molecular imprinting of bovine serum albumin on...

30
e-mail: [email protected] Molecular Imprinting of Bovine Serum Albumin on Polypyrrolidone Magnetic Microparticles for Selective Recognition of Proteins Zlatan Denchev i3N - Institute for Polymers and Composites, University of Minho, Guimaraes, Portugal SUNNY-ESF, Department of Chemistry Seminar, Sept. 28, 2017

Upload: others

Post on 19-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

e-mail: [email protected]

Molecular Imprinting of Bovine Serum Albumin on

Polypyrrolidone Magnetic Microparticles for Selective Recognition

of Proteins

Zlatan Denchev

i3N - Institute for Polymers and Composites, University of Minho,

Guimaraes, Portugal

SUNNY-ESF, Department of Chemistry Seminar, Sept. 28, 2017

Page 2: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Outline2

1. Molecular Imprinting – definition, components, trends

2. Microencapsulation by anionic polymerization of lactams

3. Microencapsulation + Molecular Imprinting of BSA

4. Results and Discussion

5. Conclusions

Page 3: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Molecular Imprinting Technology (MIT)3

MIT - making molecular locks to match specific molecular keys, i.e., construction of specific recognitions sitesin synthetic polymers.MIT employs templates, functional monomers, polymerization processes, and methods for selective elutionof the template.

Self assembly interactions: covalent, electrostatic/ionic, non-covalent, semi-covalent and coordinative

Page 4: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Molecular Imprinting Technology (MIT)4

Main advantages of MIT: Structure predictability, recognition specificity and application versatility.

Main limitations of MIT:Functional monomers - mostly vinyl or acrylics;Polymerizations - mostly free radical with thermal/photochemical initiation.

Template types in MIT: Atoms, ions, molecules, macromolecules or ensembles of them, including

microorganisms.

Future Trends for MIT:Use of new monomers and polymerization techniques;Combination of MIT with other technologies;Smart, stimuli-responsive molecularly imprinted polymers (MIP);MIP with protein or enzyme templates.

Page 5: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Molecularly Imprinted Polymers (MIP) -- Applications5

Selective membranes

Solid phase microextraction

Artificial antibodies

Chemical sensorsBiomimetic materials

Chromatographic mediaHeterogeneous catalysts

Immunosorbents

MIP

Page 6: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Main ideas of this work6

1. Introducing a new group or functional monomers in MIT – lactams;

2. Introducing of activated anionic polymerization of lactams in MIT;

3. Combination of microencapsulation technology with MIT;

4. Molecular imprinting of model protein template;

5. Synthesis of smart MIP susceptible to external magnetic fields.

Page 7: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Microencapsulation via AAROP of lactams 7

Starting mixture Viscous particles Hybrid micro/nano particles

Precipitationpolimerization

AAROP

ECL;

DDL,

2PD

APA6, PA12, PA4

Different payloads neat or mixturescan be used:

• Natural nanoclays -- CL15A, CL20A

• Carbon allotropes – CB, CNT, CNF,

fullerenes

• Metals – Cu, Al, Mg, Ag, Zn, Ag

• Magnetic particles – Fe, Fe3O4

The AAROP reaction

Page 8: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

AROP of Lactams - mechanism8

B COHN CON+Initiation:

+ CO

2

NC

1

OHN

slowCHN

O

C ON

3

CHN

O

C ON

aminic anion 4

Rate controlling step

CHN

O

C ON

4

rapid+CONH CON+

1 2Imide dimerN-(e-aminocaproyl)-caprolactam

5

CH2N

O

C ON

CONNR CO CONNHR CO N

COHN

+ +CO

NHR CO NH CO CON

PA6

Propagation:

AAP Catalytic system used:

Initiator: DILACTAMATE® ; Activator: BRUGGOLEN® C 20

Page 9: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Morphology and magnetic properties of Microcapsules9

Page 10: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Molecularly Imprinted Polymers - MIP10

Schematic representation of Non-covalent Molecular ImprintingMIP SAMPLES produced:PPD@BSAPPD-Fe-1%@BSAPPD-Fe3O4- 1%@BSAPPD-Fe3O4 -0.1%@BSA

andcorresponding NIP:

PPDPPD-Fe-1%PPD-Fe3O4 -1%PPD-Fe3O4 -0.1%

Functional monomer:2-pyrrolidone (PD)

Template:Bovine Serum Albumin (BSA)

HOOC

H2N

COOH

NH2

COOH

PD:BSA Self-assemblyby hydrogen bonds:

Materials used and processing

AAROP in the presence ofmagnetic nanoparticles: Fe ; Fe3O4 – 1 wt.%Catalytic system:DL+C2040ºC; no solvent.

Polymerization processConditions:

Page 11: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

BSA structure11

Three dimension image

of BSA molecule

(normal conditions).

α-helix structure in red;

Loops colored in green.

Side view

Front view

BSA

composed of 604 peptide units;

molecular weight of 66462 g/mol

consists of 55 – 65% α-helices, 21% β- sheet,

and the rest are turns.

pI 4.6-5

BSA secondary structure highly depends on pH:

pH 4.3 to 8.0, this is the so-called normal form.

pH below 4.3 --- unfolding starts, fast form with 45%

α-helix.

pH below 2.7 -- further unfolding to the expanded form

with 35%

pH above 8 -- the molecule adopts the basic form which

has 47% α-helix

BSA has hearth shapedmolecule – equilateral

triangle with side~8 nm and depth ~3nm

Page 12: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD@BSA MIP/NIP SEM characterization12

PPD - NIP

PPD @BSA MIPbefore removingthe BSA template

PPD @BSA MIPafter removing

the BSA template

Page 13: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD-Fe 1% @ BSA NIP/MIP SEM characterization13

Fe 1% NIP

Fe - 1% MIPBefore removingthe BSA template

Fe - 1% MIPAfter removing

the BSA template

Page 14: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD-Fe3O4 1% @ BSA MIP/NIP SEM characterization14

Fe3O4 -1% NIP

Fe3O4 - 1% MIPBefore removingthe BSA template

Fe3O4 - 1% MIPAfter removing

the BSA template

Page 15: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

MIP/NIP characterization15

FTIR (ATR)

Page 16: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

MIP/NIP characterization16

TGA

TidMIP > Tid

NIP

Page 17: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Low Temperature DSC analysis of in-pore constrained water17

PPD NIP/MIP PPD-Fe3O4 NIP/MIP

Page 18: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

BSA Adsorption kinetics of MIP/NIP samples18

0.1g MIP

2.5 ml 1wt.% BSA/H2O

1.0 ml B (PBS 0.1M pH 7)or (MES 0.1M pH 4)

MIP NIP

3h, 37ºC

Samples are removed after 0, 15, 30, 45, 60, 90, 120, 180 min incubation at 37ºC

0.1 ml of supernatant1.9 ml B

UV-VISAbsorbance at

280 nm ismeasured

Ab

sorb

ance

at

28

6 n

m

Page 19: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD & PPD-Fe 1% MIP/NIP –Adsorption capacity Q, in MES Buffer19

Conditions: 0,1 g NIP/MIP; 1wt.% BSA; 3h incubation time; 37°C; 0.1 M pH 4.1 (MES buffer)

Page 20: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD-Fe3O4 MIP/NIP –Adsorption capacity Q, in MES Buffer20

Conditions: 0,1 g NIP/MIP; 1wt.% BSA; 3h incubation time; 37°C; 0.1 M pH 4.1 (MES buffer)

Page 21: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD&PPD-Fe 1% MIP/NIP - Adsorption capacity Q, in Phosphate Buffer 21

Conditions: 0,1 g NIP/MIP; 1wt.% BSA; 3h incubation time; 37°C; 0.1 M pH 7.2 (Phosphate buffer)

Page 22: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD-Fe3O4 MIP/NIP - Adsorption capacity Q, in Phosphate Buffer 22

Conditions: 0,1 g NIP/MIP; 1wt.% BSA; 3h incubation time; 37°C; 0.1 M pH 7.2 (Phosphate buffer)

Page 23: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

PPD-Fe(PO4) MIP/NIP - Adsorption capacity Q 22

Conditions: 0,1 g NIP/MIP; 1wt.% BSA; 3h incubation time; 37°C

MES buffer 0.1 M pH 4.1 Phosphate buffer 0.1 M pH 7.2

Page 24: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Evaluation of Imprinting Factor IF of PPD-MIP samples23

In pH 4,1 (MES buffer)

IF

In pH 7.2 (Phosphate buffer)

IF

IF = QMIP / QNIP

Page 25: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Conclusions24

• Novel BSA molecularly imprinted magnetic responsive particles based onPA4 (2-polypyrrolidone) are synthesized via activated anionicpolymerization;

• The MIP particles are with controlled shape and sizes of 10-50 µm; themaximum dimensions of the imprinted cavities falls between 70-200 nm;

• All MIP samples showed superior adsorption capacity toward thetemplate BSA protein, as compared to the respective NIP samples, theimprovement factor varying between 30 and 320%;

• The adsorption capacity Q toward template protein is pH dependent, i.e.,much stronger in acidic than in basic media.

• Q can also depend on the surface treatment of the magnetic particles.

Page 26: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Acknowledgements25

TSSiPRO NORTE-01-0145-FEDER-000015

Strategic projects UID/CTM/50025/2013 and LA25/2013-2014

SFRH/BSAB/130271/2017

Page 27: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

Еlina MarinhoClara RayaNadya DenchevaFilipa OliveiraJoana RompanteJoana BrazFilipa D. OliveiraShafagh Tochidi

Page 28: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

University of Minho

Thank you!

Page 29: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

University of Minho localization

Page 30: Molecular Imprinting of Bovine Serum Albumin on ...repositorium.sdum.uminho.pt/bitstream/1822/50830/1/... · 3 Molecular Imprinting Technology (MIT) MIT - making molecular locks to

University of Minho

School of Natural Sciences

School of Engineering

Psychology School

Higher Institute of Education

Law School

School of Architecture

School of Economics and Management

School of Health Sciences

Founded:1974; Localization: Braga & Guimarães;Number of students: ca. 21.000 (incl. Post-graduation)

Higher School of Nursing

School of Social Sciences

School of Philology

School of Engineering

Department of BioengineeringDepartment of Civil ConstructionDepartment of Industrial ElectronicsDepartment of Mechanical EngineeringDepartment of Polymer Engineering (DEP)Department of Textile EngineeringDepartment of InformaticsDepartment of Production Systems Department of Informational Systems