modulhandbuch des studiengangs - - tu kaiserslautern · modulhandbuch des studiengangs...

78
Modulhandbuch des Studiengangs “Commercial Vehicle Technology“ Mandatory Modules S. 03 - 14 Elective Modules S. 15 - 72 Master Thesis & Project Work S. 73 - 75 Supplementary Modules S. 76 - 78

Upload: dangtu

Post on 02-May-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

Modulhandbuch des Studiengangs

“Commercial Vehicle Technology“

Mandatory Modules S. 03 - 14

Elective Modules S. 15 - 72

Master Thesis & Project Work S. 73 - 75

Supplementary Modules S. 76 - 78

2

1. Mandatory Modules

3

ME-M1 (Section Mechanical Engineering)

Module name: Principles of Commercial Vehicle Technology

Grundlagen der Nutzfahrzeugtechnik

Abbreviation: Module No. ME-M1

Semester: 1st

Module coordinator: Prof. Dr.-Ing. Christian Schindler

Lecturer: Prof. Dr.-Ing. Christian Schindler (lecturer)

Assistant (tutorial)

Language: English (or German if the students prefer)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as mandatory subject.

Teaching format / class hours per week during the semester:

14 double-hour lectures, one per week

6 double-hour tutorials

both during the winter term

Workload: Contact study workload: 40 hrs per term

Self-study workload: 80 hrs per term

Overall workload: 120 hrs per term

Credit points: 4

Recommended prerequisites:

Mechanics and machine elements and engineering design or similar

Targeted learning outcomes:

Knowledge on the state-of-the-art and the general requirements on the technology of modern commercial vehicles.

Students are able to cope with the most established methods of vehicle evaluation according to power demand, load and payload distribution and steering characteristics.

Students have an overview on the general design philosophies of commercial vehicles with special focus on chassis and car body.

Content: Introduction, state of the art

Classification of Commercial Vehicles

Driving Resistance and Power Requirement

Mechanics and Dynamics of Driving

Concepts of Commercial Vehicles

Running gears of Commercial Vehicles

Structures and Carbodies

Special Commercial Vehicles

Exam/ Study achievements:

Written examination at the end of each semester

Forms of media: Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet.

Literature: Hoepke (Hrsg.) u.a.: Nutzfahrzeugtechnik, 3. Aufl. (2004), Vieweg-Verlag, Wiesbaden

MAN: Grundlagen der Nutzfahrzeugtechnik, Kirschbaum Verlag, Bonn (2004)

Jazar: Vehicle Dynamics: Theory & Application, 1. (2008), Springer, Science & Business Media, New York

Fitch, J.W.: Motor Truck Engineering Handbook, 4. Aufl. (1994),

4

Society of Automotive Engineers, Warrendale, USA

Society of Automotive Engineers (Hrsg.): Truck Systems Design Handbook, Volume 2, (2002), 4. Aufl. (1994), Society

5

ME-M2 (Section Mechanical Engineering)

Module name: Dynamical Behaviour of Vehicles

Fahrzeugschwingungen

Abbreviation: Module No. ME-M2

Semester: 2nd

Module coordinator: Prof. Dr.-Ing. Christian Schindler

Lecturer: Prof. Dr.-Ing. Christian Schindler

Language: German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as mandatory subject.

Teaching format / class hours per week during the semester:

13 double-hour lectures, one per week

Workload: Contact study workload: 26 hrs per term

Self-study workload: 64 hrs per term

Overall workload: 90 hrs per term

Credit points: 3

Recommended prerequisites:

Technical mechanics (kinetics) or machine dynamics

Targeted learning outcomes:

Knowledge of the basics of main vehicle vibrations caused by road irregularity exitations.

Ability to create different simple vibration models representing the vehicle for different problems.

Ability to describe road irregularities and to handle there influence in vehicle dynamics.

Knowledge about the most important transfer functions.

Judgement of the dynamic behaviour of a vehicle.

Content: Introduction

Single Mass Model

Harmonic exitations

Random exitations, spectral power density

Road irragularities, single obstacles

Characteristic measures to judge vehicle vibration behaviour

Simple multy body vibration systems

Special problems, i.e. loading influence etc.

Exam/ Study achievements:

Written examination at the end of each semester (depending on the number of examinees)

Forms of media: Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet.

Literature: Mitschke; Wallentowitz: Dynamik der Kraftfahrzeuge

Knothe, Stichel: Schienenfahrzeugdynamik

both Springer Verlag, Berlin

6

ME-M3 (Section Mechanical Engineering)

Module name: Drives and Gears

Fahrzeuggetriebe

Abbreviation: Module No. ME-M3

Semester: 2nd

Module coordinator: Prof. Dr.-Ing. Bernd Sauer

Lecturer: Prof. Dr.-Ing. Bernd Sauer

Prof. Dr.-Ing. Eckhard Kirchner

Language: English (or German if the students prefer)

Classification within the curriculum:

It is a mandatory module that supplies fundamentals of gears with focus on commercial vehicles practical application.

Teaching format / class hours per week during the semester:

7 blocked lectures with 4 hours per lecture

Workload: Contact study workload: 26 hrs per term

Self-study workload: 64 hrs per term

Overall workload: 90 hrs per term

Credit points: 3

Recommended prerequisites::

Machine elements or comparable

Targeted learning outcomes:

Knowledge on the state-of-the-art in power train engineering of vehicles.

Knowledge on the common use power train design of vehicles with a focus on commercial vehicles.

Content: Introduction, function of drive systems

Classification of drive systems and gears

Gear types

Standard transmission

Planetary gear

Hydrodynamic / hydrostatic gear

Design of transmission

Exams/ Study achievements:

Written examination at the end of each semester

Forms of media: Power Point Slides combined with sketches on overhead projector. Slides provided.

Literature: Lechner, G. , Naunheimer, H.: Fahrzeuggetriebe , 2. Auflage, Springer Verlag 2007.

Klement, W.: Fahrzeuggetriebe, Hanser Verlag 2005.

Kirchner, E.: Leistungsübertragung in Fahrzeuggetrieben. Springer Verlag Herbst 2007

7

ME-M4a (Section Mechanical Engineering)

Module name: Manufacturing Engineering of Commercial Vehicles

Technologie der Fertigung von Nutzfahrzeugen

Abbreviation: Module No. ME-M4a

Semester: 2 nd

Module coordinator: Prof. Dr.-Ing. Jan C. Aurich

Lecturer: Dr.-Ing. Frank H. Lehmann

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

Introducing Lecture: 3 hrs.

Two-day event: 5 blocked lectures and live presentation

Full-day field trip: To DC’s Woerth truck plant

Half-day lean event: (JiT-Simulation)

Full-day event: Team work presentation and oral exam

Workload: Contact Study Workload: 30 hrs.

Self Study Workload: 10 hrs.

Team Work Workload: 20 hrs.

Overall Workload: 60 hrs.

Credit points: 2

Targeted learning outcomes:

Knowledge on the state-of-the-art of commercial vehicle engineering, development and production. Knowledge on an overview on topical processes in global commercial vehicle production networks. Understanding of the requirements and basic conditions of globally active CV manufacturers.

Content: Commercial Vehicle Markets and Customer Demands

Commercial Vehicle Technology

CV Development Process

CV Prototypes and Production Oriented Design

CV Production and Manufacturing Engineering

Lean Production and Production Systems

Launch and Change Management

Ramp-Up Management

Supplier Management

Networks in CV Production

Exam/ Study achievements:

Team work presentation and oral examination at the end of the term.

Forms of media: Powerpoint slides (provided as hardcopy)

Additional sketches on the chalkboard, small movies etc

Literature: Hoepke et al.: Nutzfahrzeugtechnik, 3rd Ed., Wiesbaden, 2004

VDA (Ed.): Auto Jahresbericht 2006

8

ME-M4b (Section Mechanical Engineering)

Module name: Automotive Production

Automobilproduktion

Abbreviation: Module No. ME-M4b

Semester: 1st

Module coordinator: Prof. Dr.-Ing. Jan C. Aurich

Lecturer: Prof. Dr.-Ing. Jan C. Aurich

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as mandatory subject.

Teaching format / class hours per week during the semester:

2 hrs lecture per week

Workload: Contact study workload: 55 hrs per term

Self-study workload: 65 hrs per term

Overall workload: 120 hrs per term

Credit points: 4

Recommended prerequisites:

Fertigungstechnik, machine elements

Targeted learning outcomes:

Verständnis des spezifischen Ablaufs der Automobilproduktion und ihrer Besonderheiten

Kenntnisse der verwendeten Technologien

Kenntnisse über die organisatorischen und logistischen Aspekte der Automobilproduktion

Content: Introduction to Automotive Production

Body-in-White

Powertrain

Vehicle Assembly

Commercial Vehical Production

Supplier Industry

Ramp-up Management

E-Mobility

Exam/ Study achievements:

Written examination

Forms of media: PowerPoint-Präsentation, Tafel, Filme, Lernplattform OLAT zum Download Skript und zusätzliche Informationen

Literature: Scriptum

9

CS-M1 (Section Computer Science)

Module name: Foundations of Software Engineering

Grundlagen des Software Engineering

Abbreviation: Module No. CS-M1

Semester: 1st

Module coordinator: Prof. Dr. Peter Liggesmeyer

Lecturer: Prof. Dr. Peter Liggesmeyer,

Prof. Dr. Dieter Rombach

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as mandatory subject.

Teaching format / class hours per week during the semester:

2 h Lecture + 1 h Exercise

Workload: Contact study workload: 42 hrs per term

Self-study workload: 78 hrs per term

Overall workload: 120 hrs per term

Credit points: 8

Recommended prerequisites:

-

Targeted learning outcomes:

Knowledge about principles, methods, and tools for the development of large software systems for the commercial vehicle domain. Knowledge about important software engineering topics focusing on automotive systems.

Ability to develop software under software quality assurance aspects and with automated tools.

Content: Software engineering principles

Empirical laws

Basic knowledge (specification, architecture, verification, testing, process modelling, measurement, experimentation)

Component engineering (model-based development, languages and tools, non-functional requirements)

Development of large systems (system specification, design patterns, frameworks, system test)

Application engineering (requirements engineering, perspective-based inspection)

Projekt management

Software evolution (legacy systems, maintenance)

Hot topics (standards, …)

Exam/ Study achievements:

Written exam

Forms of media: Slides

Literature: Sommerville: Software Engineering, Pearson Studium, 2001

H. Balzert: Lehrbuch der Software-Technik 1/2. Spektrum Akademischer Verlag, 2000

P. Jalote: An Integrated Approach to Software Engineering, Second Edition, Springer-Verlag, 1997

10

W. Zuser, T. Grechenig, M. Köhle: Software Engineering mit UML und dem Unified Process, Pearson Studium, 2004.

M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML 2 Glasklar; Carl Hanser Verlag; 2003.

Peter Liggesmeyer: Software-Qualität; Spektrum Akademischer Verlag, 2002

Jörg Schäuffele und Thomas Zurawka: Automotive Software Engineering; Vieweg, 2006

11

CS-M2 (Section Computer Science)

Module name: Safety and Reliability of Embedded Systems

Sicherheit und Zuverlässigkeit eingebetteter Systeme

Abbreviation: Module No. CS-M2

Semester: 1st

Module coordinator: Prof. Peter Liggesmeyer

Lecturer: Prof. Peter Liggesmeyer

Language: German and English (alternating)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

Lectures 2 h/week + exercise 1 h/week

Workload: Contact study workload: 42 hrs per term

Self-study workload: 78 hrs per term

Overall workload: 120 hrs per term

Credit points: 4

Recommended prerequisites:

Formal Foundations of Programming

Foundations of Software Engineering

Targeted learning outcomes:

Knowledge in handling special formal and stochastic techniques for the safety and reliability analysis of software and systems

Knowledge in using relevant methods for analysis

Content: Safety and reliability are particularly important quality criteria for software applications in the technical sector.

In many domains - e.g. rail-mounted vehicles, avionics, automotive engineering, medical technology - a software failure can endanger human lives. Hence, for example, safety has to be proved before the initial start-up of such systems. These proofs must be complete in general or have to prove at least that a tolerable residual risk is not exceeded.

The lecture is divided into a basic part and a practical part. In the basic part current techniques for the safety and reliability analysis are presented (Symbolic Model Checking and stochastic reliability analysis). In the practical part representatives of industrial companies, which develop security-critical software-intensive systems, report on the situation in practical use.

Exam/ Study achievements:

Written exams

Forms of media: Transparencies/beamer/etc.

Transparencies for downloading (as PDF).

Literature: Lyu M.R., Handbook of Software Reliability Engineering, New York: McGraw-Hill, 1995

Liggesmeyer P., Qualitätssicherung softwareintensiver technischer Systeme, Heidelberg: Spektrum Akademischer Verlag, 2000

Kececioglu D., Reliability Engineering Handbook, Prentice-Hall 1991

CS-M3 (Section Computer Science)

12

Module name: Software Development for Commercial Vehicles

Abbreviation: Module No. CS-M3

Semester: 2st

Module coordinator: Prof. Peter Liggesmeyer

Lecturer: Dr.-Ing. Mario Trapp

Language:

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

Lectures 2 h/week + exercise 1 h/week

Workload: Contact study workload: ? hrs per term

Self-study workload: ? hrs per term

Overall workload: ? hrs per term

Credit points: 4

Recommended prerequisites:

Targeted learning outcomes:

Content:

Exam/ Study achievements:

Oral or written exams

Forms of media:

Literature:

13

CS-M4 (Section Computer Science)

Module name: CVT-Programming-Project

CVT-Programmier-Projekt

Abbreviation: Module No. CS-M4

Semester: 1st

Module coordinator: Juniorprof. Dr. Achim Ebert

Lecturer: Roger Daneker

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

4 hours per semester week

Workload:

Credit points: 4

Recommended prerequisites:

-

Targeted learning outcomes:

Content:

Exam/ Study achievements:

Forms of media:

Literature:

14

EE-M1 (Section Electrical Engineering)

Module name: Principles of Electrical and Computer Engineering in CVT

Grundlagen der Elektrotechnik und Informationstechnik in Nutzfahrzeugen

Abbreviation: Module No. EE-M1

Semester: 1st

Module coordinator: Prof. Dr.-Ing Steven Liu, Prof. Dr.-Ing. Hans D. Schotten, Prof. Dr.-Ing Norbert Wehn, Jun. Prof. Dr.-Ing. Daniel Görges

Lecturer: Prof. Dr.-Ing Steven Liu, Prof. Dr.-Ing. Hans D. Schotten, Prof. Dr.-Ing Norbert Wehn, Jun. Prof. Dr.-Ing. Daniel Görges

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as mandatory subject.

Teaching format / class hours per week during the semester:

4 hours per week

Workload:

Credit points: 5

Recommended prerequisites:

Targeted learning outcomes:

Content: Introduction & Motivation of Vehicular Communications; Taxonomy of Vehicular Applications & Technologies; Communication Techniques; Communication Challenges; Intelligent Transportation Systems (ITS) & Commercial Vehicle Operations (CVO)

Introduction to processors and computing systems; Real world processor example: Aurix; Virtual prototyping with SystemC TLM;

Exam/ Study achievements:

written examination

Forms of media:

Literature:

15

2. Elective Modules

16

ME-E1 (Section Mechanical Engineering)

Module name: Schwingfestigkeit

Cyclic Deformation Behaviour

Abbreviation: Module No. ME-E1

Semester: 3rd

Module coordinator: Prof. Dr.-Ing. habil. Dietmar Eifler

Lecturer: Dr.-Ing. Marek Smaga, Prof. Dr. Tillmann Beck

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format 2 Vorlesungen pro Woche

Workload: Vorlesungen: 28 h pro Semester

Vor- und Nachbereitung: 62 h pro Semester

Insgesamt: 90 h pro Semester

Credit points: 3

Recommended prerequisites:

Grundvorlesungen in der Werkstoffkunde

Targeted learning outcomes:

Verständnis der Zusammenhänge zwischen Mikrostruktur, mik-rostrukturellen Veränderungen und dem Wechselverformungs-verhalten metallischer Werkstoffe bei einstufiger und betriebsnaher Beanspruchung.

Content: Schwingfestigkeit metallischer Werkstoffe

Mechanische Werkstoffprüfung,

Charakteristische Kenngrößen der Schwingbeanspruchung

Einflussgrößen auf das Ermüdungsverhalten

Moderne Prüf- und Messverfahren: Hysteresis-, Temperatur-, Widerstands- und GMR-Messungen

Betriebsnahe Beanspruchung

Beeinflussung der Mikrostruktur durch Materialermüdung, Rissbildung und Rissausbreitung

Lebensdauerberechnung bei ein- stufiger und betriebsnaher Beanspruchung

Exam/ Study achievements:

Written or oral examination at the end of each semester (depending on the number of examinees)

Forms of media: Powerpoint Folien

Literature: H.-J. Christ: Wechselverformung von Metallen, Springer-Verlag, Berlin

D. Eifler: Schwingfestigkeit von Stählen. In: H.-J. Christ: Ermü-dungsverhalten metallischer Werkstoffe, MATINFO, Frankfurt/Main

M. Klesnil, P. Lukas: Fatigue of Metallic Materials, Elsevier

A. J. Mc Evily: Metal Failures: Mechanisms, Analysis, Prevention, John Wiley and Sons

D. Radaj: Ermüdungsfestigkeit, Grundlagen für Leichtbau, Maschinen- und Stahlbau, Springer

S. Suresh: Fatigue of Materials, Cambridge University Press

17

ME-E2 (Section Mechanical Engineering)

Module name: Powertrain Engineering of Commercial Vehicles I: Engines of Commercial Vehicles

Fahrzeugantriebe

Abbreviation: Module No. ME-E2

Semester: 2nd

Module coordinator: Prof. Dr.-Ing. Rudolf Flierl

Lecturer: Prof. Dr.-Ing. Rudolf Flierl

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 hrs lecture per week

Workload: Contact study workload: 26 hrs per term

Self-study workload: 64 hrs per term

Overall workload: 90 hrs per term

Credit points: 3

Recommended prerequisites:

-

Targeted learning outcomes:

Knowledge on the state-of-the-art in combustion engines engineering.

Knowledge on the common use in combustion engines design for commercial vehicles.

Content: Diesel engines with Common Rail,

Torque-, Power Output Emissions,

Fuel Consumption,

Emission Standards worldwide,

Package Restrictions,

Design of Engine Components

Exam/ Study achievements:

Oral or written examination

Forms of media: Power point presentation, scriptum

Literature: Vieweg Handbuch Kraftfahrzeugtechnik, Hrsg.: Braess, Hans-Hermann / Seiffert, Ulrich, Reihe: ATZ-MTZ Fachbuch, Vieweg Verlag

Verbrennungsmotoren, Hrsg. Eduard Köhler, Rudolf Flierl, 4.Auflage, Vieweg Verlag

18

ME-E3 (Section Mechanical Engineering)

Module name: Virtual Product Engineering of Commercial Vehicles

Virtuelle Produktentwicklung 1

Abbreviation: Module No. ME-E3

Semester: 3rd

Module coordinator: Prof. Dr.-Ing. Martin Eigner

Lecturer: Prof. Dr.-Ing. Martin Eigner

Research Assistant

Language: German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

14 double-hour lectures, one per week

Workload: Contact study workload 28 hrs per term

Self-study workload 62 hrs per term

Overall workload 90 hrs per term

Credit points: 3

Recommended prerequisites:

-

Targeted learning outcomes:

Knowledge of application of IT solutions in engineering processes. Knowledge about concepts, methods and IT-tools that are state-of-the art in the research field of Virtual Product Engineering (VPE). Ability to cope with these essential tools that support the work of engineers.

Content: This lecture deals with the application of IT solutions in engineering processes:

Product Engineering Processes

Virtual Product Engineering Processes

Computer Aided Design (mechanical) - CAD

Computer Aided Manufacturing – CAD/CAM

Visualisation and Digital Mockup - VR/AR, DMU

Exam/ Study achievements:

Written examination at the end of each semester.

Forms of media: Power Point Slides.

Literature: Technical Literature and References will be announced during the lecture.

19

ME-E4 (Section Mechanical Engineering)

Module name: Virtual Product Engineering II

Virtuelle Produktentwicklung 2

Abbreviation: Module No. ME-E4

Semester: 2nd

Module coordinator: Prof. Dr.-Ing. Martin Eigner

Lecturer: Prof. Dr.-Ing. Martin Eigner

Research Assistant

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

14 double-hour lectures, one per week

Workload: Contact study workload 30 hrs per term

Self-study workload 60 hrs per term

Overall workload 90 hrs per term

Credit points: 3

Recommended prerequisites:

Virtuelle Produktentwicklung 1, Labor 3D CAD

Targeted learning outcomes:

Die Vorlesung schafft die Voraussetzungen, IT-Lösungen für die Virtuelle Produktentwicklung als wesentliches Hilfsmittel für Ingenieure anwenden zu können. Die Studenten erwerben Wissen über Methoden, IT-Werkzeuge und Prozessabläufe, die zum Stand der Technik im Themenbereich rechnergestützte Entwicklung technischer Produkte gehören. Dadurch werden sie in die Lage versetzt, diese als wesentliche Hilfsmittel des Ingenieurs zur Arbeitsunterstützung zu begreifen. Sie lernen, je nach Problemstellung die geeigneten IT-Werkzeuge eigenständig auszuwählen und anzuwenden. Ein Ausblick auf den Stand der Forschung wird fernerhin gegeben.

Content: Eine Einführung in die mechatronische Produktentwicklung sowie ein Überblick über die Rechnerunterstützung bei der Mechanik-Konstruktion werden zu Beginn gegeben. Im Mittelpunkt der Veranstaltung stehen dann die weiteren Ingenieurs-Disziplinen, die bei der mechatronischen Produktentwicklung zusammenwirken. Im Einzelnen werden die folgenden Themengebiete behandelt:

Computer Aided Design in der Elektrokonstruktion (E-CAD)

Computer Aided Software Engineering (CASE)

Computer Aided Engineering (CAE)

Product Data Management (PDM) und Product Lifecycle Management (PLM)

PLM und CAD im Anlagenbau

Datenaustausch

Datenmodellierung

Exam/ Study achievements:

Written examination at the end of each semester.

Forms of media: Power Point Slides.

Literature: Die notwendigen Materialien werden zum Download bereit gestellt. Weiterführende Literatur und Referenzen sind angegeben. Dazu

20

gehören:

Eigner, M., Stelzer, R., Produktdatenmanagement Systeme, Springer, Berlin: September 2008

Arnold, V., u.a., Product Lifecycle Management beherrschen, Springer, Berlin: 2005

Kohlhoff, S., Produktentwicklung mit SAP in der Automobilindustrie, Galileo Press, Bonn: 2005

Anderl, R., Trippner, D., STEP – Standard for the Exchange of Product Model Data, B. G. Teubner, Stuttgart: 2000

21

ME-E5 (Section Mechanical Engineering)

Module name: Fügetechnik in der Fahrzeugtechnik

Joining Technologies in Vehicle Technology

Abbreviation: Module No. ME-E5

Semester: 3rd

Module coordinator: Prof. Dr.-Ing. Paul Ludwig Geiß

Lecturer: Prof. Dr.-Ing. Paul Ludwig Geiß

Language: German (or English)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

Two hours lecture per week

Workload: Contact study workload 26 hrs per term

Self-study workload 64 hrs per term

Overall workload 90 hrs per term

Credit points: 3

Recommended prerequisites:

Basics in mechanical engineering

Targeted learning outcomes:

Ability to select and to use material-specific lightweight joining technologies for different applications in vehicle construction.

Content: Requirements for joining technologies in vehicle construction, introduction into the systematic structure of joining technologies, mechanical joining, welding, adhesive bonding, ich joining, joining of plastics and FRP-lightweight-materials, fatique properties of different joining technologies, crash performance of different joining technologies, durability of bonded joints, joining in repair and disassembling for recycling.

Exam/ Study achievements:

Oral exam

Forms of media: Blackboard, transparencies and paper-handout

Literature: J. Epker: „Nutzfahrzeuge und Technik“, sv corporate media, München (2006)

Koewius, G. Gross, G. Angehm: „Aluminium-Konstruktionen des Nutzfahrzeugbaus”, Aluminium-Verlag, Düsseldorf (1990)

G. Buchfink: „Faszination Blech“, Vogel, Würzburg

22

ME-E6 (Section Mechanical Engineering)

Module name: Polymers in Vehicle Technology

Kunststoffe in der Fahrzeugtechnik

Abbreviation: Module No. ME-E6

Semester: 3rd

Module coordinator: Prof. Dr.-Ing. Alois K. Scharb

Lecturer: Prof. Dr.-Ing. Alois K. Scharb

Language: German/English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2

Workload:

Credit points: 3

Recommended prerequisites:

Einführung in die Kunststofftechnik, Einführung in die Verbundwerkstoffe

Targeted learning outcomes:

Content: Hintergründe, Definitionen und Trends

Kunststoffe im Fahrzeug

Anwendungen (Kunststoffe, Konstruktionen und Fertigung):

Kunststoffe im Innenraum (Interieur)

Außenanwendungen (Exterieur)

Unter der Haube (Under the Hood)

Elektronik und Licht

Strukturanwendungen

Exam/ Study achievements:

Written or oral exam at the end of each semester

Forms of media: Slides, short movies, sketches at the chalkboard,

OLAT internet learning platform

Literature: Stauber, R.; Vollrath, L. (Eds): Plastics in Automotive Engineering, 2007

23

ME-E7 (Section Mechanical Engineering)

Module name: Land- und Baumaschinen

Agricultural and Construction Vehicles

Abbreviation: Module No. ME-E7

Semester: 2nd

Module coordinator: Prof. Dr.-Ing. C. Schindler

Lecturer: Mr. Meissner (Fa. Terex-Demag), Mr. Pickel (John Deere)

Language: German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 field trips to Terex & Daimler

14 2-hour lectures (weekly)

Workload: Contact Study Workload: 28 hrs.

Self Study Workload: 46 hrs.

Field Trip: 16 hrs

Overall Workload: 90 hrs.

Credit points: 3

Recommended prerequisites:

Content of Mandatory 1: “Principles of Commercial Vehicle Technology”

Targeted learning outcomes:

Students are able to cope with the most established methods of vehicle evaluation according to power demand, load and payload distribution and steering characteristics.

Students have an overview on construction and laying of selected Agricultural and Construction Vehicles, e.g. Classifications, operating principles, requirements on power train and combustion engines, Communication Architecture for process automation.

Content: Basic techniques of selected Agricultural & Construction Vehicles (Construction types of tractors, chassis and gear systems, After-treatment of exhaust gases, Communication architectures, telematics,

remote diagnosis, ISO 11783, Precision Farming Systems

Exam/ Study achievements:

Written or oral examination at the end of the term

Forms of media: Power Point Slides combined with sketches on the chalkboard.

Literature: Mitschke, Manfred, Wallentowitz, Henning: Dynamik der

Kraftfahrzeuge. Reihe: VDI-Buch .4. neu bearb. Aufl., 2004,., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1997

Eichhorn, H.: Landtechnik. Landwirtschaftliches Lehrbuch. 7. Aufl., Verlag Eugen Ulmer, Stuttgart, 1999.

Schön, H., u.a.: Die Landwirtschaft: Lehrbuch für Landwirtschafts-schulen. Bd. 3. Landtechnik, Bauwesen: Verfahrenstechnik - Arbeit - Gebäude - Umwelt. 9. Aufl., BLV Verlagsges., München, Wien, Zürich, 1998.

24

ME-E8 (Section Mechanical Engineering)

Module name: Durability load data analysis

Lastdaten Analyse, Bemessung und Simulation

Abbreviation: Module No. ME-E8

Semester: 2nd

Module coordinator: Dr. Klaus Dressler

Lecturer: Dr. Klaus Dressler

Language: English (or German if the students prefer)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective subject.

Teaching format / class hours per week/ semester

14 double-hour lectures, one per week

Workload: Contact study workload: 28 hrs per term

Self-study workload: 52 hrs per term

Overall workload: 80 hrs per term

Credit points: 3

Recommended prerequisites:

Mechanics and machine elements and engineering design or similar

Targeted learning outcomes:

Understanding of the process and basic methodology for system level durability engineering, i.p.:

How to handle usage variability and product variability?

How to derive appropriate design loading targets for commercial vehicles?

How to derive loading targets for subsystems and components?

Concepts of durability testing and durability simulation.

Load data reduction and analysis methods

Content: Load data analysis for mechanical systems Load data and durability

o Stress-strain paths, hystereses, local strain approach and multiaxiality

Loading statistics and design targets o Durability = loading + strength o Modelling usage variability

Amplitude based data reduction methods o Sampling rates, drift / offset / spikes o Rainflow and related counting methods

Frequency based data reduction Derivation of design load targets Load data analysis and system simulation

o Load cascading: MBS system simulation o Invariant loading: how to simulate a new design when

only measurements (inner forces) from the `old´ design are known?

From component loads to local stress-strain paths FE- based fatigue analysis

Exam/ Study achievements:

Written or oral examination at the end of each semester (depending on the number of examinees)

Forms of media: Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet.

Literature Guide to Load Analysis for Durability in Vehicle Engineering (Automotive Series) von P. Johannesson und M. Speckert ISBN 978-1-118-64831-5

25

ME-E9 (Section Mechanical Engineering)

Module name: Alternative Antriebskonzepte Alternative Drive Concepts

Abbreviation: Module No. ME-E9

Semester: 3rd

Module coordinator: Dr.-Ing. Peter Kosack

Lecturer: Dr.-Ing. Peter Kosack

Language: German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as elective subject.

Teaching format / class hours per week during the semester:

14 double-hour lectures, mostly one per week, some hours additionally as exercise block

Workload: Contact study workload: 28 hrs per term Self-study workload: 52 hrs per term Overall workload: 80 hrs per term

Credit points: 3

Recommended prerequisites:

Basics in Powertrain Engineering

Targeted learning outcomes:

Understanding of the structure of energy generating systems and

efficient use of energy in suitable powertrains, i.p.:

Knowledge of energy supply structures and their quality

criteria

How to design a net model of energy converter systems for

powertrains

How to design a control loop model for vehicles

How to handle requirement profiles

How to judge different drives

Content: Sources of energy and forms of energy

Energy supply structures

Sustainability and ecological footprint

Energetic product life cicle

Net model of energy converter systems

Energy efficiency and energy management in vehicles

Energy storage

Control loop model and functionality of Commercial Vehicles

Requirement profiles for drives

Examples for alternative drives

Exam/ Study achievements:

Written or oral examination at the end of each semester (depending on the number of examinees)

Forms of media: Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet.

Literature: Given in the lecture

26

ME-E10 (Section Mechanical Engineering)

Module name: Product Lifecycle Management

Abbreviation: Module No. ME-E10

Semester: 2nd + 4th

Module coordinator: Prof. Dr.-Ing. Martin Eigner

Lecturer: Dipl.-Kfm.-techn.Patrick D. Schäfer

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as elective subject.

Teaching format / class hours per week during the semester:

2 + 1 exercise

Workload:

Credit points: 4

Recommended prerequisites:

Targeted learning outcomes:

Content: We offer the course Product Lifecycle Management (PLM) at the example of PTC Windchill as a lecture with practical exercises . This course is being conducted together with several partner companies from the industry. PLM is the management of product data and technical processes throughout the product lifecycle. In the lecture we introduce the general structure and application functions of PLM solutions. Special topics are economic benefits of PLM, process management and introduction to PLM in an company environment. In the practical exercises the participants will apply the theoretical knowledge using a PLM solution. The participants will use PTC Windchill, PTC Creo and ARAS Innovator.

Exam/ Study achievements:

Written or oral examination at the end of each semester (depending on the number of examinees)

Forms of media: Power Point Slides combined with sketches on the chalkboard. Slides provided via Internet.

Literature: Eigner, M., Stelzer, R.: "Product Lifecycle Management: Ein Leitfaden für Product Development und Lifecycle Management", 2. Aufl., Springer Verlag, Berlin, Heidelberg, 2009

27

CS-E1 (Section Computer Science)

Module name: Autonome Mobile Roboter I & II(AMRI & II)

Autonome Mobile Roboter I & II(AMRI & II)

Abbreviation: Module No. CS-E1

Semester: 2nd

Module coordinator: Prof. Dr. rer. nat. Karsten Berns

Lecturer: Prof. Dr. rer. nat. Karsten Berns

Language: German/English as required

Classification within the curriculum:

Elective subject for Master course “Commercial Vehicle Technology”

Teaching format / class hours per week during the semester:

4 h Lecture + 2 h Exercise

Workload: Contact study workload 84 hrs per term

Self-study workload 156 hrs per term

Overall workload 240 hrs per term

Credit points: 8

Recommended prerequisites:

Basics in Computer Systems and Robotics

Targeted learning outcomes:

Basic knowledge in the field of autonomous mobile robots.

The following aims should be achieved:

Kinematics of autonomous mobile robots

Lokalisation and mapping

Concepts fort he development of complex control systems

Dynamics of autonomous mobile robots

Lokalisation and mapping

Advanced sensor systems

Application of vison

Content: Kinematics of wheel-driven robots

System components

Navigation

Collision avoidance

Lokalisation and mapping

Dynamics of wheeled-driven robots

SLAM (Simultaneous Localisation and Mapping)

Algorithms for the estimation of positions

Vison in mobile robotics

Exam/ Study achievements:

Oral exam

Forms of media: Transparencies/beamer/etc.

Transparencies for downloading (as PDF)

Literature: R- Siegwart and I.R. Nourbakhsh (2004). Introduction to Autonomous Mobile Robots. The MIT Press

S. Iyengar and A. Elfes (1991). Autonomous Mobile Robots - Perception, Mapping and Navigation, volume 1. Institute of Electrical and Electronic Engineers

Jones, J. L. (1993). Mobile Robots-From Inspiration to

28

Implementation. Addison Wesley.

Concrete literature will be announced in the lecture.

29

CS-E2 (Section Computer Science)

Module name: Hardware-Software-Systems

Hardware-Software-Systeme: Synthese

Abbreviation: Module No. CS-E2

Semester: 3st

Module coordinator: Prof. Klaus Schneider

Lecturer: Prof. Klaus Schneider

Language: German and English (alternating)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology” as elective subject.

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

Workload: Contact study workload: 42 hrs per term

Self-study workload: 78 hrs per term

Overall workload: 120 hrs per term

Credit points: 8

Recommended prerequisites:

-

Targeted learning outcomes:

Ability in modelling and programming of parallel and hybrid systems

Skills in Compilation/Synthesis of System Descriptions

Content: HW/SW-Synthesis of conditional actions

causality analysis

interfaces and codesign

operation scheduling

resource allocation

resource binding

design space exploration

Exam/ Study achievements:

Written or oral examination

Forms of media: Blackboard/flipchart/etc.

Transparencies/beamer/etc.

Transparencies for downloading (as PDF)

Literature: G. Berry, The Esterel Language Primer, 2000

G. Berry, The Constructive Semantics of Esterel, 1999

N. Halbwachs, Synchronous programming of reactive systems, Kluwer, 1993

Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone, The Synchronous Languages Twelve Years Later, Proceedings of the IEEE, 91(1):64-83, 2003

D. Harel and A. Naamad, The STATEMATE Semantics of Statecharts, ACM Transactions on Software Engenieering Methods, 5(3):293-333, 1996

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The Synchronous Dataflow Programming Language LUSTRE, IEEE Proceedings, 79(9):1305-1320, 1991

S. Palnitkar, Verilog HDL, Prentice Hall, 2003

30

G. Lehmann, B. Wunder, and M. Selz, Schaltungsdesign mit VHDL: Synthese, Simulation und Dokumentation digitaler Schaltungen, Franzis Verlag, 1994

P.J. Ashenden, VHDL Cookbook, im Internet verfügbar, Stand 1990

Modelica: A Unified Object-Oriented Language for Physical Systems Modeling, Tutorial Version 1.4

Internet sources:

www.modelica.org

www.systemverilog.org

www.synalp.org

31

CS-E3 (Section Computer Science)

Module name: Process Modeling

Prozessmodellierung

Abbreviation: Module No. CS-E3

Semester: 2 nd

Module coordinator: Prof. Dr. Dieter Rombach

Lecturer: Dr. Jens Heidrich

Language: German and English (on request)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2h Lecture + 1 h Exercise

Workload: Contact study workload 45 hrs per term

Self-study workload 81 hrs per term

Overall workload 120 hrs per term

Credit points: 4

Recommended prerequisites:

Foundations of Software Engineering

Targeted learning outcomes:

Gaining knowledge and capabilities for designing, creating, analyzing, and applying software development processes

Becoming acquainted with industrial software development processes

Independent modeling of software development processes

Advantages and disadvantages of process modeling techniques

Applying process models effectively for different purposes

Content: Process Modeling is a specialization field that is practically oriented.The development and maintenance of commercial vehicles requires integrated processes for different disciplines (e.g., mechanics, software). This class focuses on software development processes and demonstrates their integration with processes of different type in the overall system development and maintenance process.

Topics:

Introduction and classification (objectives, research and application areas)

Terminology (process model, role, 4-domain-principle)

Prescriptive process modeling (life cycle models, standards, examples, assessment criteria, process gates)

Descriptive process modeling (possible usages, procedure, process elicitation)

Process modeling notations (Appl/A, Funsoft Nets, Marvel, Statemate, MVP-L, IDEF0, ETVX)

Process modeling tools (ECMA/NIST reference model, modeling tools, PSSEs, examples)

Software project planning (effort estimation, schedule planning, personnel planning, sequence planning)

Project monitoring and management (data collection, visualization of metrics)

Other usages (SPI, QIP, ISO 15504, ISO 9000, CMMI, process simulation)

Future developments (agile process documentation, process machines,

32

process patterns)

Exam/ Study achievements:

Oral or written exam

Forms of media: transparencies/beamer/etc.

transparencies for downloading (as PDF)

Literature: Jean-Claude Derniame, Badara Ali Kaba, David Wastell (Eds.): Software Process: Principles, Methodology, and Technology. Lecture Notes in Computer Science 1500, Springer, 1999.

Finkelstein, A., Kramer, J., Nuseibeh, B. (eds): Software Process Modelling and Technology. Taunton: Research Studies Press, 1994.

Christian Bunse und Antje von Knethen. Vorgehensmodelle kompakt. Spektrum Akademischer Verlag, Heidelberg, 2002.

33

CS-E4 (Section Computer Science)

Module name: Product Line Engineering

Product Line Engineering

Abbreviation: Module No. CS-E4

Semester: 3rd

Module coordinator: Prof. Dr. Dieter Rombach

Lecturer: Dr.-Ing. Martin Becker

Language: German and English (alternating)

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 h Lecture + 1 h Exercise

Workload: Contact study workload 42 hrs per term

Self-study workload 78 hrs per term

Overall workload 120 hrs per term

Credit points: 4

Recommended prerequisites:

Foundations of Software Engineering

Targeted learning outcomes:

Transfer of knowledge and education in activities required for a systematic planning and realization of product lines (PL), or respectively software reuse in general.

Organizational issues (reuse life cycle, migration)

Definition, development and assessment of product line architectures

Modelling and implementation of generic components

Analysis of product variants

Support of software development by reverse engineering

Content: Basic concepts of product lines (commonality, variability, decisions)

Role and concepts of architectures (styles, patterns, and scenarios)

Implementation technologies (MDA, Preprocessors, aspect-orientend development)

Technology transfer (Adaptation and adoption of technologies, migration strategies)

Reverse-Engineering (basic and detailed analyses, reconstruction of architectural views and structures)

Domain analysis (product map, management of varying requirements and system characteristics)

Exam/ Study achievements:

Oral or written exam

Forms of media: transparencies/beamer/etc.

transparencies for downloading (as PDF)

Literature: Atkinson et. al., Component-based Product Line Engineering with UML. Addison-Wesley 2001

Weiss, Lai: Software Product-Line Engineering. A Family-Based Software Development Process Addison-Wesley, 1999

34

Clements: Software Product Lines. Practices and Patterns. Northrop, 2002

35

CS-E5 (Section Computer Science)

Module name: Requirements Engineering

Anforderungstechnik

Abbreviation: Module No. CS-E5

Semester: 3rd

Module coordinator: Prof. Dr. h.c. Dieter Rombach

Lecturer: Prof. Dr. h.c. Dieter Rombach

Language: German/English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 Lectures, 1 Exercise

Workload

Credit points: 4

Recommended prerequisites:

Targeted learning outcomes:

Erwerb von Kenntnissen und Fähigkeiten zur ingenieurmäßigen Durchführung des Anforderungsprozesses

Methoden zur Erfassung von Anforderungen

Techniken und Vorgehensweise zur Modellierung /Spezifikation von Anforderungen

Techniken zum Anforderungsmanagement

Besonderheiten der Anforderungsspezifikation im Kontext der Produktlinienentwicklung

Content Techniken zur Erhebung von Benutzeranforderungen

Ansätze zur Modellierung von Benutzeranforderungen (Beschreibungstechniken, Prozesse)

Transformation zu Entwickleranforderungen (funktionale, nichtfunktionale Anforderungen)

Anforderungsverhandlung (Negotiation, Priorisierung)

Anforderungen für Produktlinien

Validierung von Anforderungen

Exam/ Study achievements:

mündliche oder schriftliche Abschlussprüfung

Forms of media: Folien/Beamer/etc.

Folien zum Download (als PDF)

Literature: Cockburn. Writing Effective Use Cases, Addison-Wesley, 2001.

S. Robertson, J. Robertson, Mastering the Requirements Process, Addison-Wesley, 2002.

S. Lauesen: Software Requirements, Addison-Wesley, 2002

36

CS-E6 (Section Computer Science)

Module name: Prozessorarchitektur

Abbreviation: Module No. CS-E6

Semester: 1st + 3rd

Module coordinator: Prof. Dr. rer. nat. Klaus Schneider

Lecturer: Dr. Jörg Dörr

Language: German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 Lectures, 1 Exercise

Workload

Credit points: 4

Recommended prerequisites:

Targeted learning outcomes:

Content processors with dynamic scheduling (most superscalar processors)

prozessors with static scheduling (most VLIW/DSP processors)

vector processors and multi-media instructions multi-processor computers and multi-core architectures

Exam/ Study achievements:

exam written

Forms of media:

Literature:

37

CS-E7 (Section Computer Science)

Module name: Bussystems

Abbreviation: Module No. CS-E7

Semester: 1st +3rd

Module coordinator: Prof. Dr.-Ing. Reinhard Gotzheim

Lecturer: Prof. Dr.-Ing. Reinhard Gotzheim

Dr. Thomas Kuhn

Language: German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

Workload:

Credit points: 4

Recommended prerequisites:

Rechnersysteme 1

Targeted learning outcomes:

Content: Foundations of safety relevant communication systems

(Real-Time Properties, Faults, Failures, Hazards)

Network topologies, ISO/OSI Layered Architecture

Physical foundations of communication systems

(Signals, Sampling, Modulation)

Bus systems for automotive applications

(e.g. CAN, CanOpen, FlexRay, LIN, MOST, Real-Time Ethernet, Worst Case Analysis, Automotive Communication and Scheduling, Holistic Analysis of Communication Times and Delay)

Bus Systems for Commercial Vehicle Networks

(e.g. ISOBUS)

Wireless Networking for Commercial Vehicles and Automotive Systems

(Open Systems, Foundations of Wireless Communication, Challenges in Automotive and Commercial Vehicle Domains, Standard extensions, Scalability, Reliability, Security)

Avionic Networks

(Real-Time Ethernet Extensions, AFDX)

Exam/ Study achievements:

Oral examination

Forms of media:

Literature:

38

CS-E8 (Section Computer Science)

Module name: Power-Aware Embedded Systems

Abbreviation: Module No. CS-E8

Semester: 1st + 3rd

Module coordinator: Prof. Dr. Christoph Grimm

Lecturer: Prof. Dr. Christoph Grimm

Language: German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format 2 h Lectures, 1 h Exercise

Workload:

Credit points: 4

Recommended prerequisites:

Rechnersysteme 1+2, Kenntnisse in C/C++

Targeted learning outcomes:

Content: Energy- and power aware systems, self-sufficient and autonomous systems

Technological reasons and limits for power consumption

Low power data path design

Architectural clock- and power gating

Power management: RTFS, DFS, DVFS, AVS, etc.

Power/energy awareness in OS and applications, power aware compilers

Virtual prototyping, estimation, power profiling, development of low-power software

Power supply, battery and harvester models

Power converters, Low-Power Standby

Low-Power Processors, RT/TX (WUR, ZigBee, W6LoPan, Bluethooth, etc.) Embedded Systems for Energy Management

Exam/ Study achievements:

Written examination

Forms of media:

Literature:

39

CS-E9 (Section Computer Science)

Module name: Virtual Prototyping und HW/SW Co-‘Design

Abbreviation: Module No. CS-E9

Semester: 2nd + 4th

Module coordinator: Prof. Christoph Grimm

Lecturer: Prof. Christoph Grimm

Language: German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format

Workload: 2 hours lecture / 3 hours exercise

Credit points: 6

Recommended prerequisites:

Rechnersysteme 1+2

Kenntnisse in C/C++

Targeted learning outcomes:

Content: Entwurfsmethodik

Ausführbare Spezifikation, Architekturevaluation, Systemintegration, Verifikation

Models of Computation: Kahn-Prozess Netzwerke, Synchroner Datenfluss, Zeitbehafteter Datenfluss, StateCharts

Simulation

Transaction Level Modelling von Multi-Prozessor-Systemen

Synthese von HW/SW Systemen

SystemC (AMS, TLM)

Exam/ Study achievements:

Written examination

Forms of media: Tafel/Flipchart/etc.

Folien/Beamer/etc.

Literature: Vorlesungsfolien

D. Gajski, Design of Embedded Systems

40

CS-E10 (Section Computer Science)

Module name: Seminar: Visualisierung und HCI

Abbreviation: Module No. CS-E10

Semester: 2nd +4th

Module coordinator: apl. Prof. Achim Ebert

Lecturer: apl. Prof. Achim Ebert

Language: German/English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format 2 h per week

Workload:

Credit points: 8

Recommended prerequisites:

Scientific Visualization

Targeted learning outcomes:

Kompetenz zur Einarbeitung in ein spezielles Thema aus dem Bereich der Visualisierung

Kompetenz zur verständlichen Präsentation eines abgegrenzten Fachthemas unter Einsatz elektronischer Medien

Kompetenz zur fachlichen Diskussion

Content: Ausgewählte Themen aus dem Visualisierung, z. B.: VR/AR

Information Visualization

Scientific Visualization

Adaptive/mobile Visualization

Visualization of medical and biological data

Exam/ Study achievements:

Präsentation und schriftliche Ausarbeitung

Forms of media: Folien, Beamer, etc.

Literature: themenabhängige Literatur

41

CS-E11 (Section Computer Science)

Module name: 3D Computer Vision

Abbreviation: Module No. CS-E11

Semester: 2nd + 4th

Module coordinator: Prof. Dr. Didier Stricker

Lecturer: Prof. Dr. Didier Stricker

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format 2 h Lectures

Workload:

Credit points: 4

Recommended prerequisites:

Targeted learning outcomes:

Fähigkeit zur Einarbeitung in ein spezielles Thema aus dem Bereich 3D Computer Vision & Augmented Reality

Fähigkeit zur verständlichen Präsentation eines abgegrenzten Fachthemas unter Einsatz elektronischer Medien

Fähigkeit zur fachlichen Diskussion

Content: Ausgewählte Themen aus dem Bereich 3D Computer Vision & Augmented Reality, z.B.:

Algorithmen/Verfahren zur Kameraverfolgung, Poseschätzung, Objekterkennung, 3D Rekonstruktion, etc.

Augmented Reality Applikationen und aktuelle Trends

Computer Vision und Augmented Reality auf Consumer-Endgeräten

Realistisches Rendering

Exam/ Study achievements:

Präsentation und schriftliche Ausarbeitung

Forms of media: Folien/Beamer/etc.

Literature: Abhängig vom Seminarthema.

42

CS-E12 (Section Computer Science)

Module name: Applications of Artificial Intelligence

Anwendungen der künstlichen Intelligenz

Abbreviation: Module No. CS-E12

Semester: 2nd + 4th

Module coordinator: Prof. Andreas Dengel

Lecturer: Dr. Marcus Liwicki

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

Workload:

Credit points: 4

Recommended prerequisites:

Kenntnisse in der künstlichen Intelligenz.

Targeted learning outcomes:

Die Studierenden besitzen

Kenntnis von erfolgreichen Anwendungen der Künstlichen Intelligenz in der realen Welt.

Erfahrungen mit der Anwendung von KI-Verfahren und -Modellen in praxisorientierten realweltlichen Umgebungen.

Content: Grundlagen: Anfänge der KI, erste Anwendugnen in der Praxis, anwendungsbezogene Entwicklung der KI

Allgemeiner Überblick über erfolgreiche Praxisanwendungen

Vorstellung und Erläuterung zum Einsatz und der Anwendung von KI-Verfahren und -Modellen bei realen Problemstellungen, unter anderem: Robocup, Handschrifterkennung, Spracherkennung, KI in Computerspielen, Unterstützung von Wissensarbeitern im Büro , KI im Argrarbereich

Zukunft der KI

Exam/ Study achievements:

mündliche Abschlussprüfung

Forms of media: Tafel/Flipchart/etc.

Folien/Beamer/etc.

Folien zum Download (als PDF)

Literature: Nilsson, N.: Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publ., 1998

Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, 2010

Innovative Applications of AI (jährliche Konferenz), http://www.aaai.org/Conferences/IAAI/iaai.php

43

CS-E13 (Section Computer Science)

Module name: Embedded Intelligence

Eingebettete Intelligenz

Abbreviation: Module No. CS-E13

Semester: 2nd + 4th

Module coordinator: Prof. Dr. Paul Lukowicz

Lecturer: Prof. Dr. Paul Lukowicz +Dr. Jingyuan Cheng

Language: English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 h Lectures + 1 h Exercise

Workload:

Credit points: 4

Recommended prerequisites:

Kenntnisse in Signalverarbeitung und Machine Learning, mindestens eine Programmiersprache (C/C++, Java, MATLAB/Python).

Targeted learning outcomes:

Die Studierenden verstehen die Basiskonzepte Eingebetteter-Intelligenz. Sie besitzen die Fähigkeit, eine einfache konkrete Aktivitätserkennungsaufgabe zu lösen (z. B. Aktivitätserkennung mit Beschleunigungssensor, Indoor-Lokalisation durch WiFi-Signal).

Content: Die Vorlesung beschäftigt sich mit den grundlegenden Techniken mit den eingebettete Systeme die Umwelt und menschliche Aktivitäten erfassen und modellieren können und den darauf aufbauenden Anwendungen.

Klassen und Beispiele der Problemstellung an Hand konkreter Anwendungen

Eigenschaften und Nutzungsmöglichkeiten verschiedener Sensoren im Hinblick auf unterschiedliche Problemstellungen

Eignung verschiedener Methoden der Signalverarbeitung und des Machine Learning für verschiedene Erkennungsaufgaben

Beispiele für vollständige Erkennungsarchitekturen aus konkreten Anwendungen

Berücksichtigung der Ressourcenanforderungen in den Erkennungsarchitekturen

Umgang mit dynamischen Sensorkonfigurationen

Leistungsbewertung

Exam/ Study achievements:

mündliche Abschlussprüfung

Forms of media: Folien/Beamer/etc.

Folien zum Download (als PDF)

Literature: Wird in der Vorlesung bekannt gegeben.

44

EE-E1 (Section Electrical Engineering)

Module name: Synthesis and Optimization of Microelectronic Systems

Synthese und Optimierung mikroelektronischer Systeme

Abbreviation: Module No. EE-E1

Semester: 1st

Module coordinator: Prof. Dr.-Ing. Norbert Wehn

Lecturer: Prof. Dr.-Ing. Norbert Wehn

Language: English/German

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 hours lecture, 1 hour exercise

Workload:

Credit points: 4

Requirements under the examination regulations:

Recommended prerequisites:

Targeted learning outcomes:

Content: Hardware/Software-Codesign, Verfahren der High-Level Synthese (Scheduling, Allocation, Binding), Verfahren zur Register-Transfersynthese.

Exam/ Study achievements:

Oral exam

Forms of media:

Literature: G. DeMicheli: Synthesis and Optimization of Digital Circuits, Qaddison Wesley; D. Gajski, Introduction to High-Level Synthesis, Kluwer Academic Publisher

45

EE-E2 (Section Electrical Engineering)

Module name: Mikroelektronik für Nichtvertiefer

Abbreviation: Module No. EE-E2

Semester: 2rd

Module coordinator: Prof. Dr.-Ing. Norbert Wehn

Lecturer: Prof. Dr.-Ing. Norbert Wehn

Language: English/German

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 hours lecture,

Workload:

Credit points: 4

Requirements under the examination regulations:

Recommended prerequisites:

Targeted learning outcomes:

Content: Einführung in den Entwurfszyklus integrierter Schaltungen, Technologische Grundlagen, Implementierungsstile, schaltungstechnische Grundlagen, Entwurfsmethodiken.

Exam/ Study achievements:

Oral exam

Forms of media:

Literature: M. J. S. Smith: Application-Specific Integrated Circuits, Addison Wesley; J. M. Rabaey: Digital Integrated Circuits - A Design Perspective, Prentice Hall.

46

EE-E3 (Section Electrical Engineering)

Module name: Architecture of Digitial Systems I

Architektur digitaler Systeme I

Abbreviation: Module No. EE-E3

Semester: 1st + 3rd

Module coordinator: Prof. Dr.-Ing. habil. Wolfgang Kunz

Lecturer: Priv. Doz. Dr.–Ing.habil. Dominik Stoffel

Language: English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 hours lecture + 1 hour exercise (per week)

Workload: Contact-study workload: 39 h per semester

Self-study workload: 81 h per semester

Overall workload: 120 per semester

Credit points: 4

Recommended prerequisites:

Basic knowledge in Logic Design

Targeted learning outcomes:

Content: This course addresses the fundamentals of computer architecture while focus on RISC processors. We will discuss

Data representation

Signed and unsigned fixed point numbers

Floating point numbers, IEEE 754 standard

Computer arithmetic

Algorithms

Sequential and parallel hardware implementations

Instruction set and machine language

Instruction set categories

Addressing modes

Assembler programming

Datapath and control

Hardware implementation of a processor

Control unit design, microprogramming

Exceptions

Instruction set parallelism

Pipelining

Superscalar and VLIW processors

Dynamic scheduling

Memory hierarchy

Caches

Virtual memory, page tables, TLB

Exam/ Study achievements:

Oral exam

Forms of media: Website, slides

Literature: Patterson/Hennessy: Computer Organization and Design - The Hardware/Software-Interface, Morgan Kaufmann, 2008, EIT

47

860/103

Hennessy/Patterson: Computer Architecture - A Quantitative Approach, Morgan Kaufmann, 2006, EIT 860/104

48

EE-E4 (Section Electrical Engineering)

Module name: Architecture of Digitial Systems II

Architektur digitaler Systeme II

Abbreviation: Module No. EE-E4

Semester: 1st

Module coordinator: Prof. Dr.-Ing. habil. Wolfgang Kunz

Lecturer: Priv. Doz. Dr.–Ing.habil. Dominik Stoffel

Language: English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 hours lecture + 1 hour exercise (per week)

Workload: Contact-study workload: 39 h per semester

Self-study workload: 81 h per semester

Overall workload: 120 per semester

Credit points: 4

Recommended prerequisites:

Basic knowledge in assembler programming and processor architecture

Targeted learning outcomes:

understand the fundamental design principles, models and architectures of embedded computing systems

be able to read advanced literature on the subject be able to get engaged in research and development projects in this area

Content: This lecture discusses basic architectures of microprocessor-based digital systems as they are employed in embedded systems and systems-on-chip today. The chapters and their topics:

Introduction. Challenges of Embedded System design, the design flow and design methodology.

Microprocessor Instruction sets. Comparison of a general-purpose CPU with a digital signal processing CPU.

Microprocessor Interfaces. Mechanisms and infrastructures for communication within embedded systems. Interrupts, bus systems, bus hierarchies.

Processes and Operating Systems. Fundamentals of multi-tasking in embedded systems.

Multiprocessors. Basic multi-processing architectures and communication schemes. Cache coherence.

Networks and Distributed Systems. Mechanisms and infrastructures for communication between embedded systems. Examples of network protocols.

Exam/ Study achievements:

Oral exam

Forms of media: Website, slides

Literature: W. Wolf: “Computers as Components”, Morgan Kaufman Publishers, ISBN 1-55860-693-9

49

EE-E5 (Section Electrical Engineering)

Module name: Operating Systems

Betriebssysteme

Abbreviation: Module No. EE-E5

Semester: 1st +4th

Module coordinator: Prof. Dr. techn. Gerhard Fohler

Lecturer: Prof. Dr. techn. Gerhard Fohler

Language: English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 h/week lectures; 1 h/week laboratory

Workload: Contact study workload: 42 hrs per term

Self-study workload: 78 hrs per term

Overall workload: 120 hrs per term

Credit points: 4

Recommended prerequisites:

Basic knowledge of programming and algorithms

Targeted learning outcomes:

Knowledge on and ability to use basic concepts and services of operating systems.

Understanding of topics like processes and threads, synchronization and mutual exclusion, deadlock, input/output.

Content: An operating system is software, which allows the operation of a computer. It provides the use of hardware to application software without detailed interaction with hardware. It manages resources such as memory, input/output, and the execution of programs.

The course is accompanied by a lab.

Areas include:

processes and threads

mutual exclusion

synchronization

input/output

memory management

scheduling

Exam/ Study achievements:

Written exam

Forms of media: Computer Presentations, Handouts, Webpages

Literature: W. Stallings, Operating Systems: Internals and Design Principles

(German issue: Betriebssyteme. Funktion und Design)

50

EE-E6 (Section Electrical Engineering)

Module name: Fundamentals of Power Systems

Grundlagen von Energiesystemen

Abbreviation: Module No. EE-E6

Semester: 2nd

Module coordinator: Priv. Doz. Dr.-Ing. habil. Christian Tuttas

Lecturer: Priv. Doz. Dr.-Ing. habil. Christian Tuttas

Language: English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

3 h Lectures, 1 h Exercise

Workload:

Credit points: 5

Recommended prerequisites:

Targeted learning outcomes:

Content: Energy conversion, electrical machines, power electronics

Three-phase systems Single-phase a.c. circuits, balanced three-phase a.c. circuits

Magnetic circuits Linear magnetic circuits, real magnetic circuits (saturation, hysteresis, eddy currents)

Transformers Ideal transformer, technical transformer, transformer tests, per-unit system, three-phase transformers, autotransformer

D.C. Machine Structure, machine model

Three-phase windings Characteristics, air-gap field, space vectors

Induction machine Description and modelling, operating characteristics, number of poles

Synchronous machine Design, operation at constant voltage and frequency, operation at variable voltage and frequency

Introduction to power electronics Electrical power conversion, semiconductor switching devices, power electronic circuits (three-phase diode bridge rectifier, three-phase thyristor bridge converter, voltage source inverter, application examples)

Exam/ Study achievements:

exam written

Forms of media:

Literature:

51

EE-E7 (Section Electrical Engineering)

Module name: Assemblerprogramming

Assemblerprogrammierung

Abbreviation: Module No. EE-E7

Semester: 2nd

Module coordinator: Prof. Dr.-Ing. Gerhard Fohler

Lecturer: Prof. Dr.-Ing. Gerhard Fohler

Dr.-Ing. Peter Kosack

Language: German

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

2 h Lectures, 1 h Exercise

Workload:

Credit points: 4

Recommended prerequisites:

Targeted learning outcomes:

Content: Grundkonzepte von Rechnern

von-Neumann-Architektur

Komponenten von Rechnern

Komponenten von Prozessoren am Beispiel

Befehlssatz

Assemblerprogrammierung

Entwicklungssystem

Unterprogrammtechnik

Interrupt

Echtzeitaspekte

Aspekte moderner Architekturen

Exam/ Study achievements:

exam written

Forms of media:

Literature:

52

EE-E8 (Section Electrical Engineering)

Module name: Fundamentals of Electric Power Engineering

Abbreviation: Module No. EE-E8

Semester: 1 st / 4 th

Module coordinator: Prof. Dr. G. Huth

Lecturer: Prof. Dr. G. Huth

Prof. Dr.-Ing. Wolfram Wellßow

Language: German

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format 2 h Lectures, 2 h Exercise

Workload:

Credit points: 4

Recommended prerequisites:

-

Targeted learning outcomes:

Content: Grundlagen der Elektrotechnik aus energietechnischer Sicht, Grundlagen der Energieerzeugung und Übertragung, Grundlagen der Elektromagnetischen Energiewandlung und Antriebstechnik.

Exam/ Study achievements:

exam written

Forms of media:

Literature: D. Nelles; C. Tuttas: Elektrische Energietechnik, Teubner Verlag (ELT 215/064); H. O. Seinsch: Grundlagen elektr. Maschinen und Antriebe, Teubner Studienskript; H. Eckhardt: Grundzüge der Elektr. Maschinen, Teubner Studienbuch; Späth: Elektrische Maschinen und Stromrichter, G. Braun, Karlsruhe; Simon, Fransua u. a.: Elektrische Maschinen und Antriebssysteme, Vieweg

53

EE-E9 (Section Electrical Engineering)

Module name: Elektrische Antriebstechnik I

Electrical Drive Technology I

Abbreviation: Module No. EE-E9

Semester: 1st + 3rd

Module coordinator: Prof. Dr. G. Huth

Lecturer: Prof. Dr. G. Huth

Language: Deutsch (oder Englisch)

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

3 h Lectures, 1 h Exercise

Workload:

Credit points: 5

Recommended prerequisites:

Targeted learning outcomes:

Content: Grundbegriffe der Antriebstechnik, Komponenten elektrischer Antriebssysteme, Transformatoren, konventionelle - und Stromrichterantriebe mit Gleichstrommaschinen, konventionelle und - Stromrichterantriebe mit Drehstrom-Asynchronmaschinen.

Exam/ Study achievements:

Oral exam

Forms of media:

Literature: H. O. Seinsch: Grundlagen elektr. Maschinen und Antriebe, Teubner Studienskript; Schröder: Elektrische Antriebe - Grundlagen, Springer; Riefenstahl: Elektrische Antriebstechnik, Teubner

54

EE-E10 (Section Electrical Engineering)

Module name: Linear Control Systems (Control Engineering I)

Lineare Regelungen (Regelungstechnik I)

Abbreviation: Module EE-E10

Semester: 1 st / 3rd

Module coordinator: Prof. Dr. S. Liu

Lecturer: Prof. Dr. S. Liu

Language: German / English as required

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

3 h Lectures, 1 h Exercise

Workload:

Credit points: 5

Recommended prerequisites:

Targeted learning outcomes:

Content: Principle and structure of linear control systems, modelling, properties of linear time-invariant systems, transfer function, time and frequency response, state transformation, block diagram, open-loop and closed-loop systems, stability, dynamic compensation, Bode diagram design, root locus design, application examples

Exam/ Study achievements:

Exam written

Forms of media:

Literature: R. Dorf/R. Bishop: Moderne Regelungstechnik, Pearson Studium, 2005; O. Föllinger: Regelungstechnik, Hüthing Verlag, 1992 (L elt 264); J. Lunze: Regelungstechnik 1 und 2, Springer Verlag, 1997. L. Litz: Grundlagen der Automatisierungstechnik Oldenbourg Verlag, 2004

55

EE-E11 (Section Electrical Engineering)

Module name: Electronics II

Elektronik II

Abbreviation: Module EE-E11

Semester: 1 st / 3rd

Module coordinator: Prof. Dr.-Ing. Andreas König

Lecturer: Prof. Dr.-Ing. Andreas König

Language: German

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h Lectures, 1 h Exercise

Workload:

Credit points: 4

Recommended prerequisites:

Elektronik I, Messtechnik I.

Targeted learning outcomes:

Kenntnis von gleichspannungsgekoppelten, mehrstufigen Schaltungen mit Transistorlasten

Beherrschung der erweiterten Analyse von Mehrtransistorschaltungen anhand einfacher Modelle der Bauelemente (Arbeitspunktbestimmung, Kleinsignalanalyse) mit inhärenten Kapazitäten

Fähigkeit die Stabilität einer vorliegenden Verstärkeranordnung zu prüfen bzw. sicherzustellen

Kenntnis der relevanten Kenngrößen und Eigenschaften realer Operationsverstärker

Beherrschung des Einsatzes von Operationsverstärkern in Schaltungen mit frequenzabhängiger Beschaltung und zeitdiskreter Signalverarbeitung

Kenntnis des Schaltungssimulators (PSPICE) zur Ergebnisprüfung und korrektur

Content: Grundlagen von Schaltungen für und mit Operationsverstärkern

Erweiterung der Schaltungsgrundlagen aus Elektronik I auf gleichspannungsgekoppelte Schaltungen, frequenzabhängige Betrachtung, Transistorlasten

Erweiterte und vergleichende Betrachtung von Stromquellen und spiegeln, Differenzverstärkern, Inverterstufen, Kaskodestufen, Folger- und Gegentakt-ausgangsstufen mit Bipolar- und MOS-Transistoren

Grundbausteine von Operationsverstärkern und deren Zusammenschaltung

Stabilität und Kompensation von OPVs

Eigenschaften und Kenngrößen realer OPVs

Kontinuierliche und zeitdiskrete Filter (SC-Filter) Analogschalter und Abtasthalteglieder

Digital-Analog- und Analog-Digital-Umsetzer

Oszillatoren und Generatoren.

Exam/ Study achievements:

Exam written

56

Literature: R.C. Jager, T.N. Blalock: Microelectronic Circuit Design. McGrawHill, 2003, ISBN

Ch. Tietze, U. Schenk: Halbleiter-Schaltungstechnik, Springer, 2003, ISBN 3-540-63443-6

EE-E12 (Section Electrical Engineering)

Module name: CAE in control engineering

CAE in der Regelungstechnik

Abbreviation: Module No. EE-E12

Semester: 3rd + 4th

Module coordinator: Dr.-Ing. C. Tuttas

Lecturer: Prof. Dr.-Ing. S. Liu und Dr.-Ing. C. Tuttas

Language: German or English

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h Lectures, 1 h Exercise

Workload: Contact study workload: 42 hrs per term

Self-study workload: 78 hrs per term

Overall workload: 120 hrs per term

Credit points: 4

Recommended prerequisites:

Basics in automation

Targeted learning outcomes:

Ability to describe dynamic time continuous and time discrete systems simulation ready

Knowledge about attributs of numerical integration methods

Ability to use simulation program MATLAB/SIMULINK

Evaluation of simulation results

Mastery in computer aided control design

Mastery in computer aided control analysis

Content: Modelling of dynamic systems

Attributs of numerical integration methods

Use of simulation program MATLAB/SIMULINK

Computer aided control analysis using MATLAB/SIMULINK

Computer aided design in wellknown methods (Bode diagram, root locus) in state design

Exam/ Study achievements:

Oral or written exam

Forms of media: Overhead beamer or powerpoint slides

Literature: Weinmann: Computerunterstützung für Regelungsaufgaben, Springer Verlag, 1999

57

EE-E13 (Section Electrical Engineering)

Module name: Real-Time Systems and Applications I (RT I)

Echtzeitsysteme und Anwendung I

Abbreviation: Module No. EE-E13

Semester: 2nd

Module coordinator: Prof. Dr. techn. Gerhard Fohler

Lecturer: Prof. Dr. techn. Gerhard Fohler

& international experts/ guest lecturers

Language: English

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h/week lectures; 1 h/week laboratory

Workload: Contact-study workload: 39 h per term

Self-study workload: 81 h per term

Overall workload: 120 h per term

Credit points: 4

Recommended prerequisites:

Programming, algorithms, operating systems, networks, computer architecure

Targeted learning outcomes:

Understanding of nature of real-time systems; why and how they differ from standard computing systems.

Knowledge of the major types of resource allocation schemes and addresses issues in QoS management.

Content: The course will provide understanding in the nature of real-time systems and why and how they differ from standard computing systems. It gives an overview of the major types of resource allocation schemes, including offline and online, and addresses issues in QoS management.

It is accompanied by a lab.

Real-time, real-time systems and models, applications

Types and properties of real-time systems

Scheduling of single and multiprocessor systems

Online scheduling of periodic and non periodic activities

QoS Management, mediaprocessing

Exam/ Study achievements:

Oral exam

Forms of media: Computer presentation, handouts, webpage

Literature: Paper handouts during lecture.

58

EE-E14 (Section Electrical Engineering)

Module name: Real-Time Systems and Applications II (RT II)

Echtzeitsysteme und Anwendung II

Abbreviation: Module No. EE-E14

Semester: 3rd

Module coordinator: Prof. Dr. techn. Gerhard Fohler

Lecturer: Prof. Dr. techn. Gerhard Fohler

& international experts/ guest lecturers

Language: English

Classification within the curriculum:

Elective Module for CVT-Masterstudies

Teaching format / class hours per week during the semester:

2 h/week lectures; 1 h/week laboratory

Workload: Contact-study workload: 42 h per term

Self-study workload: 78 h per term

Overall workload: 120 h per term

Credit points: 4

Recommended prerequisites:

Targeted learning outcomes:

Deeper understanding of real-time systems issues, especially in applications ranging from safety critical systems, such as airplanes and cars.

Content: This course will deepen the understanding of real-time systems issues of the course Real-time Systems I. It will cover additional topics, provide relations and deeper understanding between basic issues. It is accompanied by a lab.

Areas include:

Off-line scheduling

Scheduling of multiprocessor systems

Real-time Networks

QoS Management

Real-time mediastreaming

The international research community, conferences, in addition to the scientific contents

Brief information about related projects going on at the department.

Forms of media: Computer presentation, handouts, webpage

Literature: Giorgio Buttazzo, "Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications".

Content: Structures of AT-network systems (NAS)

ISO/OSI-Model and TCP/IP-Model

Overview in industrial used bus systems and networks

Ethernet with extensions for industrial systems

Automotive Networks (CAN, LIN, FlexRay)

Problems of delay, information loss, ressource-sharing and synchronisation

Reliability of AT-systems

Influences of networking on reliability

59

Exam/ Study achievements:

Oral exam

Forms of media: Website, slides

Literature: Selected papers on actual solutions and overview papers on standard methods are presented on the website

EE-E15 (Section Electrical Engineering)

Module name: Model-based diagnosis in CVT

Modellbasierte Diagnose bei Nutzfahrzeugen

Abbreviation: Module No. EE-E15

Semester: 3rd

Module coordinator: Prof. Dr.-Ing. Steven Liu

Lecturer: Prof. Dr.-Ing. Steven Liu

Language: English

Classification within the curriculum:

Elective Module within the CVT-Curriculum

Teaching format / class hours per week during the semester:

Seminar, 2 hours per week, winter semester only

Workload: Contact-study workload: 28 h per term

Self-study study workload: 62 per term

Overall workload: 90 per term

Credit points: 3

Requirements under the examination regulations:

Recommended prerequisites:

Linear control systems

Targeted learning outcomes:

The module is especially designed for Commercial vehicles and offers practical and theoretical knowledge.

First Step to independent research works in the field of model based diagnosis in commercial vehicles

Content:

Exam/ Study achievements:

Seminar work, oral presentation

Forms of media: Website, slides

Literature: Will be announced at the beginning

61

EE-E16a (Section Electrical Engineering)

Module name: Sensorelektronik: Technologie und Entwurf integrierter gemischt analog-digitaler Schaltungen & Systeme (TESYS)

Technology and Concept of Integrated and Mixed Analog – digital Circuitry and Systems (TESYS)

Abbreviation: Module No. EE-E16a

Semester: 2nd + 4th

Module coordinator: Prof. Dr. A. König

Lecturer: Prof. Dr. A. König

Language: German or English

Classification within the curriculum:

Elective; advanced topic of sensor circuit design for industrial and automotive systems; balanced theoretical and practical contents; offered only at TU Kaiserslautern

Teaching format / class hours per week during the semester:

2 hours lecture and 2 hours computer based exercises per week

Workload: Contact-study workload: 52 h pro Semester

Self-study workload: 98 h pro Semester

Overall workload: 150 h pro Semester

Credit points: 5

Recommended prerequisites:

Basics of semiconductor devices and electronic circuits, Electronics II

Targeted learning outcomes:

Knowledge of the required processes, methods, description approaches and tools for the computer-aided modelling, simulation and manufacturing of integrated analog and mixed-signal circuits

Mastery of the Cadence DFW II IC design system and a common manufacturing technology (CMOS, BiCMOS) and design-kit (mixed-mode, mixed-signal)

Overview of common analog and mixed-signal-circuits and building blocks, their properties, and their integration (layout design)

Ability of independent realisation of a design project or a subproject in the context of a larger group design (MPC)

Content: Manufacturing technologies and -methods for integrated circuits (CMOS (bulk, SOI), BiCMOS)

Device spectrum, process variations, yield, tolerances and soft-faults

Principles of layout-design for analog and mixed-signal circuits (matched-layout)

Design methodology and tools of computer-aided design for integrated mixed-signal electronics (Hierarchical design, mixed-mode, mixed-signal, AHDLs)

Advanced device models (e.g., BSIM-models)

Enhancement of circuits & building blocks (References etc.)

Design techniques for applications-specific cells and blocks: selection, sizing, simulation, layout,extraction, post-layout simulation for application-specific operational amplifiers (OpAmp/OTA), Filters, AD/DA-converters, VCO etc.

62

Modelling, design and layout realisation of digital circuits as components in integrated mixed-signal electronics

Advanced issues : Noise, analog synthesis, testing, rekonfiguration, eigen- or self calibration, self-monitoring/-repair, adaptation

Exam/ Study achievements:

Oral examination based on semester project.

Forms of media: Course-specific web page with slides (ppt/pdf)

Literature: Phillip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University Press, 2nd ed., 2002

R.C. Jaeger, T.N. Blalock: Microelectronic Circuit Design. McGrawHill, 2003, ISBN 007-232099-0

Kenneth R. Laker, Willy M.C. Sansen, Design of Analog Integrated Circuits and Systems, MacGrawHill, 1994.

R. Jacob Baker, Harry W. Li, David E. Boyce, CMOS Circuit Design, Layout, and Simulation, IEEE Press, 1998.

Hastings, The Art of Analog Layout, Prentice Hall, 2001

Jaeger, Introduction to Microelectronic Fabrication, Prentice Hall 2002

Geiger/Allen/Strader, VLSI Design Techniques for Analog and Digital Circuits

Grey/Meyer, Analysis and Design of Analog Integrated Circuits

63

EE-E16b (Section Electrical Engineering)

Module name: Sensorelektronik: Herstellungsverfahren und Entwurf integrierter Sensorsysteme (HEIS)

Production Process and Concept of Integrated Sensor Systems (HEIS)

Abbreviation: Module No. EE-E16b

Semester: 3nd

Module coordinator: Prof. Dr. A. König

Lecturer: Prof. Dr. A. König

Language: German or English

Classification within the curriculum:

Elective; advanced topic of sensor circuit design for industrial and automotive systems; balanced theoretical and practical contents; offered only at TU Kaiserslautern

Teaching format / class hours per week during the semester:

2 hours lecture and 2 hours computer based exercises per week

Workload: Contact-study workload: 52 h pro Semester

Self-study workload: 118 h pro Semester

Overall workload: 170 h pro Semester

Credit points: 5

Recommended prerequisites:

Basics of semiconductor devices and electronic circuits, Electronics II

Targeted learning outcomes:

Understanding of the required microtechnological processes, methods, descriptions and tools for computer-aided modelling, simulation and manufacturing of integrated sensor systems

Overview of typical integrated sensor concepts and building blocks, their corresponding properties and their integration with electronics

Conceptual understanding and mastery of a design system (SoftMEMS/Cadence DFW II in conjunction with common manufacturing technologies (EUROPRACTICE))

Ability of the independent realization of an individual design project or a subproject in the context of a larger group project (MPC/MUMPS)

Content: Structure and design principles of standard CMOS-compatible sensors (2D/3D-image sensors, color- and NIR-sensors etc.)

Sensor architectures and compensation of deviations and cross-sensitivities

Extension of standard technologies by additional processing steps, e.g., to achieve pressure- or fingerprint sensors

Manufacturing technologies and -procedures of silicon-micromaching (Surface- and bulk-micromachining)

Overview of further common procedures of MEMS/electronics for manufacturing, packaging and system integration

Scaling - and process issues (yield/tolerances)

Overview of common integrated sensor cells

Inspiration from Bionics

Design methodology and tools of computer-aided design for microsensors/MEMS

64

Modelling and simulation techniques (e.g., different energy domains, FEM-concept)

Design concepts for application-specific sensor cells and their integration with elektronics: Selection, sizing, simulation, layout, extraction, post-layout

Feedback architectures for sensor systems

Overview of mikroactuators in the context of microsensors

Energy consumption & supply/self-sufficientMEMS

(Eigen- or self-)calibration, rekonfiguration, self-monitoring/-repair in integrated sensor system, adaptation,

Exam/ Study achievements:

Oral examination based on semester project.

Forms of media: Course-specific web page with slides (ppt/pdf)

Literature: Marc J. Madou, Fundamentals of Microfabrication – The Science of Miniaturization, 2nd ed., CRC Press, 2002.

Mohammed Gad-el-Hak, The MEMS-Handbook, CRC Press, 2002.

Barth, Humphrey, Secomb (eds.), Sensors and Sensing in Biology and Engineering, Springer, 2003.

M. Kasper, Mikrosystementwurf – Entwurf und Simulation von Mikrosystemen, Springer 2000.

T. Elbel, Mikrosensorik - Eine Einführung in Technologie und physikalische Wirkungsprinzipien von Mikrosensoren, Vieweg, 1996.

W. Nachtigall, Kurt G. Blüchel, Bionik – Neue Technologien nach dem Vorbild der Natur, DVA, 2000.

65

EE-E17 (Section Electrical Engineering)

Module name: Sensor Signals Processing

Sensorsignalverarbeitung (SENSIG)

Abbreviation: Module No. EE-E17

Semester: 3rd

Module coordinator: Prof. Dr. A. König

Lecturer: Prof. Dr. A. König

Language: German or English

Classification within the curriculum:

Elective; advanced topic of sensor information processing for industrial and automotive systems, e.g., assistance systems; balanced theoretical and practical contents; offered only at TU Kaiserslautern

Teaching format / class hours per week during the semester:

2 hours lecture and 2 hours computer based exercises per week

Workload: Contact-study workload: 56 hrs per term

Self-study workload: 94 hrs per term

Overall workload: 150 hrs per term

Credit points: 5

Recommended prerequisites:

Basics of information and signal processing, measurement and instrumentation.

Targeted learning outcomes:

Understanding of relevant principals and methods from the field of Computational Intelligence, in particular for the field of sensor technology

Mastery of application of selected relevant methods and their configuration in a common design environment (Matlab)

Ability to design, validate, and optimize complete application-specific system system

Develop ability to adapt and extend the achieved implementation to changing needs

Understanding of interdependence of system solution with available, potentially restricted implementation platforms (Sensors/Hardware)

Content: Basic methods of signal analysis and the computation of characteristic and invariant descriptors (features)

Processing of signals from single sensors und homogeneous or heterogeneous Sensor-Arrays

Dimensionality reduction of high-dimensional sensor data by linear and non-linear methods, e.g. by explicit selection of features

Methods of cluster analysis

Methods for multi-dimensional sensor data analysis: projection and visualisation, fusion

Methods for classification of sensor data: statistical pattern recognition, artificial neural networks, Methods of rule-based and fuzzy classification Advanced optimization methods for parameter- or structure optimization of sensor systems

Relations, dependencies, and optimization potential between

66

sensor realization, electronics, and algorithmics.

New aspects of reliable sensor systems (self-x properties)

Exam/ Study achievements:

Oral examination based on semester project

Forms of media: Course-specific webpage with slides (ppt/pdf) and examples

(Matlab/QuickCog)

Literature: R. Hoffmann, Signalanalyse und Erkennung, Springer 1998, ISBN 3-540-63443-6

S. Haykin, Neural Networks – A Comprehensive Foundation, Prentice Hall, 1998, ISBN 0132733501

K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1990, ISBN 0122698517

R. Duda, P. Hart, D. Stork, Pattern Classification, Wiley, 2000, ISBN 0471056693

67

EE-E18 (Section Electrical Engineering)

Module name: Seminar Electromobility

Abbreviation: Module No. EE-E18

Semester: 1st + 2rd

Module coordinator: Jun. Prof. Dr.-Ing. Daniel Görges

Lecturer: Jun. Prof. Dr.-Ing. Daniel Görges

Language: German or English

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 hours per week

Workload:

Credit points: 3

Recommended prerequisites:

Targeted learning outcomes:

Content: Im Seminar sollen Methoden zur Ausarbeitung und Präsentation einer wissenschaftlichen Themenstellung erlernt werden. Hierzu gehören die Literatur- und Internetrecherche sowie das Lesen und Aufbereiten meist englischsprachiger Fachartikel. Hinzu kommen gegebenenfalls kleinere simulative und praktische Untersuchungen. Neben der wissenschaftlichen Arbeit werden insbesondere auch die Teamarbeit und Präsentationstechniken als wichtige Soft Skills trainiert.

Exam/ Study achievements:

Oral examination based on semester project

Forms of media:

Literature:

68

EE-E19 (Section Electrical Engineering)

Module name: Electric and Hybrid Vehicles

Elektro- und Hybridfahrzeuge

Abbreviation: Module No. EE-E19

Semester: 2rd

Module coordinator: Jun. Prof. Dr.-Ing. Daniel Görges

Lecturer: Jun. Prof. Dr.-Ing. Daniel Görges

Language: German / English as required

Classification within the curriculum:

For Master Degree “Commercial Vehicle Technology”

as elective module

Teaching format / class hours per week during the semester:

2 hours per week

Workload:

Credit points: 3

Recommended prerequisites:

Lineare Regelungen, Optimal Control, CAE in der Regelungstechnik und Model Predictive Control

Targeted learning outcomes:

Content: Elektro- und Hybridfahrzeuge sind eine Schlüsseltechnologie für eine ressourcen- und klimaschonende Mobilität. Die Forschung und Entwicklung auf diesem Gebiet wird daher seit einigen Jahren sowohl im industriellen als auch im akademischen Bereich stark vorangetrieben. Entsprechend hoch ist der Bedarf an spezialisierten Ingenieuren. In dieser Vorlesung werden die Grundlagen von Elektro- und Hybridfahrzeugen, insbesondere die Architekturen, die Modellierung und das Energiemanagement, vermittelt und anhand zahlreicher Fallstudien auf Basis realisierter Fahrzeugkonzepte vertieft. Während der gesamten Vorlesung werden die Modellierungs- und Energiemanagementmethoden unter MATLAB/Simulink mit spezialisierten Toolboxen veranschaulicht. Zur praktischen Anwendung der erworbenen Kenntnisse ist ergänzend ein Energiemanagementwettbewerb geplant.

Exam/ Study achievements:

Oral examination

Forms of media:

Literature:

69

SoSc-E1 (Section Social Sciences)

Module name: Einführung in die Soziologie

Introduction in Sociology

Abbreviation: Module No. SoSc-E1

Semester: 3 rd

Module coordinator: Weber

Lecturer: Prof. Dr. Henning Best

Language: Deutsch

Classification within the curriculum:

The module is an Elective Module in CVT. Note: 10 Credits Points must be gained from block “soft skills and social sciences”

Teaching format / class hours per week during the semester:

2 h Vorlesung

Workload: 2. Credits:

Contact-study workload: 42 hrs per term

Self-study workload: 18 hrs per term

Overall workload: 60 hrs per term

3 Credits:

Contact-study workload: 42 hrs per term

Self-study workload: 48 hrs per term

Overall workload: 90 hrs per term

Credit points: 2 (Teilnahme) – 3 (Teilnahme und Hausarbeit)

Recommended prerequisites:

Targeted learning outcomes:

Fähigkeit, Gesellschaften zu analysieren und soziologische Texte zu verstehen

Content: Die Veranstaltung vermittelt einen Überblick über zentrale Themen der systemtheoretischen Soziologie. Die Theorie sozialer Systeme stellt gegenwärtig eine der umfassendsten und am weitesten entwickelten Ansätze der Soziologie dar. Behandelt werden:

Entwicklung der Soziologie

Grundlagen der Theorie sozialer Systeme

Systemtypen: Gesellschaft, Organisation, Interaktion

Evolution von Gesellschaften

Gesellschaftliche Funktionssysteme: Politik, Wirtschaft, Erziehung

Cooperation (international or industry):

Exam/ Study achievements:

Forms of media: PP-Folien

Literature: Luhmann, N. (1998): Die Gesellschaft der Gesellschaft, 2 Bände, Frankfurt

Luhmann, N. (1987): Soziologische Aufklärung, 4 Bände, Opladen

Luhmann, N. (1997): Die Gesellschaft der Gesellschaft, Frankfurt: Suhrkamp

70

Luhmann, N. Organisation und Entscheidung, Opladen, 2000

Schimank, U./Schöneck, M. Hg. (2008) Gesellschaft begreifen. Einladung zur Soziologie, Frankfurt new York

71

SoSc-E2 (Section Social Sciences)

Module name: Sociology of industrial relations : Theory, Mehtod, Empiricism (Political Sociology)

Abbreviation: Module No. SoSc-E2

Semester: 3rd

Module coordinator: Dr. Karina Becker

Lecturer: Dr. Karina Becker

Language: Deutsch

Classification within the curriculum:

The module is an Elective Module in CVT. Note: 10 Credits Points must be gained from block “soft skills and social sciences”

Teaching format / class hours per week during the semester:

2 hours per week

Workload:

Credit points: 3-9

Recommended prerequisites:

Targeted learning outcomes:

Content:

Cooperation (international or industry):

Exam/ Study achievements:

Forms of media:

Literature:

72

3. Master Thesis and Project Work

74

L 1

Module name: Project „Commercial Vehicle Technology“

(University or working student in industry)

Abbreviation: L1

Semester: 3rd

Module coordinator: Student must find a professor among the three faculties willing to supervise the project work

Lecturer: -

Language: -

Classification within the curriculum:

The project work is mandatory for all master students. For students from Germany, Austria, Switzerland or Luxemburg it is recommended to combine this work with an internship or a study term in a foreign country.

Teaching format / class hours per week during the semester:

Self studies or project work.

Workload: 4 Months á 75 hrs, overall workload 300 hrs equates an employment from 4 to 6 month in an industrial concern.

Working student contracts may be 4 to 6 months

Credit points: 10

Recommended prerequisites:

Can be started at any time if at least 50 CP are gained

Targeted learning outcomes:

Student shows his/her ability to work under direction of a professor or assistant on an engineering task and is able to solve it.

Content: Small Engineering project of manageable size.

Cooperation (international or industry):

Working on an industry project under supervision of a professor (Company should be part of CVT industry)

Project at one of the Partner Universities

Exam/ Study achievements:

Technical written documentation on project planning, work and output.

Forms of media: -

Literature: -

75

L 2

Module name: Master Thesis

Abbreviation: L2

Semester: 4th earliest

Module coordinator: Student must find a professor among the three engineering faculties willing to supervise the master thesis

Lecturer: -

Language: -

Classification within the curriculum:

The master thesis is mandatory for all master students.

Teaching format / class hours per week during the semester:

Self studies or project work.

Workload: 6 Months á 150 hrs, overall workload 900 hrs

Credit points: 30

Recommended prerequisites:

Can be started at any time if at least 83 CP are gained

Targeted learning outcomes:

Student shows his/her ability to work autonomously to a large extent under direction of a professor or assistant on an engineering task and is able to solve it.

Content: Engineering project of manageable size.

Cooperation (international or industry):

Working on an industry project under supervision of a professor is possible. Company should be part of CVT industry.

Exam/ Study achievements:

Technical written documentation on project planning, work and output.

Oral presentation of the project

Forms of media: -

Literature: -

76

4. Supplementary Modules

SM-P1

Module name: German Language Course (DSI-Course)

Abbreviation: Module SM-P1

Semester: 1st & 2nd

Module coordinator: Dr.-Ing. P. Memar (International School for Graduate Studies)

Lecturer: Inka Claussen

Language: German

Classification within the curriculum:

Mandatory module in the first two semesters

Teaching format / class hours per week during the semester:

Intensive Language and Orientation Course (incl. Lectures, Exercises and Laboratories).

Intensive course (6-8 weeks) in summer or spring previous to the start of the lectures.

The course is continued during the lecture period (1st and 2nd semester).

Workload: Approx. 300 hrs

Credit points:

Recommended prerequisites:

None. The courses are offered in different levels.

Targeted learning outcomes:

Students should acquire a basic knowledge of the German language

Content: Intensive German Language course (especially designed for international Graduates)

Cultural and social activities

Support in administrative issues

Cooperation (international or industry):

Exam/ Study achievements:

DSI – exam (Deutsche Sprachprüfung für Studierende in internationalen Studiengängen) after the 2nd semester.

The accomplishment of the DSI-exam is a precondition for continuing the study course.

Forms of media:

Literature: Will be handed out in the course

78

SM-P2

Module name: CVT - Introduction to Programming with CC++

CVT - Einführung in die Programmierung in C++

Abbreviation: Module SM-P1

Semester:

Module coordinator: apl. Prof. Dr. Achim Ebert

Lecturer: apl Prof. Dr. Achim Ebert

Roger Daneker

Language: English

Classification within the curriculum:

Teaching format / class hours per week during the semester:

Workload:

Credit points:

Recommended prerequisites:

Targeted learning outcomes:

Content:

Cooperation (international or industry):

Exam/ Study achievements:

Passing this course is mandatory for CS-M4 CVT-Programming-Project

Forms of media:

Literature: Tony Gaddis et al.: "Starting Out with C++. Early Objects"; Prentice Hall; 7th revised edition; 2010; ISBN 978-0131377141;

Link: http://www.pearson-studium.de/main/main.asp?page=bookdetails&ProductID=181397