tracking and nontracking discharge.

Page 34: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

STEVAL-ISA050V1 evaluation tests AN2787

34/37

Figure 39. VDDQ(1.8 V), VTT and VTTREF rail output voltage, EN_1S8 and EN_VTT tied to AGND - soft off with tracking discharge

Figure 40. VDDQ(1.8 V), VTT and VTTREF rail output voltage. EN_1S8 and EN_VTT tied to AGND - soft off without tracking discharge

Page 35: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787 STEVAL-ISA050V1 evaluation tests

35/37

10.10 Thermal behaviorThe device temperature is mainly influenced by LDO VTT current. The typical working currents are shown in Table 3.

VTT is supplied by VDDQ and the device (average) temperature is 54.5 °C.

Figure 41. PM6641 demonstration board surface temperature when loaded with typical currents, Tamb = 23 °C, VIN = 3.3 V, FSW = 660 kHz

Table 3. Average working currents for each rail

Rail Current [A]

VDDQ (1.8 V) 1.35

1.5 V 1.25

1.05 V 1.75

VTT (0.9 V) 0.3

Page 36: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

Revision history AN2787

36/37

11 Revision history

Table 4. Document revision history

Date Revision Changes

05-Sep-2008 1 Initial release

Page 37: Monolithic VR demonstration board for chipset and DDR2/3 ...€¦ · Monolithic VR demonstration board for chipset and DDR2/3 supply for ultramobile PC (UMPC) applications Introduction

AN2787

37/37

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOTRECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAININGAPPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com