modelling the thermoelastic properties of short … · 2016-11-16 · modelling the thermoelastic...

22
MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*, B.Whiteside $ , A.M.Cunha # and I.M.Ward* * - IRC in Polymer Science and Technology, University of Leeds, Leeds, LS2 9JT, UK * - IRC in Polymer Science and Technology, University of Bradford, Bradford, , UK # - Department of Polymer Engineering, Universidada Do Minho, Campus Azurem, 4800-058, Portugal COMPTEST 2004

Upload: others

Post on 01-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES

WITH ANISOTROPIC PHASES

P.J.Hine*, C.D.Price*, B.Whiteside$, A.M.Cunha# and I.M.Ward*

* - IRC in Polymer Science and Technology, University of Leeds, Leeds, LS2 9JT, UK

* - IRC in Polymer Science and Technology, University of Bradford, Bradford, , UK

# - Department of Polymer Engineering, Universidada Do Minho, Campus Azurem, 4800-058, Portugal

COMPTEST 2004

Page 2: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

MOTIVATION

Injection mouldingComplicated shapes and a fast/cheap process

Add short fibre reinforcementEnhanced stiffness and strength but anisotropic properties

ChallengesReliable models for predicting composite properties

+ prediction of fibre orientation due to processingComputer aided component design and material optimisation

STRUCTURE PROPERTY INVESTIGATIONS IN FIBRE REINFORCED POLYMERS

Page 3: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

MOTIVATION

Themes• Development of analytical models for predicting elastic and

thermoelastic properties

Use of FE techniques to validate/tuneanalytical models (ETH/Leeds)

FE model: 100 fibres: periodic boundaries

P.J.Hine, H.R.Lusti and A.A.Gusev, Comp. Sciand Tech., 2002, 62, 1445-1453 .

Compare with actual manufactured components of increasing complexity and with anisotropy in both phases (requires complete description of the orientation structure and phase properties and measurement of mechanical properties).

Carbon fibre/LCP ribbed box

Page 4: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

MODELLING APPROACHES

ANALYTICALPrediction of elastic properties is split

into two components.

FINITE ELEMENTPrediction of elastic properties is

carried out in one process.

UNIT

+

AGGREGATE

Page 5: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

1

• Finite element based approach of Gusev • 100/250 sphero-cylinders required for reliable

predictions depending on the orientation state.• Monte Carlo techniques used to generate random

microstructures.• Periodic boundary conditions used.

X

FE MODELLING APPROACH

MESHING

• Periodic morphology –adaptive meshing

• tetrahedra based• quality refinement• typically 3 million nodes• random microstructures

Page 6: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

ISOTROPIC/ANISOTROPIC FIBRE

+

ISOTROPIC MATRIX

Page 7: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

ANISOTROPIC FIBRE/ISOTROPIC MATRIX

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

Volume fraction (%)

E11

(GPa

)

ETHH/TsaiT/WengCox/Wilc

Tandon/WengBased on Eshelby (equivalent inclusion method) and Mori Tanaka (average stress theory).Can cope with anisotropic fibres (modification by Qui and Weng).

Inside elliptical inclusion stress/strain are constant.

1

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30Volume fraction (%)

v23

ETHH/Tsai ( =1)H/Tsai ( =2)T/WengCox/Wilc

The best model for the prediction of elastic properties of the unit is that of Tandon and Weng.

Halpin-Tsai doesn’t capture the physicsY. P. Qiu, G. J. Weng, J. Engng. Sci. 1990, 28, 1121.

Page 8: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

ANISOTROPIC FIBRE/ISOTROPIC MATRIX

The best model for the prediction of thermal expansion properties of the unit is that of Levin (Christensen/Rosen).

This is based on the elastic and thermal properties of the phases and the elastic properties of the unit.

αi αk1( ) αk

2( )–( ) Skl1( ) Skl

2( )–( )1–

Sli Sli2( )–( ) αi

2( )+=

where subscripts 1 and 2 stand for the fibre and matrix phases

V. M. Levin, Mech. Tverd. Tela 1968, 88, 25.

R.M. Christensen, Mechanics of Composite Materials, Krieger Publishing Company, Mala-bar, Florida, 1991

B.W. Rosen and Z. Hashin, International Journal of Engineering Science 1970, 8, 157-173.

Page 9: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

ANISOTROPIC FIBRE/ISOTROPIC MATRIX

4

6

8

10

12

0 10 20 30 40 50

Aspect ratio

E11

(GPa

)

Single value tomatch

distribution

NumberAverage

LN

WeightAverage

LW

SkewedAverage

LS

RMSAverage

LRMS

36.6 ± 2.5 38.8 45.4 41.9 33.2

<a> <1/a>-1 <a2>-1/21

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000 1200

Fibre length (microns)

Freq

uenc

y

Fibre length distribution (diameter = 10)

7

8

9

10

11

12

13

20 25 30 35 40 45 50Aspect ratio - all fibres

Mod

ulus

E33

(GPa

)

Distribution of lengths

Single length results

Aligned fibres, Fixed volume fraction (15%) isotropic phases

Results determined using a single aspect ratio

The best measure for the fibre length is the number average length.

Page 10: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

ANISOTROPIC FIBRE/ISOTROPIC MATRIX

klijklij

klijklij

S

C

σε

εσ

=

= Longitudinal Modulus E11

0

2

4

6

8

10

12

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

<cos2θ>

Mod

ulus

(GPa

)FE full constant strain constant stress

Longitudinal thermal expansion α1

0

20

40

60

80

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

<cos2θ>T

herm

al e

xpan

sion

x10

-6 K

-1

ETH ETH unit - strain ETH unit - stress

1

CONSTANT STRESS

(Average S’s)

CONSTANT STRAIN

(Average C’s)

OR

Brody H and Ward IM. Polymer Engineering and Science 1971;11:139-151.

C.W. Camacho and C.L. Tucker III Polymer Composites1990, 11, 229-239.

Page 11: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

ANISOTROPIC FIBRE/ISOTROPIC MATRIX

Transverse modulus E22

0

1

2

3

4

5

6

7

8

9

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

<cos2θ>

Mod

ulus

(GPa

)

ETH Constant strain Constant stress

Poissons ratio ν21

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

<cos2θ>

Poiss

ons

ratio

ETH Constant strain Constant stressShear Modulus G12

0

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

<cos2θ>

Mod

ulus

(GPa

)

ETH Constant strain Constant stress

Carbon fibres/PP

E11 Carbon 370GPaα1 Carbon -1.3e-6 K-1

E11 PP 2.28GPaα1 PP 117e-6 K-1

1

The best approach determining the aggregate properties is to use the tensor averaging approach and a constant strain prediction

Page 12: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

ANISOTROPIC FIBRE

+

ANISOTROPIC MATRIX

?

Page 13: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

SAMPLES AND MATERIALS

4

3

2

1

30%AnisotropicAnisotropicCarbon fibre filled LCP

30%AnisotropicIsotropicHoechst CelaneseTicona B130

Glass fibre filled LCP

AnisotropicHoechst CelaneseTicona B950

Unfilled LCP

30%IsotropicAnisotropicSolvayIXEF 300/6/9019

Carbon fibre filled Nylon

Weight fraction

MatrixFibreGradeDescription

Injection moulded dumbbells made by the University of Minho

Materials 1,2,3,4

Injection moulded demonstrator component made by the University of Bradford

Material 4

Picture of dumbbell

Page 14: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

MEASURING FIBRE ORIENTATION

2

3

2b

2a

φ

1

φ

φ = −90

φ = 0

θ

2

3

=θ −

abcos 1

Best technique for measuring fibre orientation (when fibre diameters

~µm’s) is from polished 2D sections taken from the composite. Calculation of θ and φ from

the fibre elliptical footprintDefinition of the orientation

angles θ and φ

Page 15: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

RESULTS - DUMBBELL

Injection moulded dumbbell – Carbon/Nylon

Theoretical predictions

α2

α1

E22

E11

X 10-6 K-1

X 10-6 K-1

GPa

GPa

5.507.254.561.9260.067.479.680.7

3.604.153.213.2423.921.825.849.9

Experimentally measured

Actual alignmentAR = 25

Fully aligned fibresAR=25 (measured)

Fully aligned fibresInfinite fibre length

0.820<cos4θ>0.856<cos2θ>

25Aspect ratio0.21Volume fraction • A full description of the carbon fibre

properties is difficult to obtain. • Within these constraints the

agreement is excellent.• The correction for finite length is

more important than for misalignment.Dumbbells are transversely isotropic

Page 16: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

RESULTS - DUMBBELL

Injection moulded dumbbell – Glass/LCP

Predictions of the fully aligned unit

-0.9-1.04x 10-6 K-1α1

0.4210.427ν12

2.342.01GPaE22

33.833.9GPaE11

FEAnalytical

α2

G12

ν23

x 10-6 K-1

GPa

61.963.2

1.901.630.6420.686

• Confirms analytical approach gives excellent agreement with FE predictions

T. Mura, Mechanics of Elastic and Inelastic Solids. 1982, The Hague: Nijhoff.

Page 17: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

RESULTS - DUMBBELL

Injection moulded dumbbell – Glass/LCP

Composite

α2

α1

E22

E11

x 10-6 K-1

x 10-6 K-1

GPa

GPa

-0.43-1.206055

1.952.8625.629.1

MeasuredTheory

0.865<cos4θ>

0.904<cos2θ>

25Aspect ratio

0.19Volume fraction

Page 18: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

RESULTS - DUMBBELL

Injection moulded dumbbell – Carbon/LCP

α2

α1

E22

E11

X 10-6 K-1

X 10-6 K-1

GPa

GPa

-1.0-5.0-1.89-1.6549.058.261.060.9

2.452.542.092.0943.251.7362.774.6

Experimentally measured

Actual alignmentAR = 25

Fully aligned fibresAR=25 (measured)

Fully aligned fibresInfinite fibre length

0.820<cos4θ>0.856<cos2θ>

25Aspect ratio0.21Volume fraction • A full description of the carbon fibre

properties is difficult to obtain. • Within these constraints the agreement is

excellent.• The correction for misalignment is

more important than fibre length for this material.Dumbbells are transversely isotropic

Page 19: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

RESULTS – RIBBED BOX

Injection moulded dumbbell Carbon/LCP

Page 20: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

RESULTS – RIBBED BOX

Injection moulded ribbed box - Carbon/LCP

0.168 ± 0.028sin2θcos2φ

0.185 ± 0.028sin4θ

Measured

0.168 ± 0.028cos2θ3

0.325 ± 0.029sin2θ0.141 ± 0.004sin2θcos2θ0.534 ± 0.030cos4θ

0.404 ± 0.033cos4φ0.516 ± 0.032Cos2φ0.075 ± 0.021sin4θcos4φ

0.096 ± 0.023sin4θcos2φ

cos2θ1

0.132 ± 0.026sin2θcos4φ

0.157 ± 0.020cos2θ2

0.675 ± 0.029

3

21

Results averaged for Ribs 1,2,3 at B and C

Page 21: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

RESULTS – RIBBED BOX

Injection moulded ribbed box - Carbon/LCP

Best analytical

37.5 ± 1.9 -5.02 ± 0.2529.7 ± 1.7

Matrix = fibre orientation

α2

α1

E11

x 10-6 K-1

x 10-6 K-1

GPa1.25 ± 0.1-0.9 ± 1.831.9 ± 1.652 ± 3

24.2 ± 1.425 ± 2

Isotropic matrix orientation

Measured

40.2Aspect ratio0.21Volume fraction

• Longitudinal stiffness and thermal expansion best predicted by an isotropic LCP matrix and misoriented fibres for the rib.

• Even better agreement could be possible if the matrix orientation was measured directly by X ray scattering.

Page 22: MODELLING THE THERMOELASTIC PROPERTIES OF SHORT … · 2016-11-16 · MODELLING THE THERMOELASTIC PROPERTIES OF SHORT FIBRE COMPOSITES WITH ANISOTROPIC PHASES P.J.Hine*, C.D.Price*,

MODELLING STRATEGY

Camacho + Tucker

Camacho + Tucker

ChristensenQui and WengMura

Anisotropic LCP

Isotropic Glass

Anisotropic Carbon

Anisotropic Carbon

Isotropic Glass

Fibre

Anisotropic LCP

Isotropic

Isotropic

Matrix

Camacho + Tucker

Camacho + Tucker

ChristensenQui and WengEshelby

Camacho + Tucker

Camacho + Tucker

ChristensenQui and WengMura

Camacho + Tucker

Camacho + Tucker

ChristensenQui and WengEshelby

Thermal expansion

ElasticThermal Expansion

Elastic

AGGREGATEUNIT

Y. P. Qiu, G. J. Weng, J. Engng. Sci. 1990, 28, 1121.

T. Mura, Mechanics of Elastic and Inelastic Solids. 1982, The Hague: Nijhoff

R.M. Christensen, Mechanics of Composite Materials, Krieger Publishing Company, Mala-bar, Florida, 1991

C.W. Camacho and C.L. Tucker III, Polymer Composites 1990, 11, 229-239.