modern nuclear structure theory - theorie.ikp.physik.tu ... filemodern nuclear structure theory...

38
Modern Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut f ¨ ur Kernphysik Technische Universit¨ at Darmstadt 1

Upload: others

Post on 15-Oct-2019

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

ModernNuclear Structure Theory

From Realistic Interactions to the Nuclear Chart

Robert RothInstitut fur Kernphysik

Technische Universitat Darmstadt

1

Page 2: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Overview

Motivation

Modern Effective Interactions

• Correlations & Unitary Correlation Operator Method

Applications

• No Core Shell Model

• Hartree-Fock & Beyond

• Fermionic Molecular Dynamics

2

Page 3: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Nuclear Structure in the 21st Century

RISING, AGATA,REX-ISOLDE, ...

NUSTAR@ FAIR

NuclearAstrophysics

nuclei far-offstability

hyper-nuclei,...

reliablenuclear structure theory

for exotic nuclei

bridging betweenlow-energy QCD and

nuclear structure theory

3

Page 4: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Modern Nuclear Structure Theory

Nuclear Structure

Low-Energy QCD

RealisticNN-Potentials

ChiralInteractions

ab initioApproaches

EffectiveInteractions

Many-BodyMethods

DensityFunctional

Models

4

Page 5: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Realistic NN-Potentials

QCD motivated• symmetries, meson-exchange picture

• chiral effective field theory

short-range phenomenology• short-range parametrisation or contact terms

experimental two-body data• scattering phase-shifts & deuteron properties

reproduced with high precision

supplementary three-nucleon force• adjusted to spectra of light nuclei

Argonne V18

CD Bonn

Nijmegen I/II

Chiral N3LO

Argonne V18 +Illinois 2

Chiral N3LO +N2LO

5

Page 6: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Argonne V18 Potential

v(r) v(r) ~L2

v(r) S12 v(r) (~L · ~S) v(r) (~L · ~S)2

-100

0

100

.

[MeV

]

0 1 2r [fm]

-100

0

100

.

[MeV

]

0 1 2r [fm]

0 1 2r [fm]

(S, T )

(1, 0)(1, 1)(0, 0)(0, 1)

6

Page 7: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Ab initio Methods: GFMC

-100

-80

-60

-40

-20

Ene

rgy

(MeV

)

AV18

IL2 Exp

0+

4He

2+1+0+

0+2+

6He

1+

1+3+2+1+

6Li

5/2−5/2−

3/2−1/2−7/2−5/2−5/2−

7/2−

3/2−1/2−

7Li

1+0+2+

0+2+

8He1+

0+2+4+2+1+

3+4+

0+

2+

3+2+

8Be

9/2−

3/2−5/2−1/2−

7/2−

(3/2−)

(5/2−)

9Be

3+

4+

0+2+2+

(4+)

10Be 3+1+

2+

4+

1+

3+1+2+

10B

3+

1+

2+

4+

1+

3+

1+

2+

0+

12C

Argonne v18With Illinois-2

GFMC Calculations22 June 2004

12C results are preliminary.[S. Pieper, private comm.]

“exact” numericalsolution of interactingA-nucleon problem

75000CPU-hours

7

Page 8: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Modern Nuclear Structure Theory

Nuclear Structure

Low-Energy QCD

RealisticNN-Potentials

ChiralInteractions

ab initioApproaches

EffectiveInteractions

Many-BodyMethods

DensityFunctional

Models

8

Page 9: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Modern Nuclear Structure Theory

Nuclear Structure

Low-Energy QCD

RealisticNN-Potentials

ChiralInteractions

ab initioApproaches

EffectiveInteractions

Many-BodyMethods

DensityFunctional

Models

9

Page 10: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Why Effective Interactions?

Realistic Potentials

generate strong correlations inmany-body states

short-range central & tensor corre-lations most important

Many-Body Methods

rely on truncated many-nucleonHilbert spaces for A > 12

not capable of describing short-range correlations

extreme: Hartree-Fock based onsingle Slater determinant

Modern Effective Interactions

adapt realistic potential to the avail-able model space

conserve experimentally con-strained properties (phase shifts)

10

Page 11: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Unitary Correlation

Operator Method (UCOM)

11

Page 12: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Unitary Correlation Operator Method

Correlation Operatorintroduce short-range correlations by

means of a unitary transformation with re-spect to the relative coordinates of all pairs

C = exp[−i G] = exp[− i

i<j

gij

]G† = GC†C = 1

Correlated States∣∣ψ⟩

= C∣∣ψ

⟩Correlated Operators

O = C† O C

⟨ψ

∣∣ O∣∣ψ′

⟩=

⟨ψ

∣∣ C† O C∣∣ψ′

⟩=

⟨ψ

∣∣ O∣∣ψ′

12

Page 13: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Central and Tensor Correlators

C = CΩCr

Central Correlator Cr

radial distance-dependent shiftin the relative coordinate of a nu-cleon pair

gr =1

2

[s(r) qr + qr s(r)

]

qr = 12

[~rr

· ~q + ~q · ~rr

]

Tensor Correlator CΩ

angular shift depending on the orienta-tion of spin and relative coordinate of anucleon pair

gΩ =3

2ϑ(r)

[(~σ1 · ~qΩ)(~σ2 ·~r) + (~r↔~qΩ)

]

~qΩ = ~q − ~rr

qr

s(r) and ϑ(r)for given potential determined

in the two-body system

13

Page 14: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Correlated States: The Deuteron

1 2 3 4 5r [fm]

0

0.05

0.1

0.15

.

⟨ r∣ ∣ φ

L = 0

1 2 3 4 5r [fm]

0

0.05

0.1

0.15

.

⟨ r∣ ∣ C

r

∣ ∣ φ⟩

1 2 3 4r [fm]

0

0.05

0.1

0.15

0.2

.

[fm

]

s(r)central

correlations

1 2 3 4 5r [fm]

0

0.05

0.1

0.15

.

⟨ r∣ ∣ C

ΩC

r

∣ ∣ φ⟩

L = 2

L = 0

1 2 3 4r [fm]

0

0.02

0.04

0.06

0.08

.

ϑ(r)

tensorcorrelations

constraint on rangeof tensor correlator

14

Page 15: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Correlated Interaction — VUCOM

H = T[1] + (T[2]+V[2]) + (T[3]+V[3]) + · · ·H = T + VUCOM + V[3]UCOM + · · ·

closed operator expression for the correlated interactionVUCOM in two-body approximation

correlated interaction and original NN-potential are phaseshift equivalent by construction

unitary transformation results in a pre-diagonalisation ofHamiltonian

momentum-space matrix elements of correlated interactionare similar to Vlow−k

15

Page 16: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Simplistic “Shell-Model” Calculation

expectation value of Hamiltonian (with AV18) for Slater de-terminant of harmonic oscillator states

-10

0

10

20

30

40

50

60

.

E/A

[MeV

]

4He 16O 48Ca 90Zr 132Sn 208Pb

-10

0

10

20

30

40

50

60

.

E/A

[MeV

]

4He 16O 48Ca 90Zr 132Sn 208Pb

Cr

-10

0

10

20

30

40

50

60

.

E/A

[MeV

]

4He 16O 48Ca 90Zr 132Sn 208Pb

Cr

central & tensorcorrelations

essential to obtainbound nuclei

16

Page 17: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Application I

No-Core Shell Model

17

Page 18: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

UCOM + NCSM

No-Core Shell Model+

Matrix Elements of CorrelatedRealistic NN-Interaction VUCOM

many-body state is expanded in Slater determinants of har-monic oscillator single-particle states

large scale diagonalisation of Hamiltonian within a truncatedmodel space (N~ω truncation)

assessment of short- and long-range correlations

NCSM code by Petr Navratil [PRC 61, 044001 (2000)]

18

Page 19: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

4He: Convergence

VAV18

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

Nmax

0 2 4

6

8

10121416EAV18

VUCOM

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

residual state-dependentlong-range correlations

19

Page 20: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

4He: Convergence

VAV18

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

Nmax

0 2 4

6

8

10121416EAV18

VUCOM

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

20 40 60 80

-30

-25

-20

-15

-10

omitted three- andfour-body contributions

20

Page 21: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Tjon-Line and Correlator Range

-8.6 -8.4 -8.2 -8 -7.8 -7.6E(3H) [MeV]

-30

-29

-28

-27

-26

-25

-24

.

E(4

He)

[MeV

]

AV18Nijm II

Nijm I

CD Bonn

XXX + 3-bodyExp.

Tjon-line : E(4He) vs. E(3H)for phase-shift equivalent NN-interactions

21

Page 22: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Tjon-Line and Correlator Range

-8.6 -8.4 -8.2 -8 -7.8 -7.6E(3H) [MeV]

-30

-29

-28

-27

-26

-25

-24

.

E(4

He)

[MeV

]

AV18Nijm II

Nijm I

CD Bonn

VUCOM(AV18)Exp.

increasingCΩ-range

Tjon-line : E(4He) vs. E(3H)for phase-shift equivalent NN-interactions

change of CΩ-correlator rangeresults in shift along Tjon-line

minimise netthree-body force

by choosing correlatorwith energies close to

experimental value

this VUCOM

is used in thefollowing

22

Page 23: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Tjon-Line and Correlator Range

-8.6 -8.4 -8.2 -8 -7.8 -7.6E(3H) [MeV]

-30

-29

-28

-27

-26

-25

-24

.

E(4

He)

[MeV

]

AV18Nijm II

Nijm I

CD Bonn

VUCOM(AV18)VUCOM(Nijm II)VUCOM(Nijm I)

Exp.

Tjon-line : E(4He) vs. E(3H)for phase-shift equivalent NN-interactions

change of CΩ-correlator rangeresults in shift along Tjon-line

minimise netthree-body force

by choosing correlatorwith energies close to

experimental value

23

Page 24: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

10B: Benchmarking VUCOM

large-scale NCSM calculations troughout the p-shell in progress(with and w/o Lee-Suzuki transformation)

-2

-1

0

1

2

3

4

5

6

7

.

E−E

3+

[MeV

]

VUCOM Exp

3+

1+

0+

2+

4+

0~ω 2~ω 4~ω 6~ω 8~ω

~ω = 18MeV

-62.1 -64.7

calculations by Petr Navratil – preliminary

24

Page 25: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

10B: Benchmarking VUCOM

large-scale NCSM calculations troughout the p-shell in progress(with and w/o Lee-Suzuki transformation)

-2

-1

0

1

2

3

4

5

6

7

.

E−E

3+

[MeV

]

VUCOM Exp CDBonn ChiralNN NN+NNN

3+

1+

0+

2+

4+

0~ω 2~ω 4~ω 6~ω 8~ω

~ω = 18MeV

8~ω 6~ω

-62.1 -64.7

-56.8-56.3

-64.0

calculations by Petr Navratil – preliminary

VUCOM gives correctlevel ordering withoutany NNN interaction

25

Page 26: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Application II:

Hartree-Fock & Beyond

26

Page 27: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

UCOM + HF

Standard Hartree-Fock+

Matrix Elements of CorrelatedRealistic NN-Interaction VUCOM

many-body state is a Slater determinant of single-particlestates expanded in oscillator basis

correlations cannot be described by Hartree-Fock states

starting point for improved many-body calculations : MBPT,RPA, SM/CI, CC,...

27

Page 28: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Hartree-Fock with VUCOM

-8

-6

-4

-2

0

.

E/A

[MeV

]

4He16O

24O34Si

40Ca48Ca

48Ni56Ni

68Ni78Ni

88Sr90Zr

100Sn114Sn

132Sn146Gd

208Pb1

2

3

4

5

6

.

Rch

[fm

]

experiment HF

long-rangecorrelations are

missing

28

Page 29: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Perturbation Theory with VUCOM

-8

-6

-4

-2

0

.

E/A

[MeV

]

4He16O

24O34Si

40Ca48Ca

48Ni56Ni

68Ni78Ni

88Sr90Zr

100Sn114Sn

132Sn146Gd

208Pb1

2

3

4

5

6

.

Rch

[fm

]

experiment HF HF+PT2 HF+PT2+PT3

long-rangecorrelations are

perturbativeeasily tractable

within PT, SM/CI,CC, RPA,...

indications forpresence of residual

three-body force

29

Page 30: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Outlook: UCOM + RPA

0

20

40

60

R[f

m4 /M

eV]

0.07 fm3

0.08 fm3

0.09 fm3

0

100

200

300

0

100

200

300

400

R[f

m4 /M

eV]

0

500

1000

1500

0 10 20 30 40E[MeV]

0

1000

2000

3000

R[f

m4 /M

eV]

0 10 20 30 40E[MeV]

0

2500

5000

7500

10000

16O 40

Ca

48Ca

90Zr

132Sn

208Pb

0+

Iθ(S=1,T=0)

EXP.

EXP.

EXP.

Drozdz et al.Drozdz et al.

AV18

ERPA/SRPA :long-rangecorrelations

HFB: pairingwith realisticinteractions

effect of simplethree-nucleon

forces

30

Page 31: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Application III

Fermionic MolecularDynamics (FMD)

31

Page 32: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

UCOM-FMD Approach

Gaussian Single-Particle States

∣∣q⟩

=n∑

ν=1

∣∣aν,~bν

⟩⊗

∣∣χν

⟩⊗

∣∣mt

⟨~x∣∣aν,~bν

⟩= exp

[−

(~x−~bν)2

2 aν

]

aν : complex width χν : spin orientation~bν : mean position & momentum

Slater Determinant∣∣Q

⟩= A

( ∣∣q1

⟩⊗

∣∣q2

⟩⊗ · · · ⊗

∣∣qA

⟩)

Correlated Hamiltonian

H = T + VUCOM + δVc+p+ls

Variation⟨Q

∣∣ H−Tcm

∣∣Q⟩

⟨Q

∣∣Q⟩ → min

Projectionrestoration of rotationaland inversion symmetry

PAV / VAP

Multi-Configurationmixing of several

intrinsic configurationsGCM

32

Page 33: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Intrinsic One-Body Density Distributions

ρ(1

)(~x

)[ρ

0]4He 16O 40Ca

9Be 20Ne 24Mg

capable of describing sphericalshell-model as well as intrinsically

deformed and α-cluster states

33

Page 34: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Structure of 12C

-95

-90

-85

-80

-75

-70

-65

E@M

eVD

0+

0+

2+

4+

3-

0+

2+

4+

0+

2+

1-2-

3-

0+

2+

H0+ L

0+

H2+ L1+4+

3-1-2-H2- L

12C

Variation PAVΠ Multi-Config Experiment

E [ MeV] Rch [ fm] B(E2) [e2 fm4]

V/PAV 81.4 2.36 -VAP α-cluster 79.1 2.70 76.9PAVπ 88.5 2.51 36.3VAP 89.2 2.42 26.8Multi-Config 92.2 2.52 42.8

Experiment 92.2 2.47 39.7 ± 3.3

V/PAV VAPα

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

Vπ/PAVπ VAP

-6 -4 -2 0 2 4 6x [fm]

-6

-4

-2

0

2

4

6

y [fm

]

Multi-Config

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

-6 -4 -2 0 2 4 6x [fm]

-6

-4

-2

0

2

4

6

y [fm

]

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

34

Page 35: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Structure of 12C — Hoyle State

-95

-90

-85

-80

-75

-70

E@M

eVD

0+

2+

4+

0+

2+

1-2-

3-

0+

2+

4+

0+

2+0+2+

1-2-

3-

2-

0+

2+

H0+ L

0+

H2+ L

1+4+

3-1-2-H2- L

12C

Multi-ConfigH4L Multi-ConfigH14L Experiment

Multi-Config Experiment

E [ MeV] 92.4 92.2Rch[ fm] 2.52 2.47

B(E2, 0+1 → 2+

1 ) [e2 fm4] 42.9 39.7 ± 3.3

M(E0, 0+1 → 0+

2 ) [ fm2] 5.67 5.5 ± 0.2

-5 0 5y [fm]

-5

0

5

z [fm

]

-5 0 5y [fm]

-5

0

5

z [fm

]

-5 0 5y [fm]

-5

0

5

z [fm

]

∣∣⟨ ∣∣0+2

⟩∣∣ = 0.76

∣∣⟨ ∣∣0+2

⟩∣∣ = 0.71

∣∣⟨ ∣∣0+2

⟩∣∣ = 0.50

35

Page 36: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Outlook: Resonances & Scattering in FMD

-38

-36

-34

-32

-30

-28

-26

B @MeVD

FMD Exp. Frozen Frozen+PAVΠ Exp.

3 He+α 3 He+α 7 Be7 Be 7 Be

32-12-

72-

52-

E[M

eV]

0 2 4 6 8 10E [MeV]

-120

-100

-80

-60

-40

-20

0

δ(E

) [d

eg]

Frozen+PAVπ

3He-α

1/2+

3/2+

5/2+

collective coordinate rep-resentation as tool for thedescription of continuumstates in FMD

first steps towardsfully microscopic andconsistent description

of structure andreactions

36

Page 37: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Conclusions

Unitary Correlation Operator Method (UCOM)

• explicit description of short-range central and tensor correlations

• universal phase-shift equivalent correlated interaction VUCOM

Innovative Many-Body Methods

• No-Core Shell Model

• Hartree-Fock, MBPT, SM/CI, CC, RPA, ERPA, SRPA,...

• Fermionic Molecular Dynamics

unified description of nuclearstructure across the whole

nuclear chart is within reach

37

Page 38: Modern Nuclear Structure Theory - theorie.ikp.physik.tu ... fileModern Nuclear Structure Theory Nuclear Structure Low-Energy QCD Realistic NN-Potentials Chiral Interactions ab initio

Epilogue

thanks to my group & my collaborators

• H. Hergert, N. Paar, P. Papakonstantinou, A. ZappInstitut fur Kernphysik, TU Darmstadt

• T. NeffNSCL, Michigan State University

• H. Feldmeier, A. Cribeiro, K. LangankeGesellschaft fur Schwerionenforschung (GSI)

supported by the DFG through SFB 634“Nuclear Structure, Nuclear Astrophysics andFundamental Experiments...”

38