molecular dynamics simulations of cascades in nuclear graphite h. j. christie, d. l. roach, d. k....

25
Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie , D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez, M. Robinson, N. Marks Curtin University, Perth, Western Australia A. McKenna, M. Heggie

Upload: molly-harrison

Post on 27-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Molecular Dynamics Simulations of Cascades in Nuclear Graphite

H. J. Christie, D. L. Roach, D. K. RossThe University of Salford, UK

I. Suarez-Martinez, M. Robinson, N. Marks Curtin University, Perth, Western Australia

A. McKenna, M. Heggie Surrey University, UK

Page 2: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

• Motivation

• Background

• Methodology

• Results:• Graphite

• Carbon Materials

• Conclusions and Further Work

Outline

Page 3: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

• Show how graphite behaves extremely differently to other carbon materials

Motivation

• Create quality simulations using molecular dynamics in graphite

• Extend the life-span of current nuclear reactors

• Crucial information for next generation of nuclear reactors

• Understanding of processes occurring in irradiated graphite

Page 4: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

• Molecular Dynamics (MD) and Monte Carlo have a heritage that extends back to the Manhattan project (1946)

• Virtually no MD simulations of radiation damage in graphite

Background

WHY?

Difficult to use MD in Carbon based materials due to its hybridized states and anisotropic layers

• Only in the last ten years or so have suitable MD potentials for Carbon been developed

•Previous work – Nordlund et al., Smith, Yazyev et al.

Page 5: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Methodology

Page 6: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Swift Heavy Ions Cascades Defects

Primary Knock-On Atom passes straight through transferring energy to the surrounding atoms

Primary Knock-On Atom (denoted in blue) passes through the cell colliding with atoms. Displaced atoms can then collide with other atoms in the cell

Primary Knock-On Atoms now has a low energy but can still collide with atoms. Displaced atoms can make interstitials. Vacancies are created when an atoms is displaced.

Methodology

Page 7: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

START

Calculate Forces on all atoms using

Chosen Potential

Update Positions and Velocities

Initialise Positions and Velocities

Analyse Data

Many Potentials for Carbon:

• Tersoff & Brenner (1988) – short-ranged potentials inverts the density relationship between graphite and diamond

• Adaptive Interaction REBO (2000) – extension of Brenner potential. Long-ranged interactions between sp2 sheets described using Lennard- Jones interaction

• Environment Dependent Interaction Potential – atom centred bond order was employed drawing on an earlier Silicon EDIP method

Molecular Dynamics (MD) - a simulation of the movement of atoms

Methodology

Page 8: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

MethodologyThe Environment Dependent Interaction Potential

• Developed for Pure Carbon Systems (Marks, 2000)

• Interactions vary according to the environment

• Accurate description of bond-making and breaking

U U2 ( rij ,Zi) U3 (rij ,rik ,,Zi)

Page 9: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

MethodologyThe Ziegler-Biersack-Littmarck Potential

• Universally employed in ion implantation simulations

• Screened Coulomb potential

• High accuracy at small bond lengths

)(1

4 0

2

21 rr

ezzVzbl

Page 10: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Thermostats

Fixed atoms

PKA region

Thermostats

Methodology

Page 11: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Methodology

Thomson Problem

• Randomise initial direction of PKA

• Eliminate Human Bias

• Substantial number of results

• Produces 1400 cascades

Page 12: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Methodology

Left: 20 directionsToday: 10 directions

• Up to 160, 000 atoms

• Side length of 105Å

• Variable time-step

• Edge thermostat

• Follows 5ps of motion

• Uniform sample of the unit sphere

Page 13: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Results – 250eV Cascade

Page 14: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Results – 1000eV Cascade

Page 15: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Results – 1000eV Cascade

Page 16: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Results

Page 17: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Single interlayer Interstitial

Bi-pentagon I2 grafted intralayer bridge

Grafted Interstitial

α-β I2 interlayer bridge

Stone-Wales

β-β I2 bent interlayer bridge

Latham, JP 20, 395220 (2008)

Latham, JP 20, 395220 (2008)

Latham, JP 20, 395220 (2008)

El-Barbary, et al, PRB 68, 144107 (2003)

Telling & Heggie, Phil Mag. 87, 4797 (2007)

Telling & Heggie, Phil Mag. 87, 4797 (2007)

Latham, JP 20, 395220 (2008)

Vacancy

Latham, JP 20, 395220 (2008)

Split Interstitial

Results

Page 18: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Results: Diamond

Page 19: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Ef = 7.33 eV

Point defect: (100) split interstitial

The cascade in diamond produces the (100) split interstitial which has the lowest formation energy ~ 7eV.

Mainwood, Solid-state Electronics, 21 1431(1978)

32768 atomsPKA energy 1KeV

Results: Diamond

Page 20: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Results: Glassy Carbon

• 100% sp2 bonded

• High temperature resistance and high purity

• Low density and low electrical resistance

• Very hard material

• Low thermal resistance to chemical attack and impermeability to gases and liquids

Properties:

Atoms can travel further without causing collisions because of the large number of vacant spaces. This causes a large number of atoms to be displaced over a greater distance.

Page 21: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Results: High Density Amorphous Carbon

Page 22: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

ResultsLow Den-Amor-Carbon High Den-Amor-Carbon Graphite

Graphite is Directionally Dependent

Page 23: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Summary

Remarkable Result!

Graphite does not behave like any other material

• Even at high energies – little damage to final cell

• Directionally dependent – each cascade unique

• Graphite behaves completely differently to other carbon materials highlighting it’s uniqueness

Page 24: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Further Work

• Further analysis of material after cascade

• High energy cascades for graphite (several MeV)

• Complete Thomson directions

• Comparison of different materials

Page 25: Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,

Acknowledgements

This work was completed under the auspices of the Fundamentals of Nuclear Graphite Project, funded by the UK Engineering and Physical Science Research Council, Grant EP/I003312.

The Authors would like to gratefully acknowledge the financial support of EPSRC during this work.