monkeys steer wheelchairs with their brains ramírez corona

12
Universidad Nacional Autónoma de México Centro de Educación Continua y Centro de Capacitación “Los Galeana” Trabajo Final: “Monkeys Steer Wheelchairs With Their Brains, Raising Hope for Paralyzed People”. Alumna: Ramírez Corona Vrissa Vanessa. Profesora: Leticia Gutiérrez. Grupo: 56 Fecha: 25 de febrero de 2015

Upload: vane-rc

Post on 20-Jul-2015

32 views

Category:

Science


1 download

TRANSCRIPT

Universidad Nacional Autónoma de México

Centro de Educación Continua y Centro de Capacitación “Los Galeana”

Trabajo Final: “Monkeys Steer Wheelchairs With Their Brains, Raising Hope for Paralyzed People”.

Alumna: Ramírez Corona Vrissa Vanessa.

Profesora: Leticia Gutiérrez.

Grupo: 56

Fecha: 25 de febrero de 2015

INTRODUCCIÓN

La elección del presente tema, fue principalmente porque en lo particular me pareció muy interesante, además de que desconocía sobre él.

Y considero que es importante ampliar mis conocimientos tanto en lo relativo al idioma (que en el caso es lo primordial) como en lo general, toda vez que el tema en sí logró llamar mi atención, pues si bien la mayoría hemos escuchado de él, lo cierto es que, al menos yo, no sabía de qué trataba, en qué consistía y mucho menos los alcances que podía tener.

Por lo anterior, es que elegí como parte de mi trabajo final el tema que se expondrá a continuación.

RESUMEN

Los exoesqueletos y las sillas de ruedas que se mueven con las ondas cerebrales no solo ayudan a personas parapléjicas sino que también ayudan a descubrir diversos problemas cerebrales. Estos funcionan conectando las interfaces robóticas con el cerebro. Después de muchos años de estudios los exoesqueletos comienzan a moverse con ayuda de pacientes voluntarios.

Uno de los experimentos más importantes es que conectaron unos interfaces electrónico con el cerebro de dos monos los cuales pudieron mover una silla de ruedas solo con el pensamiento. Estos experimentos tiene la finalidad de ayudad a las personas a poder manejar prótesis robóticas.

El entrenamiento de los pacientes con los exoesqueletos no solo ayudan a las personas a poder volver a caminar sino que los vencí si de diversas maneras ya esas mostraron un mejor tono muscular y más condición física

Se espera que todos estos avances logren encontrar una cura para lesiones cervicales. Podemos concluir que el uso de los exoesqueletos ya es un hecho y que la tecnología poco a poco al ser dominada por el hombre se está convirtiendo en la mejor herramienta que este puede tener, se espera que unos años mas personas se interesen en este tipo de estudios y pueda haber avances más rápido en cuanto este tema. Muchas personas que son sometidas a estos procedimientos comienzan a manipular estos exoesqueletos y a mejorar sus estados de vida ya que no solo comienzan a moverse sino que también comienzan a tener un mejor desarrollo celebrar y un mejor estado físico, sin duda alguna que cuando el hombre llegue a dominar al 100% estos exoesqueletos no solo serán utilizados, científicamente, sino que también tendrás usos militares.

Monkeys Steer Wheelchairs With Their Brains, Raising Hope for Paralyzed People New technologies offer a window into how the brain creates movement.

A rhesus macaque walks with the aid of a pneumatically powered exoskeleton controlled by a

computer reading signals from electrodes implanted in the monkey’s motor cortex. Miguel

Nicolelis and colleagues at Duke University are developing similar devices that could allow

paralyzed humans to walk again.

PHOTOGRAPH BY ROBERT CLARK, NATIONAL GEOGRAPHIC CREATIVE

Dan Vergano National Geographic PUBLISHED NOVEMBER 18, 2014

WASHINGTON, D.C.—Experimental wheelchairs and exoskeletons controlled by thought alone offer surprising insights into the brain, neuroscientists reported on Monday.

Best known for his experimental exoskeleton that helped a paralyzed man kick the opening ball forJune's World Cup in Brazil, Duke University neuroscientist Miguel Nicolelis presented the latest "brain-machine interface" findings from his team's "Walk Again Project" at the Society for Neuroscience meeting.

RELATED: See also "Secrets of the Brain" fromNational Geographic magazine.

"Some of our patients say they feel they are walking on sand," says Nicolelis, describing pilot research in which eight paralyzed patients walked using a robotic exoskeleton that moved in response to readings of the patients' brain waves. "We are actually fooling the brain of patients to think it is not a machine carrying them, but they feel they are themselves walking forward."

Insights into the brains of paralyzed patients are helping to drive the technology as well as leading to new discoveries, says neuroscientistEberhard Fetz of the University of Washington in Seattle. Roughly 130,000 people yearly suffer spinal cord injuries worldwide, and for more than a decade, researchers have sought to help these patients using robotic interfaces with the brain. After years of advances, efforts such as the exoskeleton are moving into the earliest stages of medical testing in patient volunteers.

"For patients, they are probably not coming fast fast enough," Fetz says. "But brain-machine interfaces are giving us results producing a basic understanding of neural mechanisms. That is going to happen in parallel with developing these as tools to benefit patients."

Monkey-Driven Wheelchairs

Brain-machine interfaces have become a buzzword in recent years, triggering headlines when, for example, Brown University's John Donoghue's human patients drank coffee and picked up objects with robotic arms controlled by brain-implanted electrodes.

At the meeting, Nicolelis also presented research on two rhesus monkeys that had electrodes implanted deep in their brains that, with training, allowed the animals to steer a wheelchair using thought alone. The goal of that research is partly to help develop a "brain pacemaker" implant that would pick up clearer signals from thoughts to help control future robotic prosthetics.

Signals from deep in the brain are much easier for devices to read than ones picked up by electrical skin sensors on patient's skulls. Such implants made the monkeys relatively quick students at wheelchair driving. "They can reliably steer the wheelchair to get a grape," Nicolelis said. "They like grapes."

Fetz and colleagues have similarly shown that brain interfaces in monkeys can "bridge" the damaged area in a spinal cord injury, allowing voluntary movement of muscles. "These efforts are in fact coming along and offer a lot of promise," he says.

Phantom Sensation

Training paralysis patients to walk with an experimental exoskeleton can have unexpected benefits too. The people in Nicolelis' study showed improved muscle tone, heart health, and digestion over the last year, he says.

Most surprising has been the finding that the faster patients walk with the exoskeleton device—a skeletal frame equipped with 15 electrical motors triggered by electroencephalogram readings—the more natural the walking feels to them.

See how scientists are using electrodes to develop a mechanical skeleton.

Paralysis also cuts off sensation from the lower limbs, which can make standing upright feel alarming, as if one is simply hanging in air, Nicolelis says. However, the brain's ability to manufacture "phantom" feeling, best known from amputees who report pain from phantom limbs they no longer possess, similarly kicks in for paralysis patients learning to walk in an exoskeleton.

"If they walk slow, they feel that they are walking on sand; faster, that they are on grass, and fastest that they are walking on hot pavement."

Long Walk Ahead

Despite the excitement over brain-machine interfaces in recent years, a great deal of hard work remains ahead for researchers and patients, cautions neuroscientist Daofen Chen of the National Institute of Neurological Disorders and Stroke, part of the federal National Institutes of Health.

"In my personal view, brain-machine interfaces are offering important tools to understand the brain," Chen says. "We are far from understanding the brain well enough to expect them to serve as solutions."

Fetz, however, suggests that enough progress is being made to feel good about developing robotics that might help patients, both in efforts such as the exoskeleton and other advances that might bridge spinal cord injuries to restore normal functions.

One less well-known use for brain interfaces could help the 70 percent of paralysis patients with respiratory problems draw breaths, Fetz says. Neuroscientist Philippa Warren of Case Western Reserve University in Cleveland also spoke at the neuroscience meeting on spinal drugs and physical rehabilitation treatments to improve breathing for paralyzed patients.

"One of the benefits of this whole area of research is that training patients on these devices helps them become part of the research team," Fetz says. "We are working together."

Follow Dan Vergano on Twitter.

1. Completa la siguiente tabla con palabras del texto aportando ejemplos para todas las categorías gramaticales que recuerdes.

Línea Palabra(s) categoría gramatical significado

1 experimental sustantivo experimental

2 brain sustantivo cerebro

4 known verbo conocido

5 neuroscientist adjetivo neurocientífico

9 feel verbo sentir

11 paralyzed adjetivo paralizado

26 become verbo Convertirse en

23 results sustantivo resultados

28 drank verbo bebió

36 sensors sustantivo sensores

39 similarly adjetivo Similarmente (del mismo modo)

43 walk verbo caminar

45 heart sustantivo Corazón

49 make verbo hacer

53 learning verbo aprendiendo

54 sand sustantivo arena

60 important adjetivo importante

70 spoke verbo hablo

2. Identifica las siguientes categorías gramaticales marcando en el texto con el color correspondiente.

Sustantivos adjetivos verbos adverbios preposiciones

3. Traduce las siguientes frases nominales.

1 some of our patients say Varios de nuestros pacientes dicen

2 these patients Estos pacientes

3 how the brain creates Como el cerebro crea

4 from the lower limbs Desde las extremidades inferiores

5 in recent years En recientes años

6 an experimental exoskeleton Un esqueleto experimental

7 of paralyzed patients De pacientes paralizados

8 In my personal view En mi personal punto de vista (en mi

personal opinión)

9 who report pain Quien reportó dolor

10 One less well-known Uno menos bien conocido

11 After years of advances Después de años de avances

12 The goal of that research El objetivo de esa investigación

13 One of the benefits Uno de los beneficios

14 a great deal of hard work Una gran cantidad de trabajo duro

15 The people in Nicolelis' study Las personas en el estudio de Nicolelis

4. Copia del texto enunciados identificando las siguientes estructuras

debajo de cada título.

SUJETO

Experimental wheelchairs and exoskeletons controlled by thought

…… alone

In my personal view, brain-machine interfaces

We are actually fooling the brain of patients

We are far from understanding the brain

they are probably not coming fast fast enough

COMPLEMENTO DIRECTO

Miguel Nicolelis and colleagues at Duke University are developing

similar devices

We are actually fooling the brain of patients to think it is not a

machine

they are probably not coming fast fast enough

"In my personal view, brain-machine interfaces are offering important

tools to understand the brain,"

"One of the benefits of this whole area of research is that training

patients on these devices helps them become part of the research

team"

COMPLEMENTO INDIRECTO (quien, para quien)

that moved in response to readings of the patients' brain waves.

interfaces are offering important tools to understand the brain,

that might bridge spinal cord injuries to restore normal functions

rehabilitation treatments to improve breathing for paralyzed patients.

COMPLEMENTO CIRCUNSTANCIAL (marca L, T, M, para identificar si

es de lugar, tiempo o modo).

o T - Experimental wheelchairs and exoskeletons controlled by thought alone offer surprising insights into the brain, neuroscientists reported on Monday.

o L - Best known for his experimental exoskeleton that helped a

paralyzed man kick the opening ball for June's World Cup in Brazil

o T - The people in Nicolelis' study showed improved muscle tone,

heart health, and digestion over the last year, he says.

o M - Training paralysis patients to walk with an experimental

exoskeleton can have unexpected benefits too.

CONECTORES ELEMENTOS REFERENCIALES

the technology as well as leading to new discoveries

In my personal view

such as the exoskeleton deep in their brains

these as tools to benefit patients. Best known for his experimental

as if one is simply hanging findings from his team's "Walk Again Project"

If they walk slow

patients to think it is not a machine

but they feel they are themselves they feel they are walking on sand

But brain-machine interfaces are giving us results

they feel they are themselves walking forward

Experimental wheelchairs and exoskeletons

They like grapes

and for more than a decade These efforts are in fact coming

Miguel Nicolelis and colleagues We are far from understanding the brain

for devices to read than ones picked up The people in Nicolelis' study showed improved muscle

Experimental

Controlado por una

computadora

Paralisis

Pacientes

Las nuevas tecnologías ofrecen una ventana a cómo

el cerebro crea el movimiento.

5. Mapa Mental. Elabora un mapa mental del texto.

- Monos - Neurocientíficos

-Electrodos -Robótica Exoesquelestos

-Sillas de ruedas -Tener movimiento de nuevo

-Paralizado -Aprender a caminar

CONCLUSIONES

Como lo mencione al inicio el tema es muy amplio y complejo, y a través de mi

texto puede despejar algunas dudas y aprender lo esencial; sin embargo, dada la

complejidad del asunto y los grandes avances tanto tecnológicos como médicos

es muy difícil concluir que conozco el tema.

Lo que sí puedo decir, es que por lo menos entendí y no me pareció tan difícil

(enfocándome únicamente al idioma), no sé si se debió al tipo de texto o

estructura, o hasta los términos empleados, pero creo que al menos el fin se

consiguió, ya que creo que puedo leer un texto y entenderlo, lo cual era el objetivo

principal del curso.