module 34

19
1 Module 34 • CFG --> PDA construction – Shows that for any CFL L, there exists a PDA M such that L(M) = L – The reverse is true as well, but we do not prove that here

Upload: kirti

Post on 05-Jan-2016

14 views

Category:

Documents


0 download

DESCRIPTION

Module 34. CFG --> PDA construction Shows that for any CFL L, there exists a PDA M such that L(M) = L The reverse is true as well, but we do not prove that here. CFL subset LPDA. Let L be an arbitrary CFL Let G be the CFG such that L(G) = L G exists by definition of L is CF - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Module 34

1

Module 34

• CFG --> PDA construction– Shows that for any CFL L, there exists a PDA

M such that L(M) = L– The reverse is true as well, but we do not prove

that here

Page 2: Module 34

2

CFL subset LPDA

• Let L be an arbitrary CFL

• Let G be the CFG such that L(G) = L– G exists by definition of L is CF

• Construct a PDA M such that L(M) = L(G)

• Argue L(M) = L

• There exists a PDA M such that L(M) = L

• L is in LPDA– By definition of L in LPDA

Page 3: Module 34

3

Visualization

CFLLPDA

CFG’s PDA’s

L L

G M

•Let L be an arbitrary CFL•Let G be the CFG such that L(G) = L

•G exists by definition of L is CF•Construct a PDA M such that L(M) = L

•M is constructed from CFG G•Argue L(M) = L•There exists a PDA M such that L(M) = L•L is in LPDA

•By definition of L in LPDA

Page 4: Module 34

4

Algorithm Specification

• Input– CFG G

• Output– PDA M such that L(M) =

CFG G PDA MA

Page 5: Module 34

5

Construction Idea

• The basic idea is to have a 2-phase PDA– Phase 1:

• Derive all strings in L(G) on the stack nondeterministically

• Do not process any input while we are deriving the string on the stack

– Phase 2: • Match the input string against the derived string on the stack

– This is a deterministic process

• Move to an accepting state only when the stack is empty

Page 6: Module 34

6

Illustration

• Input Grammar G– V = {S}– = {a,b}– S = S– P:

S --> aSb |

• What is L(G)?

1. Derive all strings in L(G) on the stack2. Match the derived string against input

(q0, aabb, Z)/* put S on stack */

(q1, aabb, SZ)/* derive aabb on stack */

(q1, aabb, aSbZ)(q1, aabb, aaSbbZ)(q1, aabb, aabbZ)

/* match stack vs input */(q2, aabb, aabbZ)(q2, abb, abbZ)(q2, bb, bbZ)(q2, b, bZ)(q2,, Z)

(q3, , Z)

Illustration of how the PDA might work,though not completely accurate.

Page 7: Module 34

7

Difficulty 1. Derive all strings in L(G) on the stack2. Match the derived string against input

(q0, aabb, Z)/* put S on stack */

(q1, aabb, SZ)/* derive aabb on stack */

(q1, aabb, aSbZ)(q1, aabb, aaSbbZ)(q1, aabb, aabbZ)

/* match stack vs input */(q2, aabb, aabbZ)(q2, abb, abbZ)(q2, bb, bbZ)(q2, b, bZ)(q2,, Z)

(q3, , Z)

What is illegal with the computation graph on the left?

Page 8: Module 34

8

Construction• Input Grammar

– G=(V,, S, P)

• Output PDA – M=(Q, , , q0, Z, F, )

– Q = {q0, q1, q2}

– = – = V union union {Z}

– Z = Z

– q0 = q0

– F = {q2}

• :– (q0, , Z) = (q1, SZ)

– (q1, , Z) = (q2, Z)

– For all productions A --> • q1, , A) = (q1, )

– For all a in • q1, a, a) = (q1, )

Page 9: Module 34

9

Examples

Page 10: Module 34

10

Palindromes• PALG:

– V = {S}

– = {a,b}

– S = S

– P:• S --> aSa | bSb | a | b |

• Output PDA M=(Q,,q0,Z,F,)

– Q = {q0, q1, q2}

– = {a,b,S,Z}

– q0 = q0

– Z = Z

– F = {q2}

• :

– (q0, , Z) = (q1, SZ)

– (q1, , Z) = (q2, Z)

– Production Transitions• q1, , S) = (q1, aSa)

• q1, , S) = (q1, bSb)

• q1, , S) = (q1, a)

• q1, , S) = (q1, b)

• q1, , S) = (q1, )

– Matching transitions• q1, a, a) = (q1, )

• q1, b, b) = (q1, )

Page 11: Module 34

11

Palindrome Transition Table

Transition Current Input Top of Next StackNumber State Symbol Stack State Update--------------------------------------------------------------------------------- 1 q0 Z q1 SZ 2 q1 Z q2 Z 3 q1 S q1 aSa 4 q1 S q1 bSb 5 q1 S q1 a 6 q1 S q1 b 7 q1 S q1 8 q1 a a q1 9 q1 b b q1

Page 12: Module 34

12

Partial Computation Graph(q0, aba, Z) (q1, aba, SZ) (q1, aba, aSaZ) (other branches not shown)(q1, ba, SaZ)(q1, ba, baZ) (other branches not shown)(q1, a, aZ)(q1, , Z)(q2, , Z)

On your own, draw computation trees for other stringsnot in the language and see that they are not accepted.

Page 13: Module 34

13

{anbn | n >= 0}• Grammar G:

– V = {S}

– = {a,b}

– S = S

– P:• S --> aSb |

• Output PDA M=(Q,,q0,Z,F,)

– Q = {q0, q1, q2}

– = {a,b,S,Z}

– q0 = q0

– Z = Z

– F = {q2}

• :

– (q0, , Z) = (q1, SZ)

– (q1, , Z) = (q2, Z)

– Production Transitions•

– Matching transitions

Page 14: Module 34

14

{anbn | n >= 0} Transition Table

Transition Current Input Top of Next StackNumber State Symbol Stack State Update--------------------------------------------------------------------------------- 1 q0 Z 2 q1 Z 3 q1 S 4 q1 S 5 q1 a a 6 q1 b b

Page 15: Module 34

15

Partial Computation Graph

(q0, aabb, Z) (q1, aabb, SZ) (q1, aabb, aSbZ) (other branch not shown)(q1, abb, SbZ)(q1, abb, aSbbZ) (other branch not shown)(q1, bb, SbbZ)(q1, bb, bbZ) (other branch not shown)(q1, b, bZ)(q1, , Z) (q2, , Z)

Page 16: Module 34

16

{aibj | i = j or i = 2j}• Grammar G:

– V = {S,T,U}

– = {a,b}

– S = S

– P:• S --> T | U

• T --> aTb | • U --> aaUb |

• Output PDA M=(Q,,q0,Z,F,)

– Q = {q0, q1, q2}

– = {a,b,S,T,U,Z}

– q0 = q0

– Z = Z

– F = {q2}

• – (q0, , Z) = (q1, SZ)

– (q1, , Z) = (q2, Z)

– Production Transitions

– Matching transitions•

Page 17: Module 34

17

{aibj | i = j or i = 2j} Transition Table

Transition Current Input Top of Next StackNumber State Symbol Stack State Update--------------------------------------------------------------------------------- 1 q0 Z q1 SZ 2 q1 Z q2 Z 3 q1 S q1 T 4 q1 S q1 U 5 q1 T q1 aTb 6 q1 T q1 7 q1 U q1 aaUb 8 q1 U q1 9 q1 a a q1 10 q1 b b q1

Page 18: Module 34

18

Partial Computation Graph

(q0, aab, Z) (q1, aab, SZ) (q1, aab, UZ) (other branch not shown)(q1, aab, aaUbZ) (other branch not shown)(q1, ab, aUbZ)(q1, b, UbZ)(q1, b, bZ) (other branch not shown)(q1, , Z) (q2, , Z)

Page 19: Module 34

19

Things you should be able to do

• You should be able to execute this algorithm– Given any CFG, construct an equivalent PDA

• You should understand the idea behind this algorithm– Derive string on stack and then match it against input

• You should understand how this construction can help you design PDA’s

• You should understand that it can be used in answer-preserving input transformations between decision problems about CFL’s.