monalisa: the precision of absolute distance interferometry measurements

28
MONALISA: The precision of absolute distance interferometry measurements forAccelerator Science John Adam s Institute J A I Matthew Warden, Paul Coe, David Urner, Armin Reichold Photon 08, Edinburgh

Upload: anana

Post on 19-Jan-2016

34 views

Category:

Documents


2 download

DESCRIPTION

MONALISA: The precision of absolute distance interferometry measurements. Matthew Warden , Paul Coe, David Urner, Armin Reichold Photon 08, Edinburgh. Concept. Results. Comparison. Conclusions. 1/14. Preliminaries. Why are we interested in optical metrology?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MONALISA: The precision of absolute distance interferometry measurements

MONALISA:The precision of absolute distance interferometry

measurements

for AcceleratorScience

John Adams Institute

J A I

Matthew Warden, Paul Coe, David Urner, Armin ReicholdPhoton 08, Edinburgh

Page 2: MONALISA: The precision of absolute distance interferometry measurements

Why are we interested in optical metrology?

• Particle accelerators contain systems of magnetic lenses and prisms to focus and steer the beam

• beam trajectory affects accelerator performance• When magnets move the trajectory is altered• optical metrology to monitor magnet positions• Absolute distance interferometry (ADI) used

ComparisonPreliminaries Concept Results Conclusions

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

1/14

Page 3: MONALISA: The precision of absolute distance interferometry measurements

Coherent ADI with a reference interferometer

measmeas fc

D

2

measD

inte

nsity

time

time

lase

r fr

eque

ncy

f

measf

ComparisonPreliminaries Concept Results Conclusions 2/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 4: MONALISA: The precision of absolute distance interferometry measurements

Coherent ADI with a reference interferometer

measmeas fc

D

2

refD

measDtime

inte

nsity

Typical signals

inte

nsity

time

refref fc

D

2time

lase

r fr

eque

ncy

f

measf

reff

ComparisonPreliminaries Concept Results Conclusions 2/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 5: MONALISA: The precision of absolute distance interferometry measurements

Coherent ADI with a reference interferometer

measmeas fc

D

2

refD

measD

ref

meas

ref

meas

f

f

D

DR

time

inte

nsity

Typical signals

inte

nsity

time

refref fc

D

2time

lase

r fr

eque

ncy

f

measf

reff

ComparisonPreliminaries Concept Results Conclusions 2/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 6: MONALISA: The precision of absolute distance interferometry measurements

Introducing the Cramér-Rao bound:

A tool to help understand measurement uncertainty

Page 7: MONALISA: The precision of absolute distance interferometry measurements

Methods to measure uncertainty

How precisely can this distance ratio be measured?

• Empirical: variance of repeated measurements

• Can see how this varies with certain parameters, e.g. signal to noise ratio

• Analytical: Cramér-Rao bound

ref

meas

ref

meas

f

f

D

DR

ComparisonPreliminaries Concept Results Conclusions 3/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 8: MONALISA: The precision of absolute distance interferometry measurements

What is the Cramér-Rao Bound?

• Statistical tool• Used in signal analysis• e.g. to find uncertainty of frequency estimation

• ADI measurements involve frequency estimation!

ComparisonPreliminaries Concept Results Conclusions 4/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 9: MONALISA: The precision of absolute distance interferometry measurements

How does it work?

Parameters

FrequencyPhaseAmplitude

• Calculation revolves around variations in the likelihood of getting the data you got, given certain parameter values

• Narrow range of likely parameters Low uncertainty• Wide range of likely parameters High uncertainty

• Lower bound on uncertainty of unbiased estimators

ComparisonPreliminaries Concept Results Conclusions 5/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 10: MONALISA: The precision of absolute distance interferometry measurements

Results:

Cramér-Rao bound calculations

Page 11: MONALISA: The precision of absolute distance interferometry measurements

Cramér-Rao Bound – Linear Tuningwith perfect reference interferometer

measD

inte

nsity

time

c

NDSNRR measmeas

R 611

4

1

ComparisonPreliminaries Concept Results Conclusions 6/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 12: MONALISA: The precision of absolute distance interferometry measurements

Cramér-Rao Bound – Linear TuningrefD

measDtime

inte

nsity

inte

nsity

time

c

NDSNRDSNRR refrefmeasmeas

R 6111

4

121

22

ComparisonPreliminaries Concept Results Conclusions 7/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 13: MONALISA: The precision of absolute distance interferometry measurements

)(2

111

4

121

22

std

c

NDSNRDSNRR refrefmeasmeas

R

Cramér-Rao Bound – Non-Linear Tuning

refD

measDtime

inte

nsity

inte

nsity

time

ComparisonPreliminaries Concept Results Conclusions 8/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 14: MONALISA: The precision of absolute distance interferometry measurements

(Cramér-Rao Bound – No phase quadrature)

refD

measDtime

inte

nsity

inte

nsity

time

Given (fairly loose) restrictions on signal spectra:

)(2

122

4

121

22

std

c

NDSNRDSNRR refrefmeasmeas

R

ComparisonPreliminaries Concept Results Conclusions 9/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 15: MONALISA: The precision of absolute distance interferometry measurements

(Cramér-Rao Bound – No phase quadrature)

time

inte

nsity

inte

nsity

time

Given (fairly loose) restrictions on signal spectra:

time

inte

nsity

inte

nsity

time

Hilbert Transformor

Fourier Transform Technique

)(2

122

4

121

22

std

c

NDSNRDSNRR refrefmeasmeas

R

ComparisonPreliminaries Concept Results Conclusions 9/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 16: MONALISA: The precision of absolute distance interferometry measurements

How these result should and should not be used

• Calculates minimum uncertainty for simplified situation• In real life, other sources of error could be dominant• So may not achieve this lower uncertainty limit

• This result useful for:– Occasions when the considered random errors are dominant– Benchmark for testing analysis algorithms

• Potential to extend model to other random error sources

ComparisonPreliminaries Concept Results Conclusions 10/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 17: MONALISA: The precision of absolute distance interferometry measurements

Comparison with simulated and experimental uncertainties

Page 18: MONALISA: The precision of absolute distance interferometry measurements

Simulation

• Wish to check an analysis method to see if it acheives the CRB

• Analysis method is just a linear fit to interferometer phases, calculated from phase quadrature readouts

ComparisonPreliminaries Concept Results Conclusions 11/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 19: MONALISA: The precision of absolute distance interferometry measurements

Comparison with simulationUncertainty vs:

Signal to noise ratio

Optical path difference

Number of samples

Frequency scan range

Frequency scan linearity

)(2

111

4

121

22

std

c

NDSNRDSNRR refrefmeasmeas

R

ComparisonPreliminaries Concept Results Conclusions 12/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

Page 20: MONALISA: The precision of absolute distance interferometry measurements

Comparison with experiment

ComparisonPreliminaries Concept Results Conclusions 13/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

• Can experimental uncertainty reach the predicted lower bound?

• Not here, not yet!• …But the uncertainty

scales as predicted!

Page 21: MONALISA: The precision of absolute distance interferometry measurements

Conclusions

• Uncertainty often measured empirically

• Alternative: statistical method• Helps understand sources of uncertainty• Provide benchmark for analysis algorithms

• Calculated Cramér-Rao bound for certain situations

• Tested analysis method against them

• Need to include more sources of uncertainty

Group Website: www-pnp.physics.ox.ac.uk/~monalisa

ComparisonPreliminaries Concept Results Conclusions 14/14

The precision of absolute distance interferometry measurements - Matt Warden – Photon 08

c

NDSNRR measmeas

R 611

4

1

Page 22: MONALISA: The precision of absolute distance interferometry measurements
Page 23: MONALISA: The precision of absolute distance interferometry measurements

References

Statistical Inference, Prentice Hall, 1995, ISBN 0-13-847260-2

Paul H. Garthwaite, Ian T. Jolliffe, Byron Jones

Single-Tone Parameter Estimation from Discrete-Time Observations, David C. Rife,

IEEE Transactions on information theory, Vol 20, No 5, Sept 1974

Page 24: MONALISA: The precision of absolute distance interferometry measurements

“Names are not always what they seem. The common Welsh name BZJXXLLWCP is pronounced Jackson.”

- Mark Twain

ADI Absolute Distance Interferometry

FSI Frequency Scanning Interferometry

WSI Wavelength Shifting Interferometry

FMCW Frequency Modulated Continuous Wave

OFDR Optical Frequency Domain Reflectometry

VSW Variable Synthetic Wavelength

Names…

Methods with all these names rely on the same basic principles.

Page 25: MONALISA: The precision of absolute distance interferometry measurements

Coherent ADI with a reference interferometer

OPD

c

2

ddc

OPD

2

SimulationPreliminaries Introducing the CRB Results Conclusions

refOPD21

measOPD21

ref

meas

ref

meas

d

d

OPD

OPDR

time

inte

nsity

A typical signal

Page 26: MONALISA: The precision of absolute distance interferometry measurements

What is this tool? How does it work?

The Cramér-Rao Bound

• Statistical tool• Used in signal analysis e.g.

to find uncertainty in frequency estimation

• ADI measurements involve frequency estimation!

Analogy: least squares fitting

Page 27: MONALISA: The precision of absolute distance interferometry measurements

Without phase quadrature

Hilbert Transformor

Fourier Transform Technique

Page 28: MONALISA: The precision of absolute distance interferometry measurements

Comparison with simulationVaried:

Number of samples

Signal to noise ratio

Frequency scan range

Frequency scan linearity

Optical path difference